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Abstract: To protect participants’ confidentiality, blockchains can be outfitted with anonymization
methods. Observations of the underlying network traffic can identify the author of a transaction
request, although these mechanisms often only consider the abstraction layer of blockchains. Previous
systems either give topological confidentiality that may be compromised by an attacker in control of
a large number of nodes, or provide strong cryptographic confidentiality but are so inefficient as to be
practically unusable. In addition, there is no flexible mechanism to swap confidentiality for efficiency
in order to accommodate practical demands. We propose a novel approach, the neural fairness
protocol, which is a blockchain-based distributed ledger secured using neural networks and machine
learning algorithms, enabling permissionless participation in the process of transition validation
while concurrently providing strong assurance about the correct functioning of the entire network.
Using cryptography and a custom implementation of elliptic curves, the protocol is designed to
ensure the confidentiality of each transaction phase and peer-to-peer data exchange.

Keywords: blockchain; distributed consensus; neural networks; elliptic cryptographic curves;
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1. Introduction

Over the past decade, the advent of distributed systems combined with cryptography
and the success of Bitcoin, based on Blockchain technology, demonstrates the potential
and interest in this new way of interaction and exchange. Trust has been a point of
discussion in limited circles of enthusiasts for decades before being formalized for the
first time by D. Chaum in [1]. Between then and the introduction of Bitcoin [2] in 2008,
numerous researchers [1,3–6] have studied the elimination of intermediate parties and
direct communication between stakeholders, which allows for an increase in trust through
the replication of information and validation processes in a network.

The first mainstream occurrence was the release of the Bitcoin whitepaper [2], which
unleashed a new era in this research field.

After the introduction of the genesis Proof-of-Work consensus protocol [7,8] for Bitcoin,
many others have been introduced for blockchain such as the following:

(1) Proof-of-Stake (PoS) [9] replaces Proof-of-Work-based mining with a mechanism that
makes the chances of mining a block proportional to the amount of stake (currency) a
miner has.

(2) Proof-of-Authority (PoA) [10] is a regulated consensus mechanism that uses authorized
nodes or validators to obtain consensus. Validators are limited to n authorized sealers.
This protocol works by validating machines to produce network transaction blocks.
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Each blockchain network’s architecture determines block acceptance and mining. In
this procedure, the sealer’s reputation is at stake; therefore, hostile behavior is harmful
to the organization.

(3) Proof-of-Accuracy (PoAC) [11] aims to democratize the miners’ participation within a
blockchain, control the miners’ computing power, and mitigate the majority of attacks.

(4) Proof-of-Capacity (PoC) [12] allows for mining devices in the network to use their
available hard drive space to decide mining rights and validate transactions.

They are the consensus protocols in the top 50 cryptocurrencies by market capital-
ization from CoinMarketCap [13]. For overviews of literature, alternative protocols, and
specialized papers on various aspects, the reader can see [14–18].

The Bitcoin and Ethereum public chains only provide minimal anonymity for user
identities, and transaction amounts are visible to the whole network, resulting in a breach
of user confidentiality. Based on the current anonymous technology, the sender, recipient,
and transaction amount are hidden and no information is disclosed, making oversight im-
possible. Therefore, the design of a blockchain system with confidentiality and monitoring
capabilities is of critical importance. Increasingly, the necessity to protect the confidentiality
of the users participating in a transaction is a basic requirement that must be considered
during each phase of a data transaction between a client (also known as a wallet) and a
distributed ledger.

1.1. Research Problem

Blockchain is a revolutionary technology that prioritizes the secure transmission
of data between many distributed applications. Despite its broad usage, there are still
areas in which further study is necessary to comprehend its performance characteristics.
Moreover, consensus algorithms, a crucial component of the blockchain, demand a deeper
comprehension of its underlying concepts and technical qualities. Several issues, such
as system scalability and energy usage, have been highlighted in conjunction with the
development of various consensus methods. Therefore, more research is required to
examine the degree of construction and performance of consensus algorithms. We present
a novel consensus algorithm that prioritizes confidentiality above blockchain performance,
with the purpose of boosting safety without affecting blockchain behavior.

1.2. Our Contributions

Our contributions include the development of a novel Fairness Consensus Protocol that
protects the confidentiality of the user’s data and enables the network to reach consensus
using a combination of neural networks, cryptography, and conflict graphs. They will
be interconnected with a personal version of Delegated Proof-of-Stake protocol [19] that
will use a dedicated crypto-lottery to elect the leader and the committee. They will decide
which transactions will be stored into the distributed ledger. Preventing the same nodes
from forming the consensus committee could increase network fairness. We aim to obtain
a fair consensus as quickly as possible, avoiding a scenario where only a few nodes have
51 percent consensus power. Fair consensus is when all honest nodes have equal odds of
making the final board. All trustworthy nodes do not contribute evenly to the network.
Not all nodes can retain the whole block history in memory, and not all are available
24/7. It is tough to pick a group of nodes with specific qualities that can assure fast block
production. Focusing primarily on this utility may disrupt block validation boards’ balance.
The Conflict Graph provides a solution. Using only utility could lead to an unbalanced
Board with the same nodes. A Conflict Graph prevents this, maintaining fairness.

1.3. The Paper Structure

We briefly describe the structure of this paper here. In the next section, we will define
the fairness consensus protocol and reserve four paragraphs for the main components,
namely, weighted nodes, consensus committee, verifiable cryptographic lottery, and neural
network model. Section 3 details the operational logic of the protocol, outlining, in particu-
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lar, six phases. Section 4 is dedicated to the board election algorithm and the role of elliptic
curves. It is divided into nine subsections that examine the details (utility factor, conflict
of interest, elliptic curves framework, tickets generator, leader selection algorithm, etc.).
Finally, Section 5 briefly discusses rewards and Section 6 concludes the paper with some
future work.

2. Abstract Definition of the Protocol

This paper presents a new fairness consensus protocol designed to confirm transactions
while preserving the confidentiality of the users and of their own data that are transmitted
into the network. The core of this system uses a Byzantine agreement protocol that scales
to many users, which allows the network to reach consensus on a new block fast and with
low latency. A key technique that makes this protocol very efficient and fair is the use of
verifiable lottery functions to randomly select users in a private and noninteractive way
and the use of a neural network model that is updated and distributed to all the nodes each
time a consensus is reached. The Fairness Consensus Protocol addresses these challenges
using several techniques, as follows:

Weighted nodes. To prevent Sybil attacks, the neural network assigns a weight to
each node. The protocol is designed to guarantee consensus as long as a weighted fraction
(a constant greater than 2/3) of the nodes are honest. The weight of the nodes is based
on the score that the neural network calculate each time a node is elected to be part of the
committee and vote for a set of transactions.

Consensus committee. Similar to the Delegated Proof of Stake, the system achieves
scalability by choosing a committee comprising a subset of nodes that, through a crypto-
lottery, are randomly selected from the total set of nodes. From the verifiable lottery, which
is run independently in each node, each node will be able to know if it will be the winner
of one place into the committee. The first place of the lottery is designed for the leader. The
leader is the node that will start the consensus phase proposing a set of transactions that
could be written into the distributed ledger. All other nodes observe and broadcast the
protocol messages, which allows those that are part of the committee to agree upon the
proposed set of transactions.

Verifiable Cryptographic Lottery. A verifiable cryptographic lottery (VCL) selects
committee nodes in a noninteractive and private manner to prevent an adversary from
targeting committee members. This means that every node in the system can indepen-
dently determine if it is selected for the committee by computing the verifiable function
using elliptic curves and public information from the blockchain, such as the seed that is
randomly generated each time a block is created. Since the verifiable cryptographic lottery
is noninteractive, an adversary is unaware of which nodes are members of the committee
that elects the following block.

More specifically, the VCL is based on hashing functions and elliptic curve cryp-
tography (ECC), and works synthetically as below (see Sections 4.6–4.9 for a detailed
description). In this paper, we moreover adopt the so-called Simple Uniform Hashing
Assumption (SUHA), which is commonly used in theoretical computer science to allow an
easier mathematical analysis of the processes (see, for example, [20–22]). Once an elliptic
curve has been chosen on which to carry out the calculations (for example, one of the
type Secp256k1, as characterized in [23], Section 2.4), it is possible to generate N tickets
using the group law on the elliptic curve. The explicit law can obviously vary considerably
by favoring structural simplicity, as we will detail in Section 4.7, or by exploiting partic-
ular constructs such as generalized Fibonacci sequences (see [24–28] and the references
therein), new computational paradigms based on unimaginable numbers (see [29,30]),
n-sets (see [31]), and much more. In the framework we use in this paper, in particular, a
ticket is associated with a point on the elliptic curve, and in most cases, we always start
from two points that determine the sequence of tickets ti either explicitly or recursively.

Then, we consider the hash of the last block written in the blockchain and, dividing
it into eight parts, compute the resulting XOR from all of them. This means calculating
seven XOR (or, equivalently, a unique n-ary XOR operation) to obtain a final binary number,
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which will give the leader, if thought of as a number in the set N of naturals and taking the
rest modulo N (see in particular, Section 4.8).

Neural Network model. To decide if a set of transactions could be stored into a block
and distributed to all the peers, a dedicated neural network model is used. It engages
confidentiality-protecting techniques such as local and global differential confidentiality
and encrypted deep learning. However, each set of techniques is only useful for the trust
configuration that it supports. Some techniques would be overly burdensome amongst
data and model owners who trust each other implicitly, while others would be too insecure
for the trust model of potentially malicious actors. This protocol is built as a cross-section of
fundamental techniques that are applicable to a broad spectrum of confidentiality settings.
It is useful when a party wants to annotate a local dataset using the private datasets of
other actors and the epsilon-delta tool allows for very granular control of just how much
the other actors must trust us to protect their confidentiality in this process. Finally, secure
additive aggregation helps add additional confidentiality protections in this setting—in the
latter case, preventing anyone from seeing an aggregated gradient from one individual,
which is a much stronger confidentiality protection. Each time a consensus is reached,
the updated version of the neural network model is distributed along the network and
allows the next elected committee to be more conscious about the future proposed set
of transactions. Using this new technique, the model is distributed and the data will be
kept as private as possible. However, the paper does not describe any specific solution for
confidentiality preserving (see, for example, [32,33] and the references therein).

3. Neural Fairness Protocol Logic

The Neural Fairness Protocol is needed to generate the new block and guarantee that
the system is simultaneously scalable, secure, and decentralized. The NFP process that
writes a block into a blockchain could be split into six subphases.

In the first phase, in a noninteractive way, each node runs a verifiable cryptographic
lottery (VCL) that, starting from a public randomly generated seed, will allow all the nodes
to run the same lottery and determine which nodes will be part of the committee and which
one will be the leader who proposes the next block.

The Neural Fairness Protocol is derived from the Delegated Proof-of-Stake consensus;
therefore, the number of tickets that will be available for the lottery is equal to the number of
stakes that a node has. Similar to the Delegated Proof-of-Stake, the Neural Fairness Protocol
relies on the Honest Majority of nodes. Accordingly, some members of the committee may
be chosen twice or, more generally, k times; in this case, members chosen k times will have k
votes in the committee to propose valid transactions for the next block. This phase reflects
real world/society. Similar to the real world, a small percentage of corrupted nodes may be
involved in trying to propose a set of transactions for a block.

Finally, for clarity, we specify that if the computed token belongs to a node that is not
eligible for the committee, the process is repeated.

The second phase takes into account the communication of the nodes about the list of
requested transactions that are waiting to be stored into a block.

The literature on distributed computing (as well as the cryptography literature) typ-
ically considers two types of players: honest players and corrupted players. Resilience
properties are then analyzed, assuming a lower bound on the fraction of honest players.
Honest players, however, are not only assumed to follow the prescribed protocol, but
also assumed to be online throughout the whole execution of the protocol. The advent
of “large-scale” consensus protocols (e.g., the blockchain protocol), where we may have
millions of players, makes this assumption unrealistic [34].

Following those assumptions, the neural fairness protocol is build in a “sleepy” model
of computation, where players can be either online (awake) or offline (asleep) and their
online status may change at any point during the protocol execution. Therefore, nodes that
join the network can be honest or corrupt.

The third phase is dedicated to an internal process that each node will run indepen-
dently. Every time a node will be part of the network, it will start to receive transactions
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from the clients; each time a transaction is received by the node, the node will parse the
transaction’s features into its internal neural network model. The output of the neural net-
work model will provide a score to the given transaction. Each node will collect and sign all
of these results in order to further distribute them across the network while maintaining the
confidentiality of the data contained within the parsed transactions. The communication
between nodes is made secure by using a kind of Elliptic-curve-based Diffie–Hellman Key
Agreement (ECDH) [35] to generate a shared symmetric key. In particular, the Ristretto one
is used [36].

Next is the fourth phase. After the VCL execution, each node will know if it will be
elected to be part of the committee, or better, to be the leader. Using a gossip protocol for
communication propagation, the leader will start to spread its own transaction proposals
to the other nodes. Nodes that receive the transaction proposal will verify that it is coming
from the leader and is not corrupted. Here, the statement to be verified about the hash
function’s input is in the zero-knowledge, and a zero-knowledge proof-friendly hash
function Poseidon is used in order to exploit its capability to minimize proof generation
time, proof size, and verification time [37]. These proprieties are well-suitable for working
with the proof system we use. Indeed, Bulletproofs [38] is used as proof system because the
absence of a trusted setup, usually needed for the shortest-range proofs, is an important
requirement in a context such as Distributed Ledger Technology and blockchain. However,
Bulletproofs can be used for general verification statement or generic Zero-Knowledge
Proofs, not only the shortest-range proofs [38].

Once the verification is passed, they will start to execute their own neural network
using the data contained in the transaction proposal. Based on the outcome, they will
provide their own opinion, sign, and spread the outcome to the other nodes.

In the second-last phase, the fifth, the leader will receive back all the outcomes pro-
vided by the committee. It will verify their origin and it will execute the neural network
with that data.

As before, it will sign and spread the outcome to the network. The nodes of the
committee will execute again the neural network and vote for the final proposal.

Finally, in the last phase, the sixth, the committee, based on the received final votes,
will know if the proposed transaction will be considered valid or not. If the final result is
considered valid, the committee will write the new block into the blockchain and distribute
the updated version of the neural network model to the network within the new block. If a
node becomes corrupt, the stake under the control of the particular node is considered to
be corrupt. A node is defined as an honest node if it does not deviate from the prescribed
protocol execution rules.

Every time a final decision is taken, the process will restart from the first phase.

4. Elliptic Curves and the Board Election Algorithm

This section is devoted to a more in-depth description of how the cryptographic lottery
exploits the arithmetic properties of elliptic curves to determine the board committee,
which is of central importance in the proposed consensus procedure. First of all, it is
possible/convenient to consider a restricted subset of the network nodes according to their
(i) minimum balance, (ii) utility factor, and (iii) conflict of interest (see Sections 4.1–4.5).

A cryptographic lottery (CL) is used to randomly and fairly select committee members.
It is based on the use of elliptic curves: the lottery output is an integer n, which indicates
the corresponding multiple nP of a point belonging to a certain fixed cryptographic elliptic
curve whose group law is considered, as usual. Thus, the nP point obtained identifies a
wallet—the owner of the specified token. In the following, we will describe the procedure
in four distinct steps (see Sections 4.6–4.9).

Instead of elliptic curves, it is also possible to use schemes based on some types of
conics, for example, the Pell hyperbola (see [39]), and thus obtain some advantages such as
a higher system speed.
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4.1. Minimum Balance

A minimum balance B ≥ ρ, where ρ is a token quantity to be defined, is a requirement
for membership in the committee. All nodes with a balance of at least B have a chance to
participate in the Consensus method if and only if a utility factor is assigned to each of
them. In addition, the minimum required balance must be available for a specific period
of time in order to be considered. The difference between a minimum balance accessible
today and a minimum balance available in 30 days is significant in order to calculate the
final score of each node.

4.2. Utility Factor

The Utility Factor is a metric that determines how useful a node is to the entire network,
and thus, how much a user is entitled to be a member of the committee. A committee
member will participate in the consensus process and, as a result, in the construction of the
new block. This is a critical task that must be completed by as many trustworthy nodes
as feasible.

4.2.1. Utility Factor Definition

The technique for assigning a utility factor is similar to assigning a value of importance
to a network node. The network under examination is the direct graph of transactions,
with the set V of vertices representing nodes in the network that exchange transactions
and the set E of edges; (i, j) ∈ E if and only if at least a transaction from the node Ai to
the node Aj occurs. Everyone has access to transaction information, and the consensus
mechanism controls the dynamic of validated transactions. This means that a transaction
must be validated by the network through a distributed consensus in order to be included
in the transaction graph. As a result, using the graph transaction as the reference graph to
determine each node’s usefulness ensures the following:

1. Anyone can check if the utility associated with a node is correct by computing the
value using public open data as transactions;

2. Information contained in the transaction graph is not malleable as long as the consen-
sus procedure is secure;

3. The transaction graph evolves over time, ensuring that new information about a
node’s behavior is taken into account.

For assigning an importance value to a node in a network, there exist some outstanding
algorithms. One difficulty is determining a node’s centrality in the network by computing
its centrality degree. The PageRank method [40], which obtains the rank of a web page as
the output of an iterative linear process applied to a Markov chain transition probability
matrix, is one of the most well-known in the context of the Web. The Proof of Interest (PoI)
is based on the NEM project, specifically, the outlink matrix below, which is part of the
NEM PoI protocol.

4.2.2. The Outlink Matrix

Suppose the PoI calculation is done at height h. The protocol considers, for each node
with a balance b ≥ B, all its transactions with the following properties:

– Transferred an amount of at least φ tokens;
– Happened within the last 43k blocks (approximately 30 days).

For each such transaction Tk that transferred an amount θ from the account Ai to the
account Aj and happened at height hijk, a weight is associated to this transaction as follows:

wijk = θ · exp
(

log(0.9)
⌊h− hijk

1440

⌋)
, (1)

where b·c denotes the floor function. The weight is obtained as the output of an exponential
function depending on the time; so, a transaction that happened today has a higher
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associated weight than a transaction that happened in the last 30 days. Summing up
all transactions

ŵij = ∑
k

wijk (2)

and setting

ôij =

{
ŵij − ŵji if ŵij − ŵji > 0,
0 otherwise,

(3)

finally, the outlink matrix O is obtained as follows:

oij =


ôij

∑i ôij
if ∑i ôij > 0,

0 otherwise.
(4)

The outlink matrix element oij gives the weighted net flow of tokens from Ai to Aj
during the (approximately) last 30 days. In summary, the outlink matrix takes into account
only the positive net transactions flow between nodes.

4.2.3. Utility Formalization

The protocol seeks to categorize stakeholders’ behavior in terms of their activities
in the network layer, in addition to taking into consideration their behavior within the
transaction graph. A final score is given in accordance with particular network layer
features, which will be added to the utility as stated up to this point. The key goal is to
identify stakeholders who have a lot of network activity, a lot of round-trip time, and
a lot of throughput. Imposing a greater utility factor on stakeholders who demonstrate
higher reliability in the network layer, allows us to move closer to the synchronous network
assumption, which allows us to specify an upper constraint on message delays. This
assumption enables for real-time operations, as well as various theoretical benefits for the
consensus. Furthermore, requiring the committee to be formed by stakeholders who are as
accessible as they are feasible, provides for a close approximation of the premise of having
a predetermined number of stakeholders available in the committee when consensus
is needed.

The features considered are listed in Table 1. They are all gathered for a set period
of time, termed an era. For some, history is gathered, while for others, it is refreshed in
each era.

Table 1. Features.

Features Values

Total number of TCP connection integer
Sum of all uploaded bytes float
Sum of all downloaded bytes float
Sum of the number of retransmitted bytes from peer float
Average round trip time between peers float
Average time for processing and returning the floatfirst segment with payload since the first flow
Ping float

The abovementioned features define the utility, implying that a specific configuration
of these traits identifies the stakeholder to whom the best utility must be assigned.

Now, we will look at two strategies for calculating utility. The first provides a basic
scenario for examining the problem without utilizing a computationally intensive strategy,
whereas the second is a more powerful learning algorithm that can achieve better results
but requires more computational resources.
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4.3. Baseline Utility Algorithm

The system chooses the best and worst stakeholder’s feature configurations, which
identify the maximum and minimum utility, respectively. A Self-Organizing-Map (SOM) is
trained to identify the Best Unit Match (BUM) neurons on the map from these two selected
attributes, which we will refer to as targets utility stakeholders (TUSs). Following that, all
stakeholders’ samples are mapped to the trained grid, where each is assigned to a BUM
neuron in the mapping step. A Euclidean distance is computed between the weights
associated with the BUM’s TUSs (wtarget 1, wtarget 2) and the BUM’s weight w allocated to a
stakeholder, and a utility is assigned to the stakeholders based on these two distances:

U =

{
1 + exp(−d2) if d1 > d2,
1− exp(−d1) if d2 > d1.

(5)

The pseudocode of the baseline utility algorithm is reported in Algorithm 1:

Algorithm 1 Baseline Utility algorithm pseudocode
Input: Two targets nodes and a subset of samples nodes.
Output: A list of utility values to be assigned to the sample nodes

while Node in Nodes do . train the SOM with the two target samples nodes and obtain targets

weights

predict the BMU;

obtain weights w associated to the predicted BMU;

compute distance d1 between w and wtarget 1;

compute distance d2 between w and wtarget 2;

if d1 > d2 then

u← 1 + exp(−d2)

else

u← 1− exp(−d1)

end if

end while

The utility u is a value in the range [0, 2] ⊂ R. If a stakeholder is connected with the
poorest target neuron, its utility is in the range [0, 1], but if it is associated with the best
target neuron, it is in the range [1, 2], based on the distance between its weights and the
target neuron’s weights.

4.4. Reinforcement Learning Utility Algorithm

There are different approaches to calculate the utility factor, as previously discussed,
and the Deep-Q-Network model is given in this paragraph to assign the nodes an ap-
propriate utility. The Q-learning method is presented in detail, as well as how to solve
a Reinforcement Learning problem using the well-known supervised Deep Neural Net-
work theory.

4.4.1. Markov Decision Process (MDP)

Reinforcement MDP is inextricably linked to learning [41]. MDP is a stochastic discrete-
time control process. It gives a mathematical framework for modeling decision-making in
settings where outcomes are partially random and partly controlled by a decision maker.
The following are the primary components of MDP:

– Environment;
– Agent, a decision-maker interacting with the environment performing subsequent ac-

tions;
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– States, representations of the environment under certain conditions;
– Action, performed by the agent with respect to the state;
– Reward, consequence of the action given to the agent.

Given a finite set of states S, a finite set of actions A, and a finite set of rewards R, at
each time step t = 0, 1, 2, . . ., the agent receives some representation of the environment’s
state st ∈ S. Based on this state, the agent selects an action at ∈ A resulting in the state–
action pair (st, at). Time is then incremented to the next time step t+ 1, and the environment
transits to a new state st+1. At this time, the agent receives a numerical reward rt+1 ∈ R for
the action performed in the state st. The reward assignment is represented by a function
f (st, at) = rt+1.

4.4.2. Deep-Q-Network Utility Model

The DQN utility model is described below. First and foremost, states, actions, and
rewards must all be defined. The Deep-Q-Network architecture, as well as its hyperparam-
eters and metrics, are then described.

Nodes (agents) must choose an action for each state in this scenario. States are samples
that report some characteristics of each node’s behavior. Actions reflect how much of a
node’s right to participate in the final consensus is determined. There are a few things to
think about in general.

An initial training phase is required for a Reinforcement Learning (RF) model, in
which agents learn the optimum method to execute actions in order to maximize a reward
signal function. Errors in an Atari game meant losing the game; in a blockchain system,
they may mean losing stakes. As a result, it was decided to train the network in a TestNet
phase, during which users can join the network and conduct transactions using TestNet
Coins. Users must choose one of the following behavior scenarios at the start of their
connection at this phase:

1. Honest Player (HP): the user joins the network with the intention of behaving as
an honest player, exchanging transactions with other users, while never acting in a
malicious way.

2. Bad Player (BP): the user joins the network for making attacks to the network.

During the TestNet phase, each node (agent) collects information about other nodes
in a noninteractive manner (agents). The states of the environment are made up of these
characteristics. If the network does not converge to a defined threshold, detailed later,
features may alter during the TestNet phase. The following are the initial features:

– UpTime, the total time a node results to be connected to the network.
– OutLink Matrix, as described in Section 4.2.2.
– Vested Balance, the node’s total balance in times, defined as follows:

ρ = β · exp(T) (6)

where β is the current balance and T is the total time that such balance is present.
– Total number of TCP connection (TTCP).

From the features, a state is defined as a 1D tensor of dimension 5, as follows:

s = [UpTime, OutLink Matrix, Vested Balance, TTCP, Behaviour]

where Behaviour, is the selected behavior scenario each node must choose at the beginning:
1 for HP, 0 for BP.

Agents must select a specific action from a list of options. While states can change, all
TestNet phases have the same actions. The following is the list:

1. Participate with 100% tickets: 0;
2. Participate with 75% tickets: 1;
3. Participate with 50% tickets: 2;
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4. Participate with 25% tickets: 3;
5. Participate with 0% tickets: 4.

Agents are compensated for their efforts. At first, the system chooses two states to
represent the best (sBest) and worst (sWorst) behaviors that a node can exhibit. The awards
are calculated using these states. The following are all conceivable scenarios: for each state,
an agent must choose an action.

– If the current state belongs to a HP (Behaviour == 1), an agent should choose an
action in the set {0, 1, 2}. In particular, a Euclidean distance is computed between the
given state and the sBest. If the distance is greater than 2, and the agent has chosen
the action 1 or 2, it receives a reward of +1; otherwise, it receives 0 rewards. If the
distance is less than or equal to 2, if the agent has chosen the action 0, it receives a
reward of +1; otherwise, it receives 0 rewards.

– If the current state belongs to a BP (Behaviour == 0), an agent should choose an action
in the set {3, 4}. In particular, a Euclidean distance is computed between the given
state and the sWorst. If the distance is greater than 2, and the agent has chosen the
action 3, it receives a reward of +1; otherwise, it receives 0 rewards. If the distance is
less than or equal to 2, if the agent has chosen the action 4, it receives a reward of +1;
otherwise, it receives 0 rewards.

The Behavior feature is only utilized in the TestNet phase; once the system converges
and a MainNet phase can begin, the Behavior feature will be removed, but the network will
have learned how to take appropriate action given the states indicated by the selected fea-
tures. As the network has already been trained, nodes with the DQN’s weights will be able
to predict the correct action given a state in that phase and incentives will be unnecessary.

4.5. Conflict of Interest (CoI)

It could be useful, for boosting network fairness, to avoid having the same nodes form
the consensus committee all of the time. In fact, its use is fairly broad and adaptable to
a variety of situations that arise in a distributed consensus method. We want to obtain a
fair consensus as quickly as possible, avoiding a situation where only a few nodes have a
consensus power equal to or more than 51 percent. When all honest nodes have an equal
chance of being on the final board, the consensus is said to be fair. Even if all nodes are
honest, they do not all have the same usefulness in the network. For example, not all nodes
can cache all of the block history in memory, and not all nodes wish to stay up to 24 h a
day. As a result, the difficulty of identifying a subset of nodes with specified characteristics
capable of ensuring the fastest possible block production arises. However, focusing solely
on such a utility may throw off the balance of the boards designed to validate blocks. The
notion of Conflict Graph is introduced to overcome this problem.

Conflict Graph (CG). Relying only on the utility factor could lead to a situation of
imbalance in which the same nodes will always be part of the final Board. In order to avoid
this, and therefore, guarantee a level of fairness as high as possible, a Conflict Graph is
used. A Conflict Graph G is defined as a pair (V, E), where V is the set of nodes and E
the set of edges. Edges ei,j or (i, j) between the node i and the node j exist if these nodes
may have a Conflict of Interest (CoI). A CoI exists when two nodes could have either some
interests in common or they have experienced some event together.

With this in mind, the mathematical model that outputs which nodes could be part of
the next board is as follows:

max
N

∑
i=0

U(ai) · xi (7)

s.t. xi + xj ≤ 1 if (i, j) ∈ EG (8)

where

– U(ai) is the utility associated to the node ai;
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– xi ∈ {0, 1}, i = 1, . . . , N, where N is the total number of nodes for which an utility
exists;

– G is the Conflict Graph, composed by the binary decision variables, and EG is its set
of edges.

Such problem is known in literature as the Maximum Weight Independent Set [42].
This is a well-known NP-hard problem, and several possible solutions and algorithms have
been proposed. Mari [43] and then Chaudhry [44] proposed an intuitive and straightfor-
ward greedy algorithm, which, at each iteration, adds the minimum degree vertex to the
solution and deletes the neighbors from the solution space. Goldberg and Spencer [45]
gave a parallel algorithm for MIS, which found an independent set with a size of at least
n/(dG + 1), where dG is the degree of G and n is the total number of its nodes. If a max-
imum total weight is considered, the problem reduces to the disjunctively constrained
knapsack problem, which can be solved with the heuristic proposed in [46].

The basic principle behind the primary method is that for each subnetwork described
as the conflict graph that a node defines with its conflict nodes, the node with the highest
weight is chosen as the solution, while the others are eliminated.

The algorithm explores all the graph node by node. For a given node i, it computes
the i’s conflict nodes, in order to compute a list with the weights of each of them, plus the
weight of the node i. From this list, the maximum value is selected, and the node with this
weight value is chosen as solution, while all others are deleted from the initial graph.

The algorithm solves the Maximum Weight Independent Set (MWIS) in polynomial
time rather than exponential time; however, it achieves less accuracy than the best case of
around 40% of the best response, which is based on a recursive approach to the problem.

The pseudocode of the Algorithm 2 is as follows:

Algorithm 2 MWIS pseudocode
Input: A weight graph G.
Output: A maximum independent subset of G

conflictNodes = 0; . initialize

while n ∈ G do

con f lictNodes← NG(i);

totalUtility← w(NG(i)) + w(i);

select the maximum weight;

select the corresponding node that has, as its weight, the maximum value;

delete from G all other nodes;

end while

The CoI method is a service that can be tailored to the specific environment in which
the blockchain system is implemented. The meaning of the term “conflict of interest” varies
depending on the context of the application. In an application where Smart Contracts
are traded, for example, a conflict of interest can occur if members of the committee are
affiliated with the entity proposing the same smart contract. In this situation, a clear
personal interest can affect the judgment of the proposing smart contract, avoiding an
impersonal review.

4.6. The Framework with Elliptic Curves

We choose an Elliptic Cryptography Curve (ECC) that originates a cryptographic
system specified by a sextuple of parameters (see [23]),

T = (p, a, b, G, n, h),
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where p is a prime number that provides the finite field Fp = Z/pZ, and a, b ∈ Fp are
parameters specifying an elliptic curve

E = E(Fp) : y2 ≡ x3 + ax + b (mod p),

G = (xG, yG) is a base point on E, n is a prime denoting the order of G, and h is an integer
representing the cofactor h = |E(Fp)|/n.

The secp256k1 is a 256-bit elliptic curve with parametric sextuple T as follows.: ut is
defined by y2 = x3 + 7 over the field Fp, where

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1
= 115 792 089 237 316 195 423 570 985 008 687 907 853

269 984 665 640 564 039 457 584 007 908 834 671 663
= FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F

is a special form prime number with 78 decimal (and 64 hexadecimal) digits. The base
point G, in its compressed form, is

G = 02 79BE667E F9DCBBAC 59F2815B 16F81798,

the order of G is

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE
BAAEDCE6 AF48A03B BFD25E8C D0364141,

and the cofactor is h = 1. Thus, E(Fp) is isomorphic to the cyclic group Z/nZ.

4.7. The Tickets Generator

The ECC provides one of the main tools to perform computations in order to find the
winner tickets. The set {1, . . . , N} of possible tickets yields the modulo N to be used in the
extraction (cf. Section 4.8): it is chosen by the system and changes in time depending on the
inflation level. The algorithm, moreover, is executed simultaneously, but independently, by
all nodes that are provided with a utility, and the number of tickets that a node can extract
depends on it: the greater the utility, the greater the number of tickets.

In particular, a ticket represents the number of operations (additions) to perform on
E(Fp) starting from two given points P(x1, y1) and Q(x2, y2) on the curve: in this view,
the ticket m ∈ {1, . . . , N} will correspond to the point Q + mP ∈ E(Fp), which expresses a
specific token. The last ticket N is, hence, associated with the point Q + NP ∈ E(Fp). Note
that, with n being prime, the coset Q + 〈P〉 always coincides with the whole group E(Fp)
because P is different from the identity. Moreover, the nature of E as ECC guarantees that
the points (tokens) in the plane are well-separated.

4.8. The Leader Selection Algorithm

Now, we describe, through an explicit example, some details of the core algorithm
to select the leader. We remark that it is a “deterministic random algorithm” (i.e., same
inputs, same outputs) able to give a highly uniform distribution of the outputs as if they
were purely random actions.

The algorithm consists of the following steps:

1. Take the hash of the last block appearing in the blockchain, for example,

4ceb86317d0d4dac6853663589ef02cc
b67134cee75bb886a4410b7aedd0e109
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2. Split the previous hash into eight parts:

(a) 4ceb8631
(b) 7d0d4dac
(c) 68536635
(d) 89ef02cc
(e) b67134ce
(f) e75bb886
(g) a4410b7a
(h) edd0e109

3. Convert each part into a binary code:

• A1 = 01001100111010111000011000110001
• A2 = 01111101000011010100110110101100
• A3 = 01101000010100110110011000110101
• A4 = 10001001111011110000001011001100
• A5 = 10110110011100010011010011001110
• A6 = 11100111010110111011100010000110
• A7 = 10100100010000010000101101111010
• A8 = 11101101110100001110000100001001

4. Compute the exclusive disjunction (XOR) of Ai, i = 1, 2, . . . , 8, obtaining

A1 ⊕ A2 ⊕ . . .⊕ A8 =11001000111000011100100101011111 (9)

The order in grouping operations does not affect the result: only the parity of the
number of 1s present on each bit is decisive. We recall in fact that (Bn, XOR) and
(Z/2Z)n are canonically isomorphic abelian groups, where Bn is the n bit set.

5. Convert the binary code (9) into a decimal number, obtaining

3370240351 (10)

6. Compute the modulo N value of (10). For example, if N = 1000, we obtain 351: this
means that the ticket extracted is number 351 and the winner token is given by the
point Q + 351P on the ECC. Therefore, the address that owns the token thus identified
will be the elected leader.

4.9. The Board Members

Many different methods can be used to determine board members. For example, it
is possible to iteratively use the algorithm described in Section 4.8, or, more simply, it is
possible to consider b tickets subsequent to the one extracted in point 6 above—that is,
352, 353, 354, . . . , 351+ b in our example, where b is the number of board members. The sum
operation on the elliptic curve prevents these tickets from matching consecutive tokens.

We now assume that the number b of the committee members must, in our example,
belong to the discrete interval [4 . . . 1000]. In fact, in the beginning, the system needs at
least 4 nodes to be started. Subsequently, the number b of committee members increases as
the number of nodes n increases according to a formula of the type

b = γ ·
√

n,

where γ is a parameter that varies over time and serves to keep the number of members of
the committee smaller or equal to 1000.

As for the number ti of tickets that each lottery of each single node i distributes, it
follows an exponential function of the type

ti = δ · exp(n)
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where n is the current number of nodes and δ is a control parameter equal to 1 at the
beginning, but then decreases to contain the creation of new tokens.

5. Randomness Ticket Extractions Simulations

Simulations were conducted to determine if the Board Election process is a Pseudo-
random Generator (PRG). Specifically, 10 simulations were created, each consisting of the
following: 10 different experiments (lottery extractions) were conducted, and the same
number of tickets were retrieved from each, with the proportion altering for each simula-
tion. In particular, only 10% of the 1000 tickets for each experiment were utilized in the first
simulation; 20% for each experiment in the second simulation; 30% for each experiment in
the third simulation; and so on, until reaching 100% in the final simulation. Consequently,
there are a total of 10 simulations, each with 10 experiments, for a total of 100 experiments.
Figures 1 and 2 depict the simulation results for 100 and 1000 produced tickets.

Figure 1. Ticket Distribution. 100 Tickets.

Figure 2. Ticket Distribution. 1000 Tickets.
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All data from these simulations have been collected in order to construct statistical
graphs. To better comprehend the underlying probability distribution of the data, a Density
curve plot rather than a histogram has been used. The purpose of a density curve is to
depict the underlying probability distribution of the data by sketching a continuous curve.
This curve must be calculated from the data, and one of the most used methods—kernel
density estimation—has been employed to accomplish this.

In kernel density estimation, a continuous curve (the kernel) with a small width (con-
trolled by a parameter called bandwidth) is drawn at the position of each data point; then,
the sum of all these curves is used to estimate the density. Typically, density curves are
scaled so that the area under the curve equals 1. This indicates that there is no probability
function on the Y axis for kernel density estimation, but rather, a density probability func-
tion. Regarding the bins to be utilized in the density plot graphs, the Freedman–Diaconis
rule has been selected (FD rule). The FD rule is intended to minimize the discrepancy
between the empirical and theoretical probability distributions’ areas. The width of each
bin is estimated as follows:

Binwidth = 2
IQR(x)

3
√

n
(11)

where IQR(x) is the interquartile range of the data and n is the number of observations in
the sample x.

In addition, the Empirical Cumulative Density Function (ECDF) has been derived.
A Cumulative Density Function is simply realized empirically. The term empirical refers
to the fact that the function is constructed using an empirical sample measurement. The
empirical distribution function is an approximation of the cumulative distribution function
that produces the sample points. The definition is as follows: if X1, . . . , Xn are independent
identically distributed (i.i.d.) real random variables, the empirical distribution function or
empirical cumulative distribution function (ECDF) is a function F̂n with range [0, 1] given by

F̂n(x) =
1
n

n

∑
i=1

1Xi≤x, (12)

where 1Xi≤x is the indicator function of the event {Xi ≤ x}. Moreover, if we fix x, 1Xi≤x is
also a Bernoulli random variable with a parameter equal to the cumulative distribution
function F(x). Hence, F̂n(x) can be seen as an unbiased estimator for F(x). For more details
on basic probability and statistics, the reader can see [47].

Figures 3 and 4 depict the simulation results for 100 and 1000 extracted tickets.

Figure 3. ECDF—Ticket Extraction. 100 Tickets.
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Figure 4. ECDF—Ticket Extraction. 1000 Tickets.

As predicted of a PRG, the algorithm outputs appear to follow a uniform distribution.

Analysis and Comparison

In this part, we conduct a comparative analysis of the various consensus methods that
have been presented throughout this work. Table 2 provides a comprehensive comparison
of the properties and performance of the consensus methods covered before.

Table 2. Consensus algorithms in terms of characteristics and performance.

PoW PoS PoA NFP

Type of Blockchain Permissionless Permissionless and
Permissioned

Permissionless and
Permissioned

Permissionless and
Permissioned

Electing miners based on Solving Difficulty Hash Stake Owned Solving Difficulty Hash Stake Owned and
Random Lottery

Model of Trust Untrusted Untrusted Not Available Self-Verifiable

Transaction Finality Probabilistic Probabilistic Not Available Immediate

Decentralization Structure Strong Strong Strong Strong

Properties of Distributed
Consensus Probabilistic Probabilistic Probabilistic Deterministic

Reward Yes Yes Yes Yes

Control of acceptance of
the adversary

Less than 25% computing
power Less than 51% stack 50% online stake Less than 33.3% nodes

Fees on Transactions Yes, for all miners Yes, for all miners Yes, for all miners and
lucky stakeholders Yes, for all elected board

Speed of tx verification
(per s.) Greater than 100 s Less than 100 s Not Available Less than 10 s.

Throughput (tx/s) Less than 100 Less than 1000 Not Available Less than 2000

Speed Block creation Low High High High

Consumption of Energy High Sometimes less than PoW Low Low

Scalability Moderate Strong Strong Strong

Crash fault tolerance 50% 50% 50% 33%

Byzantine fault tolerance 50% 50% 50% 33%
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In blockchain, consensus algorithms are utilized as a vital technology, and their
algorithms guarantee the technology’s steady functioning. Through the consensus protocol,
consensus algorithm nodes agree on a specific value or transaction. However, research
in this field is currently ongoing. We discussed various common blockchain consensus
algorithms as well as a comprehensive comparison and analysis of their properties in
relation to our Neural Fairness Protocol. After analysis, we have determined that the
Neural Fairness Protocol offers a high throughput, but it must be evaluated in a production
context in order to evaluate its performance in further detail.

6. Rewards

Nowadays, there are different opinions and philosophical discussions about rewards
and incentives, and how to keep public blockchains alive.

We revert to thought leader and Bitcoin creator Satoshi Nakamoto, who expressed
that an ecosystem of nodes could survive only if an incentive is provided to those who
contribute to the network.

Agreeing with this opinion, the Neural Fairness Protocol rewards nodes that partici-
pate in the committee when a block is elected and written to the blockchain. Based on the
fairness activities (score) that each node has reached in contributing to a block election, the
collected fees will be shared across all the committee. Therefore, once the block is written
into the blockchain, the nodes that were part of the committee will receive in their own
wallet the fair calculated amount of tokens.

7. Conclusions and Future Work

Various works have effectively targeted the confidentiality of Bitcoin addresses by
examining blockchain transactions [48–52]. By merging the benefits of ECDSA [35] and
cryptography into a single system, we have proposed in this study the Neural Fairness
Protocol, an innovative consensus process that greatly outperforms prior work. We provide
a novel strategy for the next forger election that improves robustness, anonymity, and denial
of responsibility. By evaluating the existing traditional blockchain, we demonstrate how
our single-block production method ensures anonymity. The threshold ECDSA algorithm
created as part of the prototype is efficient and safe against malicious attackers, and
may be utilized outside the scope of our research, for instance, to protect Bitcoin wallets.
Our work is immediately compatible with other cryptocurrencies that employ the same
ECDSA primitive, such as Litecoin and Mastercoin, despite the fact that we concentrated
on traditional blockchain transactions such as the Bitcoin blockchain.

As the research and development of the Neural Fairness Protocol progresses, we must
conduct a thorough review of our implemented prototype to ensure the protocol’s confi-
dentiality, security, and efficacy. We are attempting to leverage and integrate technology
such as neural networks and cryptography to create a fully fair protocol for the subsequent
blockchain type.

Author Contributions: Conceptualization, F.C., G.d. and E.Z.; Funding acquisition, G.d.; Inves-
tigation, F.C. and E.Z.; Methodology, F.C. and E.Z.; Project administration, G.d.; Software, E.Z.;
Supervision, G.d.; Writing—original draft, F.C. and E.Z.; Writing—review & editing, F.C. and E.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported with the sponsorship of BEEZ s.r.l., Cosenza, Italy.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 3040 18 of 20

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three-letter acronym
LD Linear dichroism
PoS Proof of Stake
PoA Proof of Autority
PoAC Proof of Accuracy
PoC Proof of Capacity
VCL verifiable cryptographic lottery
ECC elliptic curve cryptography
SUHA Simple Uniform Hashing Assumption
NFP Neural Fairness Protocol
ECDH Elliptic-curve-based Diffie-Hellman Key Agreement
CL cryptographic lottery
PoI Proof of Interest
SOM Self-Organizing-Map
BUM Best Unit Match
TUSs targets utility stakeholders
MDP Markov Decision Process
DQN Deep-Q-Network
RF Reinforcement Learning
HP Honest Player
BP Bad Player
CoI Conflict of Interest
CG Conflict Graph
MWIS Maximum Weight Independent Set
PRG Pseudorandom Generator
FD Freedman–Diaconis
ECDF Empirical Cumulative Density Function
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