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Abstract: Multi-skilled resources have brought more flexibility to resource scheduling and have
been a key factor in the research of resource-constrained project scheduling problems. However,
existing studies are mainly limited to deterministic problems and neglect some uncertainties such as
resource breakdowns, while resource availability may change over time due to unexpected risks such
as the COVID-19 pandemic. Therefore, this paper focuses on the multi-skilled project scheduling
problem with uncertainty in resource availability. Different from previous assumptions, multi-skilled
resources are allowed a switch in their skills, which we call dynamic skill assignment. For this
complex problem, a nested dynamic scheduling algorithm called GA-PR is proposed, which includes
three new priority rules to improve the solving efficiency. Moreover, the algorithm’s effectiveness is
verified by an example, and the modified Project Scheduling Problem Library (PSPLIB) is used for
numerical experimental analysis. Numerical experiments show that when the uncertainty in resource
availability is considered, the more skills the resource has and the more resources are supplied, the
better the dynamic scheduling method performs; on the other hand, the higher the probability of
resource unavailability and the more skills are required, the worse the dynamic scheduling method
performs.The results are helpful for improved decision making.

Keywords: project scheduling; uncertainty in resource availability; multi-skilled resource; dynamic
skill assignment

MSC: 90B36

1. Introduction

The resource-constrained project scheduling problem (RCPSP) has been an important
topic within project management over the past few decades. Extensive focus has been
placed on single-skilled resources, while multi-skilled resources are becoming increasingly
common with the development of the economy [1]. This extension of the RCPSP is known
as the multi-skilled resource-constrained project scheduling problem (MSRCPSP). It was
inspired by a problem in the software development industry, where employees had several
skills relating to programming, data analysis, debugging and so on [2]. MSRCPSP is
suitable in projects with multi-skilled human resources or multi-functional machines. It
has been a prevalent topic in recent years and has been gradually applied in production
scheduling [3], research and development [4], construction engineering [5] and other
projects [6,7]. Although multi-skilled resource increases scheduling flexibility and expands
alternatives for project scheduling, it makes the problem more challenging. One needs to
decide not only resource scheduling matters but also skill assignments.

In practice, resource unavailability is a frequent occurrence, especially in the wake of
COVID-19, such as staff turnover, equipment maintenance, and transportation interruption.
In this situation, project managers are forced to take a series of measures to make the project
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scheduling more efficient and to adapt quickly as possible to uncertainties [8]. Therefore,
we focus on the MSRCPSP with uncertainty in resource availability in this paper. Moreover,
distinct from previous assumptions, multi-skilled resources are allowed to switch their
skills, which we call dynamic skill assignment. This means that when some resources
with one skill are unavailable, the impact of resource shortage can be alleviated by skill
switching from other idle resources with the same skill. If dynamic skill assignment still
fails to make up for the shortage of resources, additional resources will be considered under
the constraint of deadlines, such as the recruitment of temporary workers, equipment
renting and so on. According toWEC (Word Employment Confederation), temporary
employment accounts for 70 percent of the global HR market, which is worth nearly USD
4 hundred billion. It plays an important role in reducing the cost and relieving the shortage
of resources. Methods for optimizing project scheduling and dynamic skill assignment
with uncertainty in resource availability so as to achieve the goal of minimum additional
resource costs are the focus of this paper.

This paper has the following three contributions. First, we extend the MSRCPSP
with uncertainty in resource availability, and the uncertainty is described by the Markov
process. Second, dynamic skill assignment is proposed, which allows multi-skilled re-
sources to switch skills. Third, a nested dynamic scheduling algorithm called GA-PR is
proposed, which includes three new priority rules to improve the solving efficiency, and
the effectiveness of the algorithm is proved by comparing the existing static and random
scheduling method.

The remainder of this paper is organized as follows. A literature review is presented
in Section 2. Definitions of the MSRCPSP with uncertainty in resource availability are
discussed in Section 3. The nested dynamic scheduling algorithm is explained in detail in
Section 4. A numerical example is provided in Section 5 to illustrate the new model and the
new algorithm. The computational experiments and results analysis are shown in Section 6.
Section 7 is the conclusion.

2. Literature Review

Although multi-skilled resource make solving MSRCPSP more flexible, it also renders
the scheduling procedure more complex and difficult; thus, modern methods and tools
are usually used to improve scheduling processes [9]. Methods for designing more effec-
tive scheduling procedures with modern methods have become important topics in the
MSRCPSP. Bellenguez and Néron (2007) [2] proposed that each activity needs a specific set
of skills, and the resources are staff members who possess fixed skill(s). Moreover, these
staff members have unavailable periods. To minimize the makespan, a Branch-and-Bound
method is proposed. Generally, the more skills a staff member possesses, the more costs are
incurred. To minimize the total costs for multi-skilled personnel, Li and Womer (2009) [10]
develop a hybrid Benders decomposition (HBD) algorithm that combines the complemen-
tary strengths of mixed-integer linear programming and constraint programming. Correia
and Saldanha-da-Gama (2014) [11] consider that the costs associated with resources include
fixed and variable costs. The fixed costs are incurred simply by using resources, while
variable costs depend on the final makespan of the project. For this problem, a mathemati-
cal programming modeling framework is proposed, and a non-linear objective function is
included, which can be linearized at the expense of an additional set of continuous variables.
For resources considering skills, in addition to the cost, the skill level also directly affects
the project scheduling scheme such that the higher the skill, the shorter the task duration.
Heimerl and Kolisch (2010) [4] consider the MSRCPSP in a multi-project-environment
(i.e., the processing of the projects’ external and internal resources with different skills and
at different performance levels). Thus, the question is how projects are scheduled and how
resources are assigned to a project such that different requirements are met, keeping the
costs minimal. To address the complex project-scheduling problem, a mixed-integer linear
program with a tight LP-relaxation, which makes solving real-world problems possible,
is proposed. A related problem was examined by Fırat and Hurkens (2012) [12]. The
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authors consider a mixed-integer-based approach for a multi-skill work-load problem and
where skill levels are not homogeneous. Each activity has requirements for each skill-level
combination. The goal is to maximize the number of tasks processed in each workday.
Snauwaert and Vanhoucke (2021) [13] addressed an MSRCPSP with breadth and depth of
skills, where the breadth of a resource is perceived as the amount of skills an employee
masters and the depth of a skill is the efficiency level at which work can be performed by
a resource that masters that skill. After that, in 2022, they studied how hierarchical skills
(depth of skills) affect project scheduling from aspects of efficiency, cost, and quality [14].

Although the above studies provide references for the model and algorithmic design
of MSRCPSP, they assume that the availability of renewable resources remains constant
over time and rarely consider uncertainties in resource availability [1]. This assumption
may be too strict. Resource availability might change in response to the availability of
labor due to vacation days or varying availability of equipment due to maintenance [15]. A
relatively common type of research is the project scheduling problem under uncertainties
in project duration, including proactive scheduling [16] and reactive scheduling [17]. Once
resources are unavailable (staff turnover, machine failure, etc.), the original scheduling
is no longer feasible, especially for key resources. Therefore, the uncertainty in resource
availability has gradually become an important and difficult point in project scheduling.
Lambrechts et al. (2008) [18] introduced a variant of the RCPSP, for which the uncertainty in
resource availability is considered. The objective is to find a robust schedule that minimizes
the schedule’s instability cost. The schedule’s instability cost is the expected weighted
sum of the absolute deviations between the planned and the actual starting times of the
activity during the execution of proposed proactive and reactive strategies. Furthermore,
to determine the impact of unexpected resource breakdowns on activity durations, they
developed an approach for inserting explicit idle time into the project schedule. This was
also implemented to protect it from disruptions caused by resource unavailability [19].

The literature cited above indicates that regardless of whether project scheduling
considers uncertainties in terms of duration or resource availability, the idea is to set a buffer,
namely time or resource buffer. The buffer can effectively protect the scheduling benchmark
and improve the robustness of the solution. However, considering multi-skilled resources,
effectively using this attribute to deal with the disturbance caused by uncertainties in
resource availability has become a noteworthy problem. To our knowledge, there are only a
few authors that incorporate uncertainty in resource availability in MSRCPSP, thus making
this topic an interesting and novel path for research.

Ahmadpour and Ghezavati (2019) [20] provide a fuzzy scheduling model for the
RCPSP, which considers fuzzy conditions for the calendar of the project. Multi-skilled
human resources are also being considered to cope with the risk of resource shortages
and delays in project completion. The results obtained from the fuzzy model for the
value of objective function were evaluated under the influence of the resource calendar,
consequently showing its benefits. The results provide a research idea for the MSRCPSP
with resources uncertainty. However, this study assumes that once resources are assigned to
a specific skill, they will be completely unchangeable until the end of the project. However,
when a resource is unavailable due to resource uncertainty, other resources with the same
skill are often recruited to continue the activity and avoid delay. When the resource is
available again, the resource may be required to use other skills and perform other tasks to
avoid information asymmetry caused by the resource transition. This multi-skilled resource
dynamic skill assignment realizes the rotation of different resources with different skills
among different tasks and alleviates the disturbance caused by the uncertainty in resource
availability [21]. Compared with the situation that skills cannot be changed, this scheduling
is closer to real-world issues, thus making resource scheduling more flexible and effective
in dealing with absenteeism [22]. Moreover, as multi-skilled resources are often acquired
through cross-training, a worker who does not frequently practice one skill may tend to
forget it [23,24]. In the long run, multi-skill can be easily transformed into single-skill.
Therefore, in this study, we relax the assumption that resources are allowed to change skills.
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Compared to the existing literature, uncertainties in resource availability and dynamic
skill assignment of multi-skilled resources are considered on the basis of MSRCPSP in this
paper. When a resource is unavailable, it can be replaced by skill switching relative to
other multi-skilled resources; alternatively, the external supplement of resources is another
method. The uncertainty in resource availability is described by the Markov process. This
is mainly because the evolution of availability or unavailability of resources is a discrete
stochastic process that evolves with time. In other words, only the present determines the
future, and the past is irrelevant. This corresponds to the Markov chain [25]. Then, we
designed a nested scheduling algorithm combined with three new priority rules to solve
this complex problem to minimize additional resource costs. Finally, the effectiveness of
the proposed algorithm is verified by experimental analysis. The results of this research
are helpful in the decision making of multi-skilled project scheduling. It is also valuable
for expanding the project scheduling research in an uncertain environment, especially
since uncertainty appears to be an extremely difficult element to deal with. Although
most researchers recognize the importance and ubiquity of uncertainty, it remains the most
popular topic of future research sections in many papers [26].

3. Problem Description

In the MSRCPSP, we employ the activity-on-node (AoN) representation and assume a
zero time lag for precedence relations. The project consists of n + 2 activities. The duration of
activity j(j ∈ V, V = {0, 1, 2, . . . , j, . . . n + 1}) is dj

(
dj ∈ N0

)
and d0 = dn+1 = 0. We assume

that the project needs K types of renewable resources, the set is R(R = {1, 2, . . . , k, . . . , K}),
and the availability of each type of resource is |Rk|; that is, Rk = {rk1, rk2, rk3, . . . , rki, . . .}.
Moreover, the project needs sK types of skills, and the set is Sk(Sk = {s1, s2, . . . , sk, . . . , sK}).
The skill(s) mastered by each resource is predefined, and we assume that all resources in the set
of Rk master skill sk, which we call the initial skill of resource rki. Whether there is mastery of
other skills or not is randomly generated, and it is indicated by xrki ,sk , where xrki ,sk = 1 indicates
that resource rki has mastery of skill sk. When ∑sk∈Sk

xrki ,sk > 1, resource rki masters more than
one skill. We describe the uncertainty in resource availability by the Markov stochastic process,
and we set the state of the resource as Zt

(
Zt =

{
zr11

t , zr12
t , . . . , zr1i

t , . . . , zrki
t , . . .

∣∣t = 1, 2, . . . , T
})

,
where T is the deadline of project and zrki

t represents whether resource rki is available or
not at time t. If it is available, zrki

t = 1; otherwise, it is 0. We assume that the project starts at
time zero; thus, Z0 denotes the initial available/unavailable status of all resources, and we
set zrki

0 = 1 for each resource.
The variables and parameters are shown in Table 1.

Table 1. Variables and parameters.

Variables and Parameters

xj,t Binary variable, if activity j is executed in period [t, t + 1) or not.

xrki ,j,sk
Binary variable, if resource rki with skill sk or not.

xrki ,j,sk,t Binary variable, if resource rki with skill sk in period [t, t + 1) or not.

Rsk ,t The additional amount of the resource with skill sk at period t.

V = {1, 2, . . . , j, . . . , n + 1} The set of activities.

SUCCj The immediate successor set of activity j.

Zt =
{

zr11
t , zr12

t , . . . , zr1i
t , . . . , zrki

t , . . .
∣∣t = 1, 2, . . . , T

}
The set of resources state.

zrki
t Binary parameters, if the resource rki is available at time t or not.

Sj The start time of activity j.

dj The duration of activity j.
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Table 1. Cont.

Variables and Parameters

R = {1, 2, . . . , k, . . . , K} The set of K types of renewable resources.

Rk = {rk1, rk2, rk3, . . . , rki, . . .} The set of Rk.

|Rk| The availability of Rk.

Sk = {s1, s2, . . . , sk, . . . , sK} The set of skills.

xrki ,sk Binary parameters, if resource rki has mastery of the skill sk or not.

rj,sk
The requirements of skill sk for executing activity j.

prki The unavailability probability of resource rki

csk The cos t of the resource with skill sk.

T The deadline of the project.

Prki The state transition matrix of rki.

urki
t The state probability vector of resource rki at period t.

e The degree of infeasibility.

M A sufficiently large penalty coefficient.

General RCPSP’s goal is to study how to schedule activities under the constraint of
resources and precedence relations in order to minimize the makespan of the project. While
in the MSRCPSP, as resources are multi-skilled, it is necessary to decide not only activity
scheduling but also the skill assignment of resources. To ensure that activities remain
uninterrupted and to avoid delays in the project, we allow other idle resources with the
same skill to replace the unavailable resources when the skill requirements of activities
cannot be met. If this still does not work, additional resources with the same skill would be
considered (purchasing, renting, or overtime). Adopting additional resources is an easy
and popular method to increase flexibility [26]. According to some studies, it is a proper
assumption where there is no difference in performance between temporary and permanent
resources [27–29]. Given this situation, a problem arises as to which idle resource will
be selected and how to assign them, how many additional resources are needed to meet
skill requirements. To solve this, we set the goal to minimize additional costs. Thus, the
MSRCPSP with uncertainties in resource availability studied in this paper can be described
as follows: Under the constraints of precedence relations, resource availability, and project
deadline, determine activity scheduling and dynamic skill assignment of multi-skilled
resources to minimize additional costs of the project. The research assumptions of this
paper is as follows:

(1) There are many types of multi-skilled resources needed by the project. Each resource
can possess one or more skills, and the initial skill of the resource has priority in
scheduling. Skill levels are homogeneous among resources.

(2) The availability or unavailability of different resources is independent of each other.
(3) The idle resources are allowed to switch skills to replace unavailable resources.
(4) The unavailability probability of resource rki is pki, and the state transition matrix of

rki can be denoted as follows:

Pki =

(
1 0

pki 1− pki

)
(1)

pki cannot be changed in per unit time, and the state zrki
t is subject to the Bernoulli

distribution of pki. If uki
t represents the state probability vector of resource rki at period

t, then uki
t+1=uki

t Pki, and the initial state probability vectors of all resources are (0,1).
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(5) The initial resource cost of the project is fixed; in other words, it will not decrease or
increase because of the unavailability of resources. Thus, the objective function does
not consider the initial sunk cost of the resource and only considers additional costs.

Mathematically, the MSRCPSP with uncertainty in resource availability can be concep-
tually formulated as follows.

Min
K

∑
k=1

csk Rsk ,t + eM (2)

Sj − Sg ≥ dj
(

j ∈ V, g ∈ SUCCj
)

(3)

Sn+1 ≤ T (4)

∑
t∈[Sj ,Sj+dj ]

xj,t = dj (j ∈ V) (5)

∑
t∈(0,Sj)∪ (Sj+dj ,Sn+1]

xj,t = 0 (j ∈ V) (6)

∑
t∈T

t
(
xj,t − xj,t−1

)
= Sj (j ∈ V) (7)

∑
sk∈Sk

∑
j∈V

xrki ,j,sk ,t ≤ 1 (k ∈ K, t ∈ T) (8)

∑
j∈V

rj,sk ≤ ∑
rki∈Rk

xrki ,sk zrki
t xrki ,j,sk ,t + Rsk ,t (k ∈ K, sk ∈ Sk, t ∈ T) (9)

urki
t+1 = urki i

t Prki (rki ∈ Rk, k ∈ K, t ∈ T) (10)

xj,t, xrki ,j,sk , xrki ,j,sk ,t ∈ {0, 1} (11)

Rsk ,t ≥ 0 (12)

Objective Function (2) minimizes the cost of additional resources, and a penalty
value of eM is considered if scheduling is infeasible. Constraint (3) ensures that the
precedence relations among activities need to be satisfied. Constraint (4) ensures that the
makespan of the project should not exceed the deadline. Equations (5) and (6) ensure that
the activity cannot be interrupted. Equation (7) is a representation of the activity’s start
time. Constraint (8) ensures that every resource can be assigned only in one activity at any
time. Constraint (9) guarantees that the activity’s skills need need to be met. Equation (10)
is the state probability vector of each resource. Equations (11) and (12) describe the domain
of decision variables.

4. The GA-PR Algorithm

As the MSRCPCP is NP-Hard [30], the possibility of solving the problem optimally
using exact solution procedures is limited by the size of instances. However, real instances
of project scheduling problems are considerably large. Therefore, having efficient heuristics
for finding good quality solutions is of great relevance, especially when considering the dy-
namic skill assignment of multi-skilled resources with uncertainties in resource availability.

The proposed model not only optimizes activity scheduling (the start time of each
activity) but also resource scheduling (dynamic skill assignment of multi-skilled resources).
To solve the new model, we designed a modified genetic algorithm combined with priority
rules, called GA-PR. Based on the characteristics of the model, the algorithm is divided into
two layers. The outer layer comprises activity scheduling optimization according to genetic
algorithm, and the inner layer comprises resource scheduling optimizations according to
priority rules.
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4.1. The Outer Algorithm-GA

Step 1. Initialization of activity scheduling

In the outer layer, activity scheduling is the decision maker. Assuming that the project
consists of n + 1 activities, there are n + 1 genes on each chromosome, representing the start
time (ST) of each activity. The earliest start time (ES) of the dummy activity 0 is 1, and the
project deadline is set as the latest start time (LS) of the dummy activity n + 1. According to
the forward and backward iteration algorithms in the critical path theory (CPM), the start
time interval of activity j is

[
ESj, LSj

]
. The initial STj is a random value among

[
ESj, LSj

]
.

Step 2. Calculation of objective function

The objective is to minimize the additional resource cost. First, if the activity schedul-
ing is subjected to precedence constraints, insert it into the inner algorithm. If not, the
fitness value is a relatively large penalty value eM, where M is a sufficiently large penalty
coefficient, and e reflects the degree of infeasibility—the degree of violating constraints.
All individuals in the population are listed in a descending order of fitness value, and the
individual with the minimum fitness value is set as the optimal individual.

Step 3. Selection, crossover, and mutation

The binary tournament method is used to select parent individuals from the popula-
tion. Subsequently, crossover and mutation are carried out to generate the new population.
Then the optimal individual is updated. This step is iterated until the maximum number of
iterations has been reached, and then the final optimal individual is output. (Parameters,
such as crossover probability and mutation probability, are determined after many tests.)

4.2. The Inner Algorithm-PR

Step 1. Identify the unavailability probability pki(k = 1, 2, . . . K, i = 1, 2, . . .) of each re-
source and generate the resource state matrix Zt based on the Markov process.

Step 2. Internal resources ranking

Assume that the project requires sK types of skill, and there are K types of resource.
For each type of resource, we rank the internal resource’s scheduling order according to
their skill number in ascending order, and the internal resource’s scheduling order is Ak.
Here, we define the first resource-scheduling priority rule.

Priority Rule 1: Within each type of resource, the one with the lowest skill number is
scheduled preferentially because the one with more skills can replace unavailable resources.

Step 3. External skills ranking

The set of activities that are executed at moment t is Ot, generated based on activity
scheduling, which is the outer layer’s solution. Calculate the total demand of each type of
skill at moment Dst, and calculate the total initial supply of each type of skill at moment
Sst according to the resources’ initial skills and their available state. The gap between Dst
and Sst is defined as skill-demand tension Lst. The smaller the gap, the smaller the demand
tension of s. We rank these skills according to the demand tension in ascending order, and
the external skill order at moment t is Wt.

When the scheduling of the skill with the smallest demand tension is completed, the
unscheduled resources with this skill can convert its skill to the next skill that needs to
be scheduled and so on. Thus, the demand tension of the next skill can be alleviated.
Therefore, here, we define the second skill scheduling priority rule.

Priority Rule 2: Among different skills, the one with the smaller demand tension
is scheduled preferentially.
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Step 4. Feasibility analysis of activity scheduling with resource constraints

There are three cases for resource scheduling with constraints.
Case 1: The skill demand tensions are all negative, indicating that the initial skill

provided by resources can satisfy the demand under the given activity scheduling (see
Step 5).

Case 2: The skill demand tensions are all positive, indicating that the initial skills
provided by resources cannot satisfy the demand under the given activity scheduling. This
means that every skill needs to be complemented by additional resources (see Step 6).

Case 3: In other cases, it indicates that the initial skills provided by the resources
cannot satisfy the demand under the given activity scheduling, but multi-skilled resources
may satisfy skill needs through skill switching (see Step 6).

Step 5. Resource scheduling without multi-skill

First, the skill with the smallest demand tension is scheduled. The scheduling order
of resources with initial skill W1t is AW1t . For each resource, it is necessary to determine
whether it is available. If available, it is removed from AW1t and added to the resource
profile of the task in Ot. If it is unavailable, it is removed directly from AW1t .

Step 6. Resource scheduling with multi-skill

The cost of skill is used as the basis of the skill scheduling order; the skill with high
cost is scheduled first to satisfy its demand as far as possible and to minimize the cost
of additional resources as much as possible. Here, we define the third skill scheduling
priority rule.

Priority rule 3: When the skill’s demand tension is positive at a certain moment,
the skill with high costs has priority.

For other cases, based on step 5, after completing the scheduling of skill W1t, as its
demand tension is the smallest, if AW1t is a non-empty set, then merge AW1t into AW2t to
schedule skill W2t and so on. If it is still unable to satisfy the skills demand, to ensure that
activity scheduling is feasible, additional resources should be considered, and the project’s
cost will increase.

Step 7. Inner iteration

Steps 4–6 are iterated before resource scheduling is completed. Then, output the final
fitness, activity scheduling, and resource scheduling.

The flow chart of GA-PR algorithm is shown in Figure 1.
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5. A Numerical Example

A project with 12 activities is defined to illustrate the new model and the new al-
gorithm. The duration of each activity is known, and precedence relations are shown in
Figure 2 as finish-to-start relations. Assume that the project needs three types of renew-
able resources: R1, R2, andR3, i.e., K = 3, and the total number of each type of resources
was considered be 10; then, the set of each type of resources can be described as fol-
lows: R1 = {r11, r12, r13, r14, r15, r16, r17, r18, r19, r110}; R2 = {r21, r22, r23, r24, r25, r26, r27, r28, r29, r210};
R3 = {r31, r32, r33, r34, r35, r36, r37, r38, r39, r310}. All resources in R1 master initial skill s1, all re-
sources in R2 master initial skill s2, all resources in R3 master initial skill s3, and whether
these resources master other skill(s) is generated randomly. The resource state matrix is
generated by a Markov process (see Table A2 in Appendix A for details). Each activity
demands different skills. Table 2 shows the number of skills required for performing
activities and other information.
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Table 2. Project information.

Activists Successors di s1 s2 s3

0 1, 2 0 0 0 0

1 3 2 5 6 6

2 4, 5 3 7 5 4

3 6 6 6 4 4

4 6 5 4 6 3

5 7 3 7 7 6

6 8 6 5 6 4

7 8, 10 4 8 5 5

8 9 5 3 4 3

9 11 4 6 5 4

10 11 2 6 3 6

11 - 0 0 0 0

csk 10 8 12

5.1. The Effectiveness of Dynamic Scheduling

According to the critical path method, the shortest makespan of the project is 23.
Considering the unavailability of resources, we assume that the deadline of the project
is 26 (any number greater than 23 is allowed) (that is, T = 26). According to the GA-PR
algorithm, the optimized scheduling scheme can be obtained, as shown in Figure 3 and
Table 3. Taking scheme 1 as an example, the detailed project scheduling is shown in Figure 4
and the detailed resource scheduling is shown in Table 4.
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Table 3. Optimization Schedules.

Scheme Makespan Objective Value
(Costs of Temporary Resources) Schedule

1 23 1032 [0, 1, 1, 3, 4, 8, 9, 11, 15, 20, 15, 23]

2 24 934 [0, 1, 2, 3, 5, 9, 10, 12, 16, 21, 18, 24]

3 25 888 [0, 3, 1, 5, 4, 9, 11, 12, 17, 22, 21, 25]

4 26 802 [0, 3, 1, 5, 7, 4, 12, 12, 18, 23, 21, 26]

According to Figure 3, it can be found that with the extension of the project deadline,
the cost of the additional resources becomes increasingly smaller. In other words, the buffer
period plays a role in alleviating resource unavailability. Resource scheduling in Table 3
shows that multiple resources have performed more than one skill. This gives scheduling
more flexibility. Therefore, the dynamic scheduling considering multi-skilled resources
can effectively alleviate the impact of uncertainty in resource availability on a project’s
makespan and cost.
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Table 4. Multi-skilled resource scheduling of scheme 1.

j t s1 s2 s3

1
1 r11; r12; r14; r15; r110 r21; r22; r23; r24; r27; r29 r32; r33; r34; r36; r37; r39

2 r14; r17; r110; 2 temporary r22; r29; 4 temporary r32; r35; r37; r38; r13; r210

2

1 r13; r16; r17; r18; r19; 2 temporary r25; r26; r28; r210; 1 temporary r31; r35; r38; r310

2 r16; r18; r19; r24; r25; r28; 1 temporary 5 temporary r33; r36; r310; r11

3 r12; r14; r17; r110; 3 temporary r22; r23; r29; r210; 1 temporary r13; r34; r37; r38

3

3 r11; r15; r18; r19; r25; r28 r27; 3 temporary r31; r33; r36; r39

4 r11; r12; r14; r15; r17; r110 r21; r22; r23; r29 r32; r34; r36; r39

5 r11; r12; r15; r17; r18; r110 r21; r22; r27; r29 r34; r36; r37; r39

6 r12; r14; r17; r110; r26; 1 temporary r22; r29; r210; 1 temporary r23; r32; r37; r38

7 r12; r13; r14; r15; r18; r19 r21; r22; r27; r29 r32; r36; r37; r39

8 r13; r16; r110; r28; 2 temporary r23; r27; 2 temporary r34; r35; r39; r310

4

4 r13; r18; r19; r38 r25; r26; r28; r210; r310; 1 temporary r31; r33; r35

5 r13; r19; r310; 1 temporary r23; r24; r26; r28; r210; r38 r32; r33; r35

6 r16; r18; r19; r21 r25; r27; r28; 3 temporary r31; r33; r36

7 4 temporary r23; r25; r26; r28; r38; r310 r31; r33; r35

8 r14; r17; r19; r24 r29; r210; 4 temporary r11; r31; r36

5

8 r15; r26; 5 temporary r22; 6 temporary r18; r25; r33; r38; 2 temporary

9 r12; r14; r17; r110; r26; 2 temporary r22; r29; r210; 4 temporary r13; r23; r32; r35; r37; r38

10 r14; r17; r110; r26; 3 temporary r22; r29; 5 temporary r13; r23; r37; r38; 2 temporary

6

9 r11; r15; r18; r19; r310 r21; r25; r27; 3 temporary r31; r33; r36; r39

10 r15; r18; r19; r24; r28 r25; r27; 4 temporary r11; r33; r36; r310

11 r11; r12; r15; r15; r17 r21; r22; r23; r24; r27; r29 r34; r36; r37; r39

12 r12; r14; r17; r110; r26 r210; 5 temporary r37; r38; r23; r13

13 r11; r12; r14; r16; r17 r22; r23; r28; r29; 2 temporary r32; r34; r36; r37

14 r12; r14; r15; r17; r110 r21; r22; r23; r24; r27; r29 r34; r36; r37; r39

7

11 r13; r18; r19; 5 temporary r25; 4 temporary r31; r32; r35; r38; r310

12 r11; r15; r16; r18; r19; r21; r24; r25 r27; 4 temporary r31; r33; r36; r39; r310

13 r13; r18; r19; 5 temporary 5 temporary r31; r33; r35; r38; r310

14 r13; r18; r19; 5 temporary r25; r210; r310; 2 temporary r31; r32; r33; r35; r38

8

15 r11; r14; r110 r22; r23; r27; r29 r36; r37; r310

16 r12; r15; r110 r22; r26; r27; r29 r34; r36; r37

17 r14; r15; r110 r22; r23; r24; r29 r34; r36; r37

18 r14; r15; r110 r21; r22; r27; r29 r34; r36; r37

19 r14; r15; r110 r21; r22; r27; r29 r36; r37; r310

9

20 r13; r15; r17; r18; r19; r25 r21; r22; r23; r24; r27 r32; r34; r36; r37

21 r11; r12; r14; r15; r16; r17 r21; r22; r23; r24; r29 r31; r32; r33; r37

22 r11; r12; r14; r15; r16; r110 r21; r22; r23; r24; r29 r34; r36; r37; r39

23 r11; r12; r15; r16; r17; r110 r21; r22; r23; r27; r29 r34; r36; r37; r39

10
15 r12; r13; r16; r17; r18; r19 r26; r28; r210 r25; r31; r33; r38; r310; 1 temporary

16 r13; r16; r17; r18; r19; 1 temporary r25; r210; r310 r31; r32; r33; r35; r38; r39
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5.2. Comparison of Three Scheduling Methods

As shown in Section 4, we know that scheduling multi-skilled resources is mainly
determined by the priority rules in the inner algorithm, which we call dynamic schedul-
ing. To further analyze the effectiveness of these priority rules, we set up two groups of
experiments to compare with the dynamic scheduling method proposed in this paper—
random scheduling and static scheduling. Random scheduling means that the priority
rules designed in Section 4.2 and the skill scheduling order and resource scheduling order
are random. Static scheduling means that once a resource is assigned a skill, it cannot
be changed. The pseudo-codes of dynamic, random and static scheduling are shown in
Appendix B, and the results relative to three different scheduling methods are shown in
Figure 5a–c, respectively. The figures indicate that the objective of dynamic scheduling
is the best: There is minimum additional cost, followed by random scheduling and static
scheduling. This is because of the design of scheduling priority rules. This proves the
effectiveness of the proposed dynamic scheduling method. The operation times of the three
scheduling methods are 19.44 s, 16.39 s, and 0.57 s, respectively.
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5.3. The Effect of the Buffer Period

We can know that a project’s deadline affects the objective value from the results of
Figure 3. Therefore, we define parameter Cdeadline. to represent the buffer coefficient, which
is used to reflect the margin of buffer duration interval—Cdeadline = T/DueDate, and the
DueDate refers to the makspan of the critical path of the project. The larger Cdeadline is, the
larger the buffer period. The objective values of three scheduling methods with different
parameters are shown in Table 5.

Table 5. The effect of the buffer period.

Parameter
Dynamic Random Static

Best Cost

Cdeadline

1.1 952 1154 1076

1.3 538 802 556

1.5 364 476 402

1.7 250 406 270

Table 5 shows that with the increase in buffer period, the objective values decrease for
three different scheduling programs. This is because when the activities cannot be started
due to the unavailable resources, the larger the buffer period, the more likely that activity
can be allowed to delay, and fewer additional resources will be added. Thus, the cost will
be reduced.

6. Experiment Analysis

In this section, a computational experiment is designed to assess the performance of
the heuristic algorithm proposed in this paper. The algorithm was coded in Matlab R2018b
and ran in the environment of Microsoft Windows 10 (CPU 1.68 GHZ, RAM 8 GB).

6.1. Test Data

Considering that the resources are multi-skilled and their availabilities are uncertain,
the following changes are made to the dataset from PSPLIB (http://www.om-db.wi.tum.
de/psplib/, accessed on 17 June 2020):

(1) The number of skill types required by the project corresponds to that of resource
types required by the project in the original PSPLIB. Each type of resource has a
corresponding initial skill. Assuming that the original PSPLIB J30 needs four types
of resources (R1, R2, R3, and R4), the project in this paper needs four types of skills
in which all resources in R1 have initial skill s1, those in R2 have initial skill s1,
and so on. Except for the initial skills, whether every resource has other skill(s) is
randomly generated.

(2) The skill requirements of activities correspond to the resource requirements in PSPLIB—
assuming that the resource requirements of R1, R2, R3, and R4 for activity 1 in a case of
PSPLIB is 4, 5, 7, and 8, respectively, then the skill requirements of s1, s2, s3, and s4 for
activity 1 is 4, 5, 7, and 8 in this paper.

Network complexity (NC) reflects the precedence relations of activities. Resource
Strength (RS) reflects the intensity of resources, where the larger the value is, the more
resources are supplied. Resource Factor (RF) reflects the activity’s skill requirement, where
the larger the value is, the more skills are needed. In addition, we defined Modified
Resource Strength (MRS) based on the Resource Strength (RS), which reflects the skill
strength mastered by resources. The formula of MRS is shown in Equation (13). The larger
the value, the more the skills are mastered by resources. The Rate of Resource Unavailability
(RRU) is introduced to reflect the unavailability of resources. The larger the value, the
greater the probability that the resource is unavailable.

http://www.om-db.wi.tum.de/psplib/
http://www.om-db.wi.tum.de/psplib/
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MRS =
(∑i ∑K

k=1 Xkisk
)/(∑i ∑K

k=1 rki)

K
(13)

As the problem studied in this paper adds uncertainty in resource availability and
dynamic skill assignment to the classical MSRCPSP, this improves scheduling flexibility
while increasing the difficulty for solutions. As such, solution times increase exponentially.
Therefore, this paper only selected the J30-dataset from the PSPLIB. The parameters of
dataset are shown in Table 6 below.

Table 6. Parameters and values.

Parameters Values

NC 1.5 1.8 2.1 — —

RS 0.2 0.5 0.7 1 —

RF 0.25 0.5 0.75 1 —

MRS 0.25 0.625 1 — —

RRU 0.1 0.2 0.3 0.4 0.5

6.2. Computational Results

In this section, dynamic, random, and static scheduling are compared based on the
same dataset. The comparison results under different parameters are shown in Figure 6a–e,
where Opt(%) is the proportion of the optimal solution. The optimal solution refers to
the minimum cost of the three scheduling methods (dynamic, stochastic, and static). The
proportion of the optimal solution refers to that of the number of optimal solutions in all
480 instances.

As Figure 6a–e indicate, regardless of how parameters change, the performance of
dynamic scheduling is always superior than random and static scheduling. Moreover,
compared to static scheduling, random scheduling is superior. This is because static
scheduling limits the resource’s skill switching; thus, more additional resources need to be
supplied to reach skill requirements, leading to an increase in costs. This shows that multi-
skilled scheduling can effectively alleviate the disturbance caused by resource uncertainty,
and the design of priority rules in dynamic scheduling leads to improved optimization
results, which further shows the effectiveness of the proposed algorithm.

As shown in Figure 6a, network complexity (NC) has no obvious impact on the results
of the three scheduling schemes. This is because the three types of scheduling mainly
optimize results from the perspective of resources and skills. Therefore, regardless of how
NC changes, the results are relatively stable. With the increase in Resource factor (RF), the
proportion of optimal solution of dynamic scheduling gradually decreases, as shown in
Figure 6b. With limited resources, when the activity skill requirements increase, project
scheduling is more easily affected by resources. With the increase in skill requirements,
the flexibility of multi-skilled resources is limited. As such, more additional resources are
needed, which leads to an increase in costs. Therefore, compared with random and static
scheduling, the optimal proportion of the target value decreases. As observed in Figure 6c,
with the increase in RS, the proportion of the optimal solution of dynamic scheduling
gradually increases. This is because the greater RS is, the more resources are likely to meet
the skill requirements of activities, and the replacement of idle resources is easier. Thus,
there is less necessity for additional resources, and costs will be less. In other words, the
increase in RS weakens the impact of uncertainty in resource availability. Similarly, MRS
reflects the strength of skills. The greater the MRS, the more skills the resources can master.
There is more flexibility in resources scheduling, and it is more likely to produce improved
solutions compared with static scheduling. Consequently, costs are lower, as shown in
Figure 6d. As RRU reflects the state of resources, the higher the value, the greater the
probability of resource unavailability. At this time, the role of multi-skilled resources will be
weakened, and there are fewer resources that can meet skill requirements. Therefore, with
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the increase in RRU, more additional resources are needed, and the optimal proportion of
dynamic scheduling will also decrease, as shown in Figure 6e.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 20 
 

 

𝑅𝑅𝑅𝑅 0.25 0.5 0.75 1 — 
𝑀𝑀𝑅𝑅𝑆𝑆 0.25 0.625 1 — — 
𝑅𝑅𝑅𝑅𝑆𝑆 0.1 0.2 0.3 0.4 0.5 

6.2. Computational Results 
In this section, dynamic, random, and static scheduling are compared based on the 

same dataset. The comparison results under different parameters are shown in Figure 6a–
e, where 𝑂𝑂𝑝𝑝𝑡𝑡(%) is the proportion of the optimal solution. The optimal solution refers to 
the minimum cost of the three scheduling methods (dynamic, stochastic, and static). The 
proportion of the optimal solution refers to that of the number of optimal solutions in all 
480 instances. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 6. (a) Comparison results of NC. (b) Comparison results of RF. (c) Comparison results of 
RS. (d) Comparison results of MRS. (e) Comparison results of RRU. 

As Figure 6a–e indicate, regardless of how parameters change, the performance of 
dynamic scheduling is always superior than random and static scheduling. Moreover, 
compared to static scheduling, random scheduling is superior. This is because static 
scheduling limits the resource’s skill switching; thus, more additional resources need to 

1.5 1.8 2.1
0

10

20

30

40

50

60

70

80

90

100

NC

O
pt

(%
)

 

 
dynamic
random
static

0.25 0.5 0.75 1
0

10

20

30

40

50

60

70

80

90

100

RF

O
pt

(%
)

 

 

dynamic
random
static

0.2 0.5 0.7 1
0

10

20

30

40

50

60

70

80

90

100

RS

O
pt

(%
)

 

 

dynamic
random
static

0.25 0.625 1
0

10

20

30

40

50

60

70

80

90

100

MRS

O
pt

(%
)

 

 
dynamic
random
static

0.1 0.2 0.3 0.4 0.5

RRU

0

10

20

30

40

50

60

70

80

90

100

O
pt

(%
)

dynamic

random

static

Figure 6. (a) Comparison results of NC. (b) Comparison results of RF. (c) Comparison results of RS.
(d) Comparison results of MRS. (e) Comparison results of RRU.

Therefore, as a project manager, to reduce the additional cost of the project in an
uncertain environment, it is necessary to improve the multi-skilled level of resources, avoid
the unavailability of resources, and pay attention to the order in which skills and resources
are scheduled, which have certain guiding significance for maximizing project benefits.
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7. Conclusions

This paper studies the MSRCPSP with uncertainty in resource availability, and dy-
namic skill assignment and additional resource replenishment are considered simultane-
ously when resources are not available. Although extensive research has been conducted
for the MSRCPSP, little research focused on uncertainty in resource availability. In an un-
certain environment, it is easy to encounter resource shortage or conflict. Idle resources can
replace unavailable resources to complete activities through skill switching; thus, dynamic
skill assignment has become a method for alleviating resource conflict. If it still does not
work, additional resources are considered to ensure that activities are not interrupted. To
solve this complex problem, a new model is built and a nested GA-PR dynamic scheduling
algorithm is proposed. Finally, an example and numerical experiments are used to verify
the performance of the algorithm. Simultaneously, the performance of the algorithm is
illustrated by comparing the solution efficiency of static and random scheduling, and the
influences of different parameters on the algorithm scheduling are analyzed.

Numerical experiments show that, although the running time of the proposed dy-
namic scheduling is not optimal, its solution is always superior compared to the other
two scheduling methods. When uncertainties in resource availability are considered, the
resource has more skills and more resources are supplied, and the dynamic scheduling
method has improved performance; on the other hand, the higher the probability of re-
source unavailability and the more skills are required, the worse the dynamic scheduling
method performs. Moreover, by comparing the performance of dynamic scheduling and
random scheduling, we can find that the scheduling order has a significant impact on
the results and the three new priority rules contribute to the optimization of costs. By
comparing the performance of dynamic scheduling and static scheduling, we can find that
the skill switching of multi-skill resources also plays an important role.

Our research findings can also provide project managers with some guidance when
scheduling projects in an uncertain environment. First, at the start-up stage of the project,
mangers should select as many multi-skilled resources as possible when establishing the
project team. Second, at the project planning stage, it is important to decide which skill
should be scheduled first and which resource should be scheduled first. Moreover, dynamic
skill assignment and additional resource replenishment are great methods for alleviating
resource shortages. Third, during the project-execution period, managers can take some
incentives to encourage single-skilled person to learn from multi-skilled persons to master
more skills.

However, it should be noted that this paper has still some limitations. First, this paper
assumes that the skill level of each resource is homogeneous. For future research, the
heterogeneity of skill level can be considered. Second, when the splitting of activity is
allowed, resource conflicts can also be solved by interrupting activities so as to reduce
the additional cost of resources. In this case, scheduling will be a more interesting and
difficult problem. Finally, in this paper, the costs of resource skill switching are not taken
into account, which will render MSRCPSP a trade-off problem between additional resource
costs and skill-switching costs.
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Appendix A

Table A1. The skill matrix mastered by resources.

Resource
Skill s1 s2 s3

Resource
Skill s1 s2 s3

Resource
Skill s1 s2 s3

r11 1 0 1 r21 1 1 0 r31 1 1 1

r12 1 1 0 r22 0 1 0 r32 1 0 1

r13 1 1 1 r23 0 1 1 r33 1 0 1

r14 1 0 0 r24 1 1 0 r34 0 0 1

r15 1 0 0 r25 1 1 1 r35 1 0 1

r16 1 0 1 r26 1 1 0 r36 0 0 1

r17 1 1 0 r27 0 1 0 r37 0 0 1

r18 1 0 1 r28 1 1 0 r38 1 1 1

r19 1 1 1 r29 0 1 0 r39 0 0 1

r110 1 0 0 r210 0 1 1 r310 1 1 1

Table A2. The resource state matrix.

Resource
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

r11 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1

r12 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1

r13 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

r14 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0

r15 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1

r16 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1

r17 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

r18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r110 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1

r21 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1

r22 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

r23 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

r24 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 1 1

r25 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

r26 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0

r27 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1

r28 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1
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Table A2. Cont.

Resource
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

r29 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1

r210 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1

r31 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0

r32 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 0 1

r33 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

r34 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

r35 1 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0

r36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

r37 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

r39 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 1

r310 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1

Appendix B

Algorithm for Dynamic Scheduling Algorithm for Random Scheduling Algorithm for Static Scheduling

Begin
Input dj, rjsk

, R, S, pki, Zt=1
While it < MaxIt
for j = 1 : n

Calculate
[

ESj, LSj

]
end
Initialize STj
Resource ranking (Priority rule 1)
If STj + dj ≤ STg, g ∈ SUCCj, ∀j

Then
for t = 1 : T

Calculate Lst (Priority rule 2)
Update Ot, Wt
Case 1 Lst ≤ 0, ∀K
Resource scheduling
Case 2 Lst > 0, ∀K (Priority rule 3)
Resource scheduling
Case 3 others (Priority rule 3)
Resource scheduling
Update Zt+1

end
Calculate Rs and Output Result

Else
Output Result

Update STj (Select, Crossover, Mutate)
End

Begin
Input dj, rjsk

, R, S, pki, Zt=1
While it < MaxIt
for j = 1 : n

Calculate
[

ESj, LSj

]
end
Initialize STj
If STj + dj ≤ STg, g ∈ SUCCj, ∀j

Then
for t = 1 : T
Update Ot
Resource scheduling (No order)
Update Zt+1
end

Calculate Rs and Output Result
Else

Output Result
Update STj (Select, Crossover, Mutate)

End

Begin
Input dj, rjsk

, R, S, pki, Zt= 1
While it < MaxIt
for j = 1 : n
Calculate

[
ESj, LSj

]
end
Initialize STj, SKi
If STj + dj ≤ STg, g ∈ SUCCj, ∀j
Then
Calculate Rs
Else
Output Result
Update STj, SKi (Select, Crossover,
Mutate)
End
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