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Abstract: In this paper, we focus on several ideas associated with linear Diophantine fuzzy soft sets
(LDFSSs) along with its algebraic structure. We provide operations on LDFSSs and their specific
features, elaborating them with real-world examples and statistical depictions to construct an inflow
of linguistic variables based on linear Diophantine fuzzy soft (LDFSS) information. We offer a
study of LDFSSs to the multi-criteria decision-making (MCDM) process of university determination,
together with new algorithms and flowcharts. We construct LDFSS-TOPSIS, LDFSS-VIKOR and the
LDFSS-AO techniques as robust extensions of TOPSIS (a technique for order preferences through the
ideal solution), VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) and AO (aggregation
operator). We use the LDFSS-TOPSIS, LDFSS-VIKOR and LDFSS-AO techniques to solve a real-
world agricultural problem. Moreover, we present a small-sized robotic agri-farming to support the
proposed technique. A comparison analysis is also performed to examine the symmetry of optimal
decision and to analyze the efficiency of the suggested algorithms.

Keywords: linear Diophantine fuzzy soft sets; MCDM; linear Diophantine fuzzy soft topological
spaces; symmetry; LDFSS-TOPSIS; LDFSS-VIKOR; LDFSS-AO

MSC: 03E72; 94D05; 90B50

1. Introduction

Many real-world problems have uncertainties, inconsistent information and data
are not crisp. Zadeh [1] established the theory known as fuzzy set (FS) to deal with
imprecise data. Many generalizations of fuzzy sets can be found which are developed
to handle real world problems. Soft sets (SS) are one such extension which are intro-
duced by Molodtsov [2]. This theory can handle uncertain information in a parametric
way. Sabir and Naz [3] initiated the concept of soft topological space which presents the
parametrized (precomputed) set values of topologies in the primary universe. In addition,
Aygunoglu et al. [4] extended soft topological space to fuzzy set theory as fuzzy soft set
topology in 2014.

The intuitionistic fuzzy set (IFS) concept was developed by Atanassov [5] in 1986.
Like FS theory, IFS can also handle imprecise information with each element in the set
having both satisfaction and dis-satisfaction grade values, provided that the addition of
these two values should not exceed one. Maji et al. [6] initiated the notion of intuitionistic
fuzzy soft sets (IFSSs) by incorporating IFS and SS. Bayramov and Gunduz [7] developed
intuitionistic fuzzy soft topological spaces. In their work, they have investigated the
properties of continuous mapping. Picture fuzzy set (PFS), [8] introduced by Coung et al. in
2014, is an amplification of Atanassov’s IFS theory and Zadeh’s FS theory. Picture fuzzy set
and its application in decision making [9] is developed to explain when we have the three
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different answers (yes, avoid, no). Yager [10,11] initiated the concept of Pythagorean fuzzy
set (PyFS) and it is introduced to overcome a circumstance when the sum of satisfaction
and dis-satisfaction grades exceeds unity. q-rung orthopair fuzzy [12,13] set (q-ROFS) is
an extension of PyFS, IFS whose sum of q-power of satisfaction and dis-satisfaction grade
values are less than unity. q-rung orthopair picture fuzzy (q-ROPFS) [14] set is an extension
of IFS whose sum of q-power of truth, abstinence and false grade values are less than
unity. Riaz and Hashmi [15] unravelled the notion of linear Diophantine fuzzy set (LDFS)
which is an amplification of fuzzy, intuitionistic fuzzy and picture fuzzy sets provided the
addition of α(x)T(x) and β(x)F(x) should not exceed unity, where α, β are the reference
parameters and T(x), F(x) are the true and false membership grades.

Forging decisions is an essential element of our day to day lives. A highly renowned
graphic designer, James Victor, was asked by an interviewer what prompted him to be
so versatile. He just stated, “I make decisions.” Every day, we make millions of micro-
choices, from how to communicate with someone, what to focus our energy on, how to
respond to an email, what to consume to meet our health needs. One may easily state
that becoming a better and faster decision-maker is the quickest way to increase one’s
productivity levels. Every individual, whether a layperson or a politician, an employer
or an employee, a teacher or a student, a mature man or a child, takes hundreds and
thousands, if not millions, of decisions in his or her everyday existence. When a newborn
is hungry and unable to communicate, she/he determines to uproar in order to attract
the concentration of her/his caregiver and to demonstrate that her/his belly is unfilled
through body motions.

We are frequently duped by our tumults into making significant judgments in life,
only to have regret afterwards. Assume we are faced with a difficult decision that will
have a huge influence on our lives. Every time we believe we’ve made a decision, the other
choice pulls us back. We return to where we began: it’s a tie. Should we construct ever-
more-detailed lists of advantages and disadvantages and seek advice from increasingly
more reliable sources? Should we trust our instincts? Another critical difficulty is deciding
how to decide. Mathematics, in addition to its numerous applications, assists us in making
scientific judgments. Many researchers in [16–20] presented diverse decision making (DM)
techniques utilizing the LDFSs with their applications.

MCDM is designed to make a optimum decision by a single person or group with
the help of ranking. The application of MCDM can be seen when shortlisting people for
interview, selecting new gadgets, machines, etc. The idea of TOPSIS is that the selected
alternant should have a minimum distance positive ideal solution (PIS) and far from
negative ideal solution (NIS). The TOPSIS method is used in MCDM because it can choose
the optimum alternative among a group of alternants based on MCDM. The VIKOR method
is proposed to deal with MCDM. This technique is used to choose an optimum alternative
among a group of alternatives by ranking them in the presence of conflicting criteria. Like
TOPSIS and VIKOR, aggregation operator is used in MCDM and the main aim of the
aggregation operator in MCDM is to aggregate the set of inputs to a single number.

Many authors such as Biswas and Sarkar [21], Boran et al. [22], Kumar and Garg [23], Xu
and Zhang [24], Xu [25], Hashmi et al. [26], Eraslan and Karaaslan [27], Peng and Yuan [28],
Liu et al. [29], and Garg and Arora [30] applied the concept of VIKOR, TOPSIS and aggrega-
tion operator methods for DM problems with the extension of FSs and systems in different
disciplines such as graph theory, operations research, etc. Khalid Naeem et al. [31] devel-
oped the notion of Pythagorean m-polar fuzzy topological space with the TOPSIS approach.
Recently, Gul & Aydogdu [32] introduced and studied TOPSIS in an LDF environment.

Mathematics, in addition to its numerous applications, assists us in making scientific
judgments. In this paper, we present an LDFSS decision-making application. Assume we
have an aggregate LDFSS; therefore, we must select the optimal alternate form of this set.
Using the following approach, we may use an MCDM based on LDFSSs.

The objective of the paper is given below:
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(i) In IFS, each element has satisfaction and dis-satisfaction grades. Each element in
LDFS has three grades namely, satisfaction, dissatisfaction and refusal with reference
parameters provided the sum of product of grades with reference parameters does not
exceed unity. Few theories such as IFS, PFS, q-ROFS fail to meet their own conditions
in few cases.

(ii) Our goal is to initiate the concept of LDFSS to fill the research gap. In addition, we
introduce a notion of linear Diophantine fuzzy soft topological space (LDFSTS) whose
members in this LDFSTS are LDFSS.

(iii) LDFSSs, which are the inference of LDFSs and FSSs, are a more valuable medium in
DM situations since they are dealing with two parametrized families of LDFS. TOPSIS,
VIKOR, and AO techniques are also useful for decision-making challenges. In this
work, we created three approaches in the Linear Diophantine fuzzy soft environment
by integrating the modelling benefits of LDF flexible sets with the advantages of
TOPSIS, VIKOR, and AO methods.

(iv) LDFSS-TOPSIS, LDFSS-VIKOR and the LDFSS-aggregation operators method are
designed to apply the proposed notion in MCDM. A real life problem is considered
and applied these proposed algorithm.

The structure of the manuscript is as follows: fundamental definitions are bestowed
in Section 2. The definition of LDFSTS, neighbourhood, interior, closure, frontier and
base are introduced and the properties of LDFSTS are studied in Section 3. We explained
the importance of the targeted method for MCDM based on LDFSSs via LDFSS-TOPSIS,
LDFSS-VIKOR, LDFSS-AO methods with numerical real life examples in Sections 4–6
respectively. The suggested MCDM approaches are exemplified by numerical examples
in the previous sections and are supported by comparative analysis with various current
techniques in Section 7. Section 8 detailed this lucubration work with a definite conclusion.

2. Preliminaries

We review and give some fundamental definitions of the LDFSs in this section.

Definition 1 ([15]). An LDFS Ld is an element on the non-void reference or connecting set Q
that composes:

Ld = {(ξ, 〈td(ξ), fd(ξ)〉, 〈αd(ξ), βd(ξ)〉) : ξ ∈ Q}

where, td(ξ), fd(ξ), are the satisfaction grade and dis-satisfaction grade, and α(ξ), β(ξ) ∈ [0, 1]
are the connecting parameters, respectively. These grades gratify the condition 0 ≤ αd(ξ)td(ξ) +
βd(ξ)fd(ξ) ≤ 1 for all ξ ∈ Q and with 0 ≤ α(ξ) + β(ξ) ≤ 1. Comparison parameters aid
classifying a specific system. By traversing the tangible meaning of these parameters, we might
classify the system. They increase the amount of space available in LDFS for grades and remove
restrictions. The rejection (refusal) grade is defined as follows: γd(ξ)rd = (ξ) = 1− (αd(ξ)td(ξ)+
βd(ξ)fd(ξ)), where γd(ξ) is the rejection connecting parameter. Linear Diophantine fuzzy number
(LDFN) is outlined as Ld = (〈td, fd〉, 〈αd, βd〉) and with 0 ≤ α + β ≤ 1, 0 ≤ αdtd + βdfd ≤ 1.

Definition 2 ([15]). An LDFS on Q is called a

(i) void LDFS, if L0
d = {ξ, (〈0, 1〉, 〈0, 1〉) : ξ ∈ Q}.

(ii) absolute LDFS, if L1
d = {ξ, (〈1, 0〉, 〈1, 0〉) : ξ ∈ Q}.

Definition 3 ([15]). Let Ld = (〈td, fd〉, 〈αd, βd〉) be an LDFN, then

1. the score function (SF) is displayed by S(Ld) and is depicted as

S(Ld) =
1
2
[(td − fd) + (αd − βd)]

where S : Ld(Q) −→ [−1, 1]
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2. the accuracy function (AF) is displayed by A(Ld) and is depicted as

A(Ld) =
1
2
[
(td + fd)

2
+ (αd + βd)]

where A : Ld(Q) −→ [0, 1]
where Ld(Q) is the foregathering of every LDFNs on Q

Definition 4 ([15]). Two LDFNs Ld1 and Ld2 can be comparable using SF and AF. It is defined
as follows:

(i) Ld1 > Ld2 if S(Ld1) > S(Ld2)
(ii) Ld1 < Ld2 if S(Ld1) < S(Ld2)
(iii) If S(Ld1) = S(Ld2), then

(a) Ld1 > Ld2 if A(Ld1) > A(Ld2)
(b) Ld1 < Ld2 if A(Ld1) < A(Ld2)
(c) Ld1 = Ld2 if A(Ld1) = A(Ld2)

Definition 5 ([15]). Let Ldi = (〈tdi , fdi〉, 〈αLi
, βLi
〉) for i ∈ ∆ be a convene of LDFNs on Q and

X > 0 then

(i) Lc
d1

= (〈fd1 , tD1〉, 〈βL1 , αL1〉)
(ii) Ld1 = Ld2 ⇔ td1 = td2 , fd1 = fd2 , αL1 = αL2 , βL1 = βL2

(iii) Ld1 ⊆ Ld2 ⇔ td1 ≤ td2 , fd1 ≥ fd2 , αL1 ≤ αL2 , βL1 ≥ βL2

(iv) Ld1 ⊕ Ld2 = (〈td1 + td2 − td1 td2 , fd1 fd2〉, 〈αL1 + αL2 − αL1αL2 , βL1βL2〉)
(v) Ld1 ⊗ Ld2 = (〈td1 td2 , fd1 + fd2 − fd1 fd2〉, 〈αL1αL2 , βL1 + βL2 − βL1βL2〉)
(vi) Ld1 ∪ Ld2 = (〈td1 ∨ td2 , fd1 ∧ fd2〉, 〈αL1 ∨ αL2 , βL1 ∧ βL2〉)
(vii) Ld1 ∩ Ld2 = (〈td1 ∧ td2 , fd1 ∨ fd2〉, 〈αL1 ∧ αL2 , βL1 ∨ βL2〉)
(viii) XLd1 = (〈(1− (1− td1)

X), fXd1〉, 〈(1− (1− L1)
X), XL1

〉)
(ix) LX

d1
= (〈tXd1 , (1− (1− fd1)

X)〉, 〈XL1
, (1− (1− L1)

X〉)

Example 1. Let Ld1 = (〈0.87, 0.63〉, 〈0.56, 0.21〉) and Ld2 = (〈0.76, 0.69〉,
〈0.41, 0.33〉) be two LDFNs, then

(i) Lc
d1

= (〈0.63, 0.87〉, 〈0.21, 0.56〉)
(ii) Ld2 ⊆ Ld1 by the Definition 9 (iii)
(iii) Ld1 ⊕ Ld2 = (〈0.9688, 0.4347〉, 〈0.7404, 0.0693〉)
(iv) Ld1 ⊗ Ld2 = (〈0.6612, 0.8853〉, 〈0.2296, 0.4707〉)
(v) Ld1 ∪ Ld2 = (〈0.87, 0.63〉, 〈0.56, 0.21〉) = Ld1

(vi) Ld1 ∩ Ld2 = (〈0.76, 0.69〉, 〈0.41, 0.33〉) = Ld2

If X = 0.1, then we have the following
(vii) XLd1 = (〈0.1846, 0.9548〉, 〈0.0788, 0.8555〉)
(viii) LX

d1
= (〈0.9862, 0.0946〉, 〈0.9437, 0.02330〉)

Definition 6 ([15]). The euclidean distance within the two LDFSs Ld1 and Ld2 is determined as
d(Ld1 ,Ld2) =

1
2

√
{(td1 − td2)

2 + (fd1 − fd2)
2 + (d1 − d2)

2 + (d1 − d2)
2}.

Definition 7 ([2]). Let E be the set of attributes and X be a crisp set. The soft set will be outlined as
(ψ,A) = {(e, ψ(e)) : e ∈ A, ψ(e) ∈ P(X)}, where A ⊆ E and ψ : A→ P(X) is the set-valued
function. ψA is the shortest method of writing the couplet (ψ,A).

Definition 8 ([33]). Let E be the set of parameters and X be the universal set. If we suppose
that A ⊆ E and LDFX signifies the assembly of all linear Diophantine fuzzy subsets over X and
κ : A → LDFX is a mapping. An LDFSS on X is denoted by (κ,A) or κA and outlined by
(κ,A) = {e, (ζ, 〈tκA(ζ), fκA(ζ)〉, 〈ακA(ζ), βκA(ζ)〉) : e ∈ A, ζ ∈ X}.
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where tκA , fκA , ακA , βκA : X→ [0, 1] delineates functions called satisfaction function, dis-satisfaction
function, satisfaction parameter function, dis-satisfaction parameter function, respectively. Specif-
ically, tκA(ζ) denotes the satisfaction grade, fκA(ζ) represents the dis-satisfaction grade, ακA(ζ)
denotes the parameter of the satisfaction grade, βκA(ζ) represents the parameter of the dis-satisfaction
grade of the alternative ζ ∈ X to the set (κ,A) having the following constraints:

• 0 ≤ ακA(ζ)tκA(ζ) + βκA(ζ)fκA(ζ) ≤ 1 for all ζ ∈ X

• 0 ≤ ακA(ζ) + βκA(ζ) ≤ 1

For each attribute e, the value κ(e) evinces κ(e)-approximate point.
The multitude of all LDFSS over X taken from E is defined as LDFS class and is

represented as LDFS(X,E).
Let us consider tij = tκA(ej)(ζi), fij = fκA(ej)(ζi), αij = ακA(ej)(ζi) and βij =

βκA(ej)(ζi) where i run from from one to m and j run from one to n. Thus the LDFSS
κA may be written in tabular form as cited in Table 1.

Table 1. Tabular array of LDFSS κA.

κA e1 e2 . . . en

ρ1 (〈t11, f11〉, 〈α11, β11〉) (〈t12, f12〉, 〈α12, β12〉) . . . (〈t1n, f1n〉, 〈α1n, β1n〉)
ρ2 (〈t21, f21〉, 〈α21, β21〉) (〈t22, f22〉, 〈α22, β22〉) . . . (〈t2n, f2n〉, 〈α2n, β2n〉)
...

...
...

. . .
...

ρm (〈tm1, fm1〉, 〈αm1, βm1〉) (〈tm2, fm2〉, 〈αm2, βm2〉) . . . (〈tmn, fmn〉, 〈αmn, βmn〉)

The corresponding matrix form is

(κ,A) = [〈tij, fij〉, 〈αij, βij〉]m×n =
(〈t11, f11〉, 〈α11, β11〉) (〈t12, f12〉, 〈α12, β12〉) . . . (〈t1n, f1n〉, 〈α1n, β1n〉)
(〈t21, f21〉, 〈α21, β21〉) (〈t22, f22〉, 〈α22, β22〉) . . . (〈t2n, f2n〉, 〈α2n, β2n〉)

...
...

. . .
...

(〈tm1, fm1〉, 〈αm1, βm1〉) (〈tm2, fm2〉, 〈αm2, βm2〉) . . . (〈tmn, fmn〉, 〈αmn, βmn〉)


The matrix displayed above is said to be linear Diophantine fuzzy soft matrix (LDFSM).

Definition 9 ([33]). Let (κ1,A1) and (κ2,A2) be a convene of LDFSSs on X, then

(i) κc
A1

=(〈fκ1 , tκ1〉, 〈βκ1 , ακ1〉)
(ii) κA1⊆̃κA1 , if A1 ⊆ A2 and κ1(e) ⊆ κ2(e), for all e ∈ A1.
(iii) κA = κA1 ∪̃κA1 , if A1 ∪A2 and κ1(e) ∪ κ2(e), for all e ∈ A.
(iv) κA = κA1 ∩̃κA1 6= φ, if A1 ∩A2 and κ1(e) ∩ κ2(e), for all e ∈ A.

Definition 10 ([33]). If τ is a collection of linear Diophantine fuzzy subsets of a non-void set X
and if

(i) 1X, 0X ∈ τ
(ii) A1 ∩A2 ∈ τ, for any A1,A2 ∈ τ
(iii) ∪iAi ∈ τ where i ∈ ∆, for any Ai ∈ τ

then the couplet (X, τ) is known as an LDFTS, where τ is known as an LDFTS on X.

3. Linear Diophantine Fuzzy Soft Topological Spaces

The concept of LDFSTS is constituted and to a greater extent we explored its peculiari-
ties.

Let X̃ be the inception of the universal set and LDF(X̃, Ẽ) represents the kindred of
LDFSs on X̃.

Definition 11. An LDFSS (F̃, Ẽ) aloft X̃ is known as
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• an absolute LDFSS (1̃), if and only if for every ξ ∈ Ẽ, (F̃, Ẽ)(ξ) = (〈1̃, 0̃〉, 〈1̃, 0̃〉)
• an empty LDFSS (0̃), if and only if for every ξ ∈ Ẽ, (F̃, Ẽ)(ξ) = (〈0̃, 1̃〉, 〈0̃, 1̃〉)
where 0̃, 1̃, 0̃, 1̃ are the value of the grade of satisfaction, grade of dis-satisfaction, the parameter of
the satisfaction grade and the parameter of the dis-satisfaction grade, respectively of the absolute and
empty LDFSSs over X̃.

Definition 12. Let T̃ ⊂ LDF(X̃, Ẽ), then T̃ on X̃ is said to be an LDFSTS, if the following
constraints hold good

• 0̃ , 1̃ ∈ T̃
• ∩n

i=1L̃i ∈ T̃ ∀ L̃i ∈ T̃
• ∪∞

i=1L̃i ∈ T̃ ∀ L̃i ∈ T̃
The triple (X̃, T̃ , Ẽ) over X̃ is called an LDFSTS. The objects of T̃ are known as linear

Diophantine fuzzy soft open sets (LDFSOS) and their complements are said to be linear Diophantine
fuzzy soft closed sets (LDFSCS).

Definition 13. Let T̃1 and T̃2 be any two LDFSTS. If for every L̃1 ∈ T̃1 is in T̃2, then T̃1 is linear
Diophantine fuzzy soft coarser (weaker) than T̃2 or T̃2 is linear Diophantine fuzzy soft finer than T̃1.

Example 2. Let X̃ = {ξ1, ξ2, ξ3} be the reference set (distinct models of bikes) and Ẽ = {ζ1, ζ2, ζ3, ζ4}
be the attributes or parameters set, where ζ1=affordable, ζ2=caliber, ζ3=comfort, ζ4=recovery service.
Let Ã = {ζ1, ζ2} ⊂ Ẽ and B̃ = {ζ2} ⊂ Ẽ. Then we contemplate two LDFSS (F̃, Ã) and (G̃, B̃)
are given by:
(F̃, Ã) = {(ζ1, F̃(ζ1)), (ζ2, F̃(ζ2))}, and (G̃, B̃) = {(ζ2, G̃(ζ2))}, where
F̃(ζ1) = {ξ1 = (〈0.7, 0.4〉, 〈0.4, 0.2〉), ξ2 = (〈0.7, 0.5〉, 〈0.4, 0.2〉), ξ3 = (〈0.8, 0.3〉, 〈0.5, 0.2〉)}
F̃(ζ2) = {ξ1 = (〈0.4, 0.6〉, 〈0.2, 0.5〉), ξ2 = (〈0.6, 0.7〉, 〈0.4, 0.3〉), ξ3 = (〈0.6, 0.4〉, 〈0.6, 0.3〉)}
G̃(ζ2) = {ξ1 = (〈0.7, 0.5〉, 〈0.3, 0.5〉), ξ2 = (〈0.4, 0.5〉, 〈0.2, 0.5〉), ξ3 = (〈0.7, 0.3〉, 〈0.2, 0.5〉)}

Here,

1. T̃ = {(F̃, Ã), (G̃, B̃), 0̃, 1̃} is a LDFSTS.
2. T̃1 = {(F̃, Ã), 0̃, 1̃} and T̃2 = {(F̃, Ã), (G̃, B̃), 0̃, 1̃} are two LDFSTSs. It is obvious that

T̃1 ⊆ T̃2. Thus, T̃2 is said to be LDFSS-finer than T̃1 and T̃1 is said to be LDFS-coarser T̃2.

Theorem 1. If T̃1 ∩ T̃2 = {L̃ ∈ LDFSSs(X̃, Ẽ) : L̃ ∈ T̃1 ∩ T̃2}, where (X̃, T̃1, Ẽ) and (X̃, T̃2, Ẽ)
are two LDFSTSs over (X̃, Ẽ), then T̃1 ∩ T̃2 is also an LDFSTS on (X̃, Ẽ).

Proof. (i) It is obvious that 1̃, 0̃ ∈ T̃1, T̃2
(ii) Let L̃1, L̃2 ∈ T̃1 ∩ T̃2. This implies that L̃1, L̃2 ∈ T̃1 and L̃1, L̃2 ∈ T̃2, this implies that
L̃1 ∩ L̃2 ∈ T̃1 and L̃1 ∩ L̃2 ∈ T̃2, this implies that L̃1 ∩ L̃2 ∈ T̃1 ∩ T̃2.
(iii) Let {L̃i : i ∈ Γ} ∈ T̃1 ∩ T̃2. This implies that {L̃i} ∈ T̃1 and {L̃i} ∈ T̃2, this implies that
∪iL̃i ∈ T̃1 and ∪iL̃i ∈ T̃2, this implies that ∪iL̃i ∈ T̃1 ∩ T̃2.
Therefore, T̃1 ∩ T̃2 is an LDFSTS on (X̃, Ẽ).

Remark 1. The union of two LDFSTSs might not be such.
Let the reference set be X̃ = {ξ1, ξ2, ξ3} and the attribute set be Ẽ = {ζ1, ζ2, ζ3, ζ4, ζ5}. Let

Ã = {ζ1, ζ2, ζ3} ⊂ Ẽ and B̃ = {ζ3, ζ4, ζ5} ⊂ Ẽ. Now let us take two LDFSSs (F̃, Ã) and (G̃, B̃)
such that:

(F̃, Ã) = {(ζ1, F̃(ζ1)), (ζ2, F̃(ζ2)), (ζ3, F̃(ζ3))}, and (G̃, B̃) = {(ζ3, G̃(ζ3)), (ζ4, F̃(ζ4)),
(ζ5, F̃(ζ5))}, where
F̃(ζ1) = {ξ1 = (〈0.6, 0.6〉, 〈0.3, 0.4〉), ξ2 = (〈0.6, 0.7〉, 〈0.4, 0.3〉), ξ3 = (〈0.4, 0.4〉, 〈0.2, 0.3〉}
F̃(ζ2) = {ξ1 = (〈0.7, 0.5〉, 〈0.4, 0.2〉), ξ2 = (〈0.5, 0.4〉, 〈0.3, 0.5〉), ξ3 = (〈0.2, 0.3〉, 〈0.3, 0.2〉)}
F̃(ζ3) = {ξ1 = (〈0.5, 0.3〉, 〈0.3, 0.3〉), ξ2 = (〈0.7, 0.5〉, 〈0.4, 0.1〉), ξ3 = (〈0.4, 0.3〉, 〈0.3, 0.1〉)},
G̃(ζ3) = {ξ1 = (〈0.3, 0.4〉, 〈0.6, 0.5〉), ξ2 = (〈0.7, 0.4〉, 〈0.4, 0.7〉), ξ3 = (〈0.7, 0.5〉, 〈0.4, 0.3〉)}
G̃(ζ4) = {ξ1 = (〈0.7, 0.6〉, 〈0.3, 0.1〉), ξ2 = (〈0.8, 0.3〉, 〈0.5, 0.4〉), ξ3 = (〈0.5, 0.4〉, 〈0.2, 0.4〉)}
G̃(ζ5) = {ξ1 = (〈0.8, 0.4〉, 〈0.6, 0.3〉), ξ2 = (〈0.6, 0.5〉, 〈0.3, 0.7〉), ξ3 = (〈0.9, 0.4〉, 〈0.3, 0.1〉)}.
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Then, the two LDFSTSs over X̃ are T̃1 = {1̃, 0̃, (F̃, Ã)} and T̃2 = {1̃, 0̃, (G̃, B̃)}. The opposite
hand, since (F̃, Ã), (G̃, B̃) ∈ T̃1 ∪ T̃2. However, (F̃, Ã) ∪ (G̃, B̃) /∈ T̃1 ∪ T̃2, (F̃, Ã) ∩ (G̃, B̃) /∈
T̃1 ∪ T̃2. Thus, T̃1 ∪ T̃2 is not an LDFSTS on X̃. But T̃1 ∩ T̃2 is an LDFSS on X̃.

Definition 14. Let L̃1, L̃2 ∈ LDFSS(X̃, Ẽ) and T̃ be an LDFSTS on (X̃, Ẽ). Then L̃2 is called a
neighbourhood (nbd) of L̃1, if ∃ an LDFSOS γ̃ (i.e., γ̃ ∈ T̃ ) 3 L̃1 ⊂ γ̃ ⊂ L̃1.

Theorem 2. A LDFSS γ̃ ∈ LDFSSs(X̃, Ẽ) is an LDFSOS if and only if γ̃ is a nbd of each LDFSS
L̃1 ⊂ γ̃.

Proof. Let L̃1 be an LDFSSs in γ̃, where γ̃ is an LDFSOS. As we have L̃1 ⊂ γ̃ ⊂ γ̃ =⇒ γ̃
is a nbd of L̃1. Thereupon, if we suppose γ̃ is an nbd for all LDFSS ⊆ γ̃. Since γ̃ ⊂ γ̃, ∃ an
LDFSOS L̃2 3 γ̃ ⊂ L̃2 ⊂ γ̃. Thus, γ̃ is open and γ̃ = L̃2.

Theorem 3. Let γ̃ ∈ (X̃, Ẽ) and (X̃, T̃1, Ẽ) be an LDFSTS. γ̃ is said to be the nbd system or nbd
filter of γ̃, the set of all nbds, upto topology T̃1 (in short, LDFSSnbd(γ̃)).

Theorem 4. Let the nbd filter of the LDFSS γ̃ be LDFSSnbd(γ̃). Then,

1. finite intersections of the members of LDFSSnbd(γ̃) ∈ LDFSSnbd(γ̃).
2. each LDFSS containing a member of LDFSSnbd(γ̃) ∈ LDFSSnbd(γ̃).

Proof.

1. Let L̃1, L̃2 ∈ LDFSSnbd(γ̃). Then ∃L̃1
′, L̃2

′ ∈ T̃ 3 γ̃ ⊂ L̃1
′ ⊂ L̃1 and γ̃ ⊂ L̃2

′ ⊂
L̃2. Since, L̃1

′ ∩ L̃2
′ ∈ T̃ , we have, γ̃ ⊂ L̃1

′ ∩ L̃2
′ ⊂ L̃1 ∩ L̃2. Thus, L̃1 ∩ L̃2 ∈

LDFSSnbd(γ̃).
2. If L̃1 ∈ LDFSSnbd(γ̃) and L̃2 be an LDFSS containing L̃1, then ∃L̃1

′ ∈ T̃ 3 γ̃ ⊂
L̃1
′ ⊂ L̃1 ⊂ L̃2. This proves that L̃2 ∈ LDFSSnbd(γ̃)

Definition 15. Let L̃ ∈ LDFSS(X̃, Ẽ) be an arbitrary LDFSS and let (X̃, T̃ , Ẽ) be an LDFSTS
over (X̃, Ẽ). Then the interior and closure of L̃ are defined as follows:

1. L̃LDFSo= ∪{G̃ : G̃ is LDFSO and G̃ ⊆ L̃},
2. L̃LDFS−= ∩{G̃ : G̃ is LDFSC and G̃ ⊇ L̃}.

Remark 2. For any LDFSS L̃ in (X̃, T̃ , Ẽ), we have

1. [L̃c]LDFS− = [L̃LDFSo]c.
2. [L̃c]LDFSo = [L̃LDFS−]c.
3. L̃ is an LDFSCS if and only if L̃LDFS− = L̃.
4. L̃ is an LDFSOS if and only if L̃LDFSo = L̃.
5. L̃LDFS− is an LDFSCS in (X̃, Ẽ).
6. L̃LDFSo is an LDFSOS in (X̃, Ẽ).

Theorem 5. Let (X̃, T̃ , Ẽ) be an LDFSTS with respect to (X̃, Ẽ). Let L̃1 and L̃2 be linear Dio-
phantine fuzzy soft subsets of (X̃, Ẽ). Then the following holds:

1. L̃ ⊆ L̃LDFS−.
2. L̃ is an LDFSCS if and only if L̃LDFS− = L̃.
3. 0̃LDFS− = 0̃ and 1̃LDFS− = 1̃.
4. L̃1 ⊆ L̃2 ⇒ L̃LDFS−

1 ⊆ L̃LDFS−
2 .

5. (L̃1 ∪ L̃2)LDFS− = L̃LDFS−
1 ∪ L̃LDFS−

2 .
6. (L̃1 ∩ L̃2)LDFS− = L̃LDFS−

1 ∩ L̃LDFS−
2 .

7. (L̃LDFS−)LDFS− =L̃LDFS−.
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Proof.

1. From Definition 3.5 (ii), L̃ ⊆ L̃LDFS−

2. If L̃ is a linear Diophantine fuzzy soft closed set (LDFSCS), then L̃ is the tiniest LDFSCS
carrying oneself and therefore L̃LDFS− = L̃. In the reverse way, if L̃LDFS− = L̃, then
L̃ is the tiniest LDFSCS containing itself and therefore L̃ is an LDFSCS.

3. Since 0̃ and 1̃ are LDFSCSs in (X̃, T̃ , Ẽ), 0̃LDFS− = 0̃ and 1̃LDFS− = 1̃.
4. If LDFSS L̃1 is a subset of LDFSS L̃2, since LDFSS L̃2 is a subset of L̃LDFS−

2 , then
LDFSS L̃1 is a subset of L̃LDFS−

2 . That is, L̃LDFS−
2 is an LDFSCS containing L̃1.

However, L̃LDFS−
1 is the littlest LDFSCS containing L̃1. Therefore, L̃LDFS−

1 ⊆
L̃LDFS−
2

5. Since the union of two LDFSSs L̃1 and L̃2 contains the LDFSS L̃1 and the union of two
LDFSSs L̃1 and L̃2 contains the LDFSS L̃2, (L̃1 ∪ L̃2)LDFS− ⊇ L̃LDFS−

1 . Then the
closure of the union of two LDFSSs L̃1 and L̃2 contains the closure of LDFSS L̃1 and the
closure of the union of two LDFSSs L̃1 and L̃2 contains the closure of LDFSS L̃2. Hence,
the union of closure of LDFSSs L̃LDFS−

1 , L̃LDFS−
2 is a subset of closure of the union

of (L̃LDFS−
1 , L̃2)LDFS−. By the fact that L̃1 ∪ L̃2 ⊆ L̃LDFS−

1 ∪ L̃LDFS−
2 , and since

(L̃1 ∪ L̃2)LDFS− is the littlest LDFSCS containing L̃1 ∪ L̃2, so (L̃1 ∪ L̃2)LDFS− ⊆
L̃LDFS−
1 ∪ L̃LDFS−

2 . Thus, (L̃1 ∪ L̃2)LDFS− = L̃LDFS−
1 ∪ L̃LDFS−

2 .
6. Since L̃1 ∩ L̃2 ⊆ L̃1 and L̃1 ∩ L̃2 ⊆ L̃2, (L̃1 ∩ L̃2)LDFS− ⊆ L̃LDFS−

1 ∩ L̃LDFS−
2 .

7. Since L̃LDFS− is a LDFSCS, then (L̃LDFS−)LDFS− = L̃LDFS−.

Theorem 6. (X̃, T̃ , Ẽ) be a LDFSTS over (X̃, Ẽ). Let L̃ be a linear Diophantine fuzzy soft subset
of (X̃, Ẽ). Then

1. 1̃− L̃LDFSo = (1̃− L̃)LDFS−.
2. 1̃− L̃LDFS− = (1̃− L̃)LDFSo.

Theorem 7. Let (X̃, T̃ , Ẽ) be an LDFSTS in relation to (X̃, Ẽ). Let L̃1 and L̃2 be linear Diophan-
tine fuzzy soft subsets of (X̃, Ẽ). Then the following claims are true:

1. ˜̃L is an LDFSOS open if and only if L̃LDFSo = L̃.
2. 0̃LDFSo = 0̃ and 1̃LDFSo = 1̃.
3. L̃1 ⊆ L̃2 ⇒ L̃LDFSo

1 ⊆ L̃LDFSo
2 .

4. (L̃1 ∪ L̃2)LDFSo = L̃LDFSo
1 ∪ L̃LDFSo

2 .
5. (L̃1 ∩ L̃2)LDFSo = L̃LDFSo

1 ∩ L̃LDFSo
2 .

6. (L̃LDFSo)LDFSo = L̃LDFSo.

Proof.

1. L̃ is an LDFSOS if and only if 1̃− L̃ is an LDFSCS, if and only if (1̃− L̃)LDFS− = 1̃− L̃,
if and only if 1̃− (1̃− L̃)LDFS− = L̃ if and only if L̃LDFSo = L̃.

2. As 0̃ and 1̃ are LDFSOSs in (X̃, T̃ , Ẽ), 0̃LDFSo = 0̃ and 1̃LDFSo = 1̃.
3. If L̃1 ⊆ L̃2, since L̃2 ⊇ L̃LDFSo

2 , then L̃1 ⊇ L̃LDFSo
2 . That is, L̃LDFSo

2 is an LDFSOS
containing L̃1. However, L̃LDFSo

1 is the largest LDFSOS contained in L̃1. Therefore,
L̃LDFSo
1 ⊆ L̃LDFSo

2

4. Since L̃1 ⊆ L̃1 ∪ L̃2 and L̃2 ⊆ L̃1 ∪ L̃2, L̃LDFSo
1 ⊆ (L̃1 ∪ L̃2)LDFSo and L̃LDFSo

2 ⊆
(L̃1 ∪ L̃2)LDFSo. Therefore, L̃LDFSo

1 ∪ L̃LDFSo
2 ⊆ (L̃1 ∪ L̃2)LDFSo. By the fact that

L̃1 ∪ L̃2 ⊆ L̃LDFSo
1 ∪ L̃LDFSo

2 , and since (L̃1 ∪ L̃2)LDFSo is the largest LDFSOS con-
taining L̃1 ∪ L̃2, so (L̃1 ∪ L̃2)LDFSo ⊆ L̃LDFSo

1 ∪ L̃LDFSo
2 . Thus, (L̃1 ∪ L̃2)LDFSo =

L̃LDFSo
1 ∪ L̃LDFSo

2 .
5. Since L̃1 ∩ L̃2 ⊆ L̃1 and L̃1 ∩ L̃2 ⊆ L̃2, (L̃1 ∩ L̃2)LDFSo ⊆ L̃LDFSo

1 ∩ L̃LDFSo
2 .

6. Since L̃LDFSo is an LDFSOS, then (L̃LDFSo)LDFSo = L̃LDFSo.
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Definition 16. Let L̃ ∈ LDFSSs(X̃, Ẽ) and (X̃, T̃ , Ẽ) be a LDFSTS over (X̃, Ẽ). Then LDFS fron-
tier of L̃ is represented by LDFSB(L̃) and is outlined as LDFSB(L̃) = L̃LDFS− ∩ (L̃c)LDFS−.

Theorem 8. Let (X̃, T̃ , Ẽ) be an LDFSTS over (X̃, Ẽ) and L̃ ∈ LDFSSs(X̃, Ẽ). Then,

1. L̃LDFSo ∩ LDFSB(L̃) = 0̃

2. L̃LDFS− = L̃LDFSo ∪ LDFSB(L̃)
3. LDFSB(L̃) = 0̃ if and only if L̃ is both open and closed.
4. LDFSB(L̃) = L̃LDFS− ∩ (L̃LDFSo)c = 0̃

Proof.

1. L̃LDFSo∩ LDFSB(L̃) = L̃LDFSo∩ (L̃LDFS− ∩ (L̃c)LDFS−) = L̃LDFSo∩ (L̃LDFS−

∩(L̃LDFSo)c) = L̃LDFSo ∩ (L̃LDFSo)c ∩ L̃LDFS− = 0̃∩ L̃LDFS− = 0̃.
2. L̃LDFSo∪ LDFSB(L̃) = L̃LDFSo∪ (L̃LDFS− ∩ (L̃c)LDFS−) = L̃LDFSo∪ (L̃LDFS−

∩(L̃LDFSo)c) = (L̃LDFSo ∪ L̃LDFS−) ∩ (L̃LDFSo ∪ (L̃LDFSo)c) = (L̃LDFSo ∪
L̃LDFS−) ∩ 1̃ = (L̃LDFSo ∪ L̃LDFS−) = L̃LDFS−. Since L̃LDFSo ⊂ L̃ ⊂ L̃LDFS−.

3. LDFSB(L̃) = L̃LDFS− ∩ (L̃c)LDFS− = 0̃⇒ L̃LDFS− ∩ (L̃LDFSo)c = 0̃⇒ L̃LDFS−

∩((L̃LDFSo)c)c = 0̃⇒ L̃LDFS− ∩ L̃LDFSo = 0̃ ⇒ L̃LDFS− ⊂ L̃LDFSo i.e., L̃ ⊂
L̃LDFS− ⊂ L̃LDFSo ⇒ L̃ ⊂ L̃LDFSo.
In addition, we know that L̃LDFSo ⊂ L̃. Thus L̃LDFSo = L̃. This shows that L̃ is
open.
Furthermore, L̃LDFS− ⊂ L̃LDFSo ⊂ L̃ ⇒ L̃LDFS− ⊂ L̃. Moreover, we know that
L̃ ⊂ L̃LDFS−. Thus L̃LDFS− = L̃. This shows that L̃ is closed.
Conversely, if L̃ is open and closed, then L̃LDFSo = L̃ and L̃LDFS− = L̃. Now,
LDFSB(L̃) = L̃LDFS− ∩ (L̃c)LDFS− = L̃LDFS− ∩ (L̃LDFSo)c = L̃LDFS− ∩ L̃c =
0̃.

4. LDFSB(L̃) = L̃LDFS− ∩ (L̃c)LDFS− = L̃LDFS− ∩ (L̃LDFSo)c

Definition 17. Let (X̃, T̃ , Ẽ) be an LDFSTS over (X̃, Ẽ). The accumulation B̃ ⊂ T̃ is known as
a base for T̃ . If ∀Ã ∈ T̃ can be written as the supercilious union of some objects of LDFSS B̃, then
B̃ is called as a linear Diophantine fuzzy soft basis (LDFSB) for the LDFST T̃ . Linear Diophantine
fuzzy basic open sets are the elements of B̃.

Theorem 9. Let (X̃, T̃ , Ẽ) be an LDFSTS over (X̃, Ẽ) and B̃ an LDFSB for T̃ . Then, T̃ is the set
of linear Diophantine fuzzy soft unions of B̃ components.

Proof. The evidence is unambiguous.

Theorem 10. Let the two LDFSTS over (X̃, Ẽ) be (X̃, T̃1, Ẽ) and (X̃, T̃2, Ẽ). Moreover, let B̃1 be
an LDFSB for T̃1 and B̃2 be an LDFSB for T̃2. If B̃1 ⊂ B̃2, then T̃1 ⊂ T̃2.

Proof. The proof is straightforward.

4. MCDM via LDFSS-TOPSIS Approach

TOPSIS is used to select the best choice from a set of venture options. The reasonable
compromise is the option that is nearest to the PIS but farthest from the NIS. In this part, we
will look at how LDFSSs may be used in MCDM with TOPSIS. Primarily, we will expand
TOPSIS to LDFSSs, and then we will look at a stock exchange investing problem. TOPSIS is
one of the most powerful strategies available in the literature for dealing with such issues.
Every approach has advantages and limitations depending on the nature of the problem
at hand.

We start by discussing the targeted approach procedure by procedure. The suggested
LDFSS TOPSIS is a generalization of Eraslan and Karaaslan’s [27] fuzzy soft TOPSIS.
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Step 7: The normalized euclidean distance (NED) of each attribute and its LDFSSV-PIS
can be defined as:

dN+
E =

1
4n

q

∑
j=1

[(itij −i tj
+)2 + (ifij −i fj

+)2 + (iαij −i αj
+)2 + (iβij −i βj

+)2]

The normalized euclidean distance (NED) of each alternative and its LDFSSV-NIS
can be defined as:

dN−E =
1

4n

q

∑
j=1

[(itij −i tj
−)2 + (ifij −i fj

−)2 + (iαij −i αj
−)2 + (iβij −i βj

−)2]

Step 8: Compute the LDFSS relative closeness with the formula:

C+
j =

dN−E

dN+
E + dN−E

Step 9: Finally, the alternate ranking order is found. The best attribute is the one with the
greatest revised coefficient value.

The proposed LDFSS-TOPSIS is portrayed as a flow chart in Figure 1.

Figure 1. Procedural steps of Algorithm 1.
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Algorithm 1: LDFSS-TOPSIS.

Step 1: Identify the issue: E = {ei} is the set of decision makers/experts, the assemblage
of alternatives/attributes is A = {aj} and C = {ck} is the family of parameters/
criteria, where i, j, k ∈ N and i = {1, 2, 3, . . . ,p}, j = {1, 2, 3, . . . ,q},k = {1, 2, 3, . . . , r}.

Step 2: If wij denotes the weight allocated by Ek to Cj keeping in view the linguistic variables
(LVs) Table 2, build a weighted criteria matrix

P = [wij]p×q =


w11 w12 . . . w1q

w21 w22 . . . w2q
...

...
. . .

...
wp1 wp2 . . . wpq

.

Step 3: Normalize the weighted parameter matrix P that was created in Step 2 above. There
is no need to split the criteria as cost and benefits. As a result, we apply the
normalized approach described below to convert the cost criteria to the benefit
parameter. The normalized values are represented as a matrix indicated by

N̂ = [n̂ij]p×q =


n̂11 n̂12 . . . n̂1q
n̂21 n̂22 . . . n̂2q

...
...

. . .
...

n̂p1 n̂p2 . . . n̂pq

, where n̂ij =
wij√

∑p
i=1 w2

ij

and acquire the

weight vector W = (ηj : j = 1, 2, ..., q), where ηj =
∑q
i=1 n̂ij

n∑m
k=1 n̂ik

ωk =
1−
√

[(1−(kt(ξ)2+kf(ξ))2)+(1−(kα(ξ)2+(kβ(ξ))2)]/2

∑r
k=1[1−

√
[(1−(kt(ξ)2+kf(ξ)2))+(1−(kα(ξ)2+kβ(ξ)2)]/2]

where k = 1, 2, 3, . . . , r and

∑r
k=1 ωk = 1,

Step 4: Construct the LSFS-decision matrix, where aij is a LDFSS element, for the ith
decision maker makes LDFSS topology for each i. The decision matrix is

represented as Di = [aij]p×q =


a11 a12 . . . a1q
a21 a22 . . . a2q

...
...

. . .
...

ap1 ap2 . . . apq


where arq is a LDFSS-element, for k expert/decision maker so that D makes
LDFSS-topology for each i. Then bring out the aggregated matrix
A = L1+L2+...+Ln

n = [żkj]r×q.

Step 5: Acquire the weighted LDFSS decision matrix J = [z̆jk]l×q =


z̆11 z̆12 . . . z̆1q
z̆21 z̆22 . . . z̆2q

...
...

...
...

z̆p1 z̆p2 . . . z̆pq

,

where z̆k = wk × żjk

z̆k = LDFWG(zij
1, zij2, . . . , zkij)

= ξ1zij
1 ⊗ ξ2zij

2 ⊗ · · · ⊗ ξkz
k
ij

= (〈Πr
k=1(tij

k)ξk , 1−Πr
k=1(1− fij

k)ξk〉,
〈Πr

k=1(αij
k)ξk , 1−Πr

k=1(1− βij
k)ξk〉).

Step 6: Locate LDFSS-valued PIS (LDFSSV-PIS) and LDFSS-valued NIS (LDFSSV-NIS),
employing in order

s+j = {ρ̈+1 , ρ̈+2 , ..., ρ̈+q } = {〈∨itij,∧ifij〉, 〈∨iαij,∧iβij〉}

s−j = {ρ̈−1 , ρ̈−2 , ..., ρ̈−q } = {〈∧itij,∨ifij〉, 〈∧iαij,∨iβij〉}

where, ∧ represents LDFSS intersection and ∨ represents LDFSS union and.
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Table 2. Lingual phrases for importance weights of criteria.

Linguistic Variables Fuzzy Weights

Less crop production (LCP) 0.10
Ordinary crop production (OCP) 0.30

Good crop production (GCP) 0.50
More crop production (MCP) 0.70

Exceptional crop production (ECP) 0.90

4.1. Numerical Example: MCDM for Robotic Agri-Farming

This section outlines MCDM, which is used to rank alternatives from high to low
relevance. In MCDM, DMs must choose the best option from a set of appropriate attributes
in a specific scenario. Although there are several aggregation approaches, we suggest
extensions of TOPSIS, VIKOR, and aggregation operators to LDFSSs and topologies for
MCDM in this context. As an example, the application we are describing here is connected
to farming. Alternatives are compared against the chosen criteria to get the best response.
As a result, we may conclude that MCDM is a collection of options, various criteria, and
subsequent comparability. With the aid of MCDM, we must select those choices that are
ideal in every manner.

4.1.1. An Empirical Case Study

Farming is the practice of cultivating food and rearing livestock. Farming includes
raising animals and cultivating crops, both of which provide humans with food and raw
resources. Farming originated nearly millions of years ago, but we do not know when
or where it started. Farming is a way of life, not simply a profession. This also lends
credence to modern civilisation, and without it, our survival on Earth would be impossible.
Agriculture was once described as “the most beneficial, most valuable, and most honorable
occupation of men” by former American President George Washington. Actually, we are
all farmers since we all like gardening, whether at home or at fields. We cultivate plants
in little mud pots at home, but we are free to grow crops, plants, or trees in the field.
This passion of horticulture must be a lifelong habit, whether you are young or elderly.
We now are dismantling our homelands and reducing cultivable areas in the name of
industrialization, reinforcement, and habitation communities. Food costs will skyrocket
as a result of the land destruction process, and we will have to pay considerably more for
our daily food requirements. Agriculture is the science and practice of raising plants and
livestock. Overall, there are about ten types of farming practiced across the world such
as arable farming, commercial farming, extensive farming, fish farming, intense farming,
mixed farming, nomadic farming, pastoral farming, poultry farming, sedentary farming,
and subsistence farming.

People require more food to survive as the world’s population grows rapidly. Because
of the strong demand for food, farmers are under pressure to increase crop production. To
address this dilemma, farmers must focus on increasing crop output through the use of
agricultural robots. The employment of robots in agriculture is an example of creativity
that goes beyond innovation. Agriculture is run like an industry, and it is on its way to
becoming a high-tech enterprise in the future. Farmers’ agricultural capacities are rising
at a rapid pace as technology advances. Robotics and automation technologies are now
increasing manufacturing yields. Agriculture robotic uses include harvesting, weeding,
trimming, sowing, spraying, sorting, and packing etc. Agriculture robots are also referred
to as “agri-bots” or “agri-robots.” Agribots will play an important part in agriculture in
the future. We are just examining one application here, the usage of robots in horticulture.
Horticulture is the cultivation of comfort plants, material plants, food plants, and beautiful
plants. A next generation robot called “Terra Sentia” (the smallest robot with a width of
12.5 inches and a height of 12.5 inches and a weight of 30 pounds) appears like a lawn
mower and navigates a field by producing laser pulses to scan it. It is used to find the plant
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health and size, plant counting, portrait of the field, stem diameter, and fruit producing
plants. This robot has been demonstrated to be useful in a variety of areas, including
almond farms, apple orchards, citrus crops, wheat, maize, soybean, tomatoes, cotton,
strawberries, sorghum, and vineyards.

We are investigating the effectiveness of farming robots. The characteristics of robotic
agri-farming are listed below.

(i) Accuracy and perfection in placement: Plant placement is critical in the field. The
precision will result in excellence. Automation of nursing operations completes
grafting, propagation, and spacing.

(ii) Automating manual chores: Farmers enhance their productivity by spending little
time on duties and more time on amelioration by adopting automation.

(iii) Completion of a difficult work: Scientists, technicians, researchers, and farmers are all
in agreement that the utilization of automation will accomplish the difficult duty in a
easy and simple manner.

(iv) High quality production: Quality goods are influenced by certain farming aspects such
as (soil, time of ripeness, climate, fertilizer etc). Cereal yield is affected by maturity
level and degree of dryness (barley, oats, wheat, rice etc.)

(v) Lowering production costs: There is an innovative method for reducing production
costs in agriculture by employing robots. We must handle some uncontrolled aspects
that reduce profit margins, such as weather stipulations, acquiring various brands of
seeds, and employing an adequate amount of pesticides.

(vi) Minimizing necessity physical labour: Because labour costs are substantially higher in
agriculture, i.e., (paying to manual labor and skilled workers).

(vii) Persistent function to complete a task: To perform an agreeable role, the farm must be
operated using artificial intelligence (automate the entire agricultural process from
sowing to harvesting).

4.1.2. Problem Description

Exemplification: A farmer running a large agriculture farm; it may be an expensive
endeavor, but he wants to gain a lot of money from it. He comes from a farming family
and inherited the skills and enthusiasm for comprehensive sustainable agri-farming. He
aspires to live a happy life and provide outstanding education for his children. He wants
to update his vision using robots in order to fulfill his thoughts, ambitions, and worries by
decreasing available resources and making this career a high-tech vocation. To turn it into
a profitable business, the farmer delegated this responsibility to his sons in order to reach a
consensus conclusion based upon that technically controlled method.

We apply Algorithm 1 (LDF-TOPSIS) in this example as follows:

Step 1: Let E = {ei : i = 1, 2, 3, 4} be the family of experts, A = {aj : j = 1, 2, 3, . . . , 5}
the set of alternatives for robotic agri-farming under study and we determine
the possible set of qualities or criterion for robotic agri-farming C = {ck : k =
1, 2, . . . , 7}, where, c1 = Accuracy and perfection in placement, c2 = Automating
manual chores, c3 = Completion of a difficult work, c4 = High quality production,
c5 = Lowering production costs, c6 = Minimizing necessary physical labour, and
c7 = Persistent function to complete a task.

Step 2: The board of family specialists generates linear Diophantine fuzzy soft information
as a weighted parameter matrix, shown in Table 2, by reviewing the track record of
the list of agri-farming robots and their performance.

P = [wij]4×7 =


ECP GCP MCP LCP LCP OCP GCP
MCP GCP ECP OCP GCP ECP LCP
GCP MCP OCP ECP LCP MCP ECP
ECP MCP ECP MCP OCP GCP LCP
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=


0.9 0.5 0.7 0.1 0.1 0.3 0.5
0.7 0.5 0.9 0.3 0.5 0.9 0.1
0.5 0.7 0.3 0.9 0.1 0.7 0.9
0.9 0.7 0.9 0.7 0.3 0.5 0.1

.

where wij is the weight provided by the experts ei (row-wise) to each quality or
criterion cj (column-wise).

Step 3: The normalized weighted matrix is

N̂ = [n̂ij]4×7 =


0.5859 0.4110 0.4719 0.0845 0.1667 0.2343 0.4811
0.4557 0.4110 0.6068 0.2535 0.8333 0.7028 0.0962
0.3255 0.5754 0.2023 0.7606 0.1667 0.5466 0.8660
0.5859 0.5754 0.6068 0.5916 0.5000 0.3904 0.0962


Hence the weight vectors are ω = (0.16 0.21 0.17 0.11 0.12 0.10 0.13)

Step 4: Taking into account the historical track record of the agri-bots, the LDFSS decision
matrix D of each specialist is provided, with choices indicated row-wise and
parameters expressed column-wise. D =

L1+L2+L3+L4

4 = [żkj]5×7
The aggregated decision matrix is now stated as


(〈0.91, 0.18〉, 〈0.62, 0.12〉) (〈0.90, 0.17〉, 〈0.36, 0.64〉) (〈0.49, 0.56〉, 〈0.55, 0.26〉) (〈0.73, 0.28〉, 〈0.62, 0.19〉) (〈0.94, 0.28〉, 〈0.76, 0.23〉) (〈0.55, 0.44〉, 〈0.27, 0.32〉) (〈0.65, 0.62〉, 〈0.29, 0.34〉)
(〈0.57, 0.52〉, 〈0.22, 0.31〉) (〈0.95, 0.31〉, 〈0.88, 0.11〉) (〈0.52, 0.38〉, 〈0.40, 0.36〉) (〈0.61, 0.37〉, 〈0.52, 0.22〉) (〈0.56, 0.76〉, 〈0.67, 0.28〉) (〈0.67, 0.55〉, 〈0.25, 0.36〉) (〈0.92, 0.12〉, 〈0.74, 0.26〉)
(〈0.69, 0.41〉, 〈0.28, 0.41〉) (〈0.56, 0.66〉, 〈0.10, 0.70〉) (〈0.63, 0.27〉, 〈0.49, 0.16〉) (〈0.35, 0.70〉, 〈0.30, 0.50〉) (〈0.87, 0.41〉, 〈0.81, 0.17〉) (〈0.89, 0.15〉, 〈0.56, 0.36〉) (〈0.74, 0.27〉, 〈0.55, 0.31〉)
(〈0.71, 0.46〉, 〈0.26, 0.38〉) (〈0.58, 0.49〉, 〈0.47, 0.32〉) (〈0.56, 0.76〉, 〈0.58, 0.39〉) (〈0.50, 0.45〉, 〈0.45, 0.35〉) (〈0.97, 0.32〉, 〈0.67, 0.25〉) (〈0.83, 0.29〉, 〈0.33, 0.61〉) (〈0.83, 0.29〉, 〈0.23, 0.67〉)
(〈0.87, 0.37〉, 〈0.24, 0.45〉) (〈0.63, 0.49〉, 〈0.27, 0.46〉) (〈0.66, 0.69〉, 〈0.36, 0.35〉) (〈0.50, 0.55〉, 〈0.50, 0.40〉) (〈0.83, 0.29〉, 〈0.23, 0.67〉) (〈0.87, 0.41〉, 〈0.91, 0.02〉) (〈0.36, 0.16〉, 〈0.37, 0.22〉)


Step 5: The weighted LDFSS decision matrix is B = [z̆kj]r×q = wj × żkj


(〈0.320, 0.967〉, 〈0.143, 0.712〉) (〈0.383, 0.689〉, 〈0.089, 0.911〉) (〈0.108, 0.906〉, 〈0.127, 0.795〉) (〈0.134, 0.869〉, 〈0.101, 0.833〉) (〈0.287, 0.858〉, 〈0.157, 0.838〉) (〈0.077, 0.921〉, 〈0.031, 0.038〉) (〈0.128, 0.940〉, 〈0.044, 0.869〉)
(〈0.126, 0.901〉, 〈0.039, 0.829〉) (〈0.467, 0.782〉, 〈0.359, 0.629〉) (〈0.117, 0.848〉, 〈0.083, 0.841〉) (〈0.098, 0.896〉, 〈0.078, 0.847〉) (〈0.094, 0.968〉, 〈0.125, 0.858〉) (〈0.105, 0.942〉, 〈0.028, 0.044〉) (〈0.280, 0.759〉, 〈0.161, 0.839〉)
(〈0.171, 0.867〉, 〈0.051, 0.867〉) (〈0.158, 0.916〉, 〈0.022, 0.928〉) (〈0.156, 0.800〉, 〈0.108, 0.732〉) (〈0.046, 0.962〉, 〈0.038, 0.927〉) (〈0.217, 0.899〉, 〈0.181, 0.808〉) (〈0.198, 0.827〉, 〈0.079, 0.044〉) (〈0.161, 0.843〉, 〈0.099, 0.859〉)
(〈0.180, 0.883〉, 〈0.047, 0.857〉) (〈0.167, 0.861〉, 〈0.125, 0.787〉) (〈0.130, 0.954〉, 〈0.137, 0.852〉) (〈0.073, 0.916〉, 〈0.064, 0.891〉) (〈0.343, 0.872〉, 〈0.125, 0.847〉) (〈0.162, 0.884〉, 〈0.039, 0.090〉) (〈0.206, 0.851〉, 〈0.033, 0.949〉)
(〈0.279, 0.853〉, 〈0.043, 0.880〉) (〈0.188, 0.861〉, 〈0.064, 0.850〉) (〈0.168, 0.939〉, 〈0.073, 0.837〉) (〈0.073, 0.936〉, 〈0.073, 0.904〉) (〈0.192, 0.862〉, 〈0.031, 0.953〉) (〈0.185, 0.915〉, 〈0.214, 0.002〉) (〈0.056, 0.788〉, 〈0.058, 0.821〉)


Step 6: Find a positive ideal solution (LDFSSV-PIS) with an LDFSS value, as well as the

LDFSS-valued negative ideal solution (LDFSSV-NIS) using in order and are listed,
respectively, as

LDFSSV-PIS= s+j = {ρ̈+1 , ρ̈+2 , ..., ρ̈+q } =
{(〈0.320, 0.853〉, 〈0.143, 0.712〉), (〈0.467, 0.689〉, 〈0.359, 0.629〉), (〈0.168, 0.800〉, 〈0.137, 0.732〉),
(〈0.134, 0.869〉, 〈0.101, 0.833〉), (〈0.343, 0.858〉, 〈0.181, 0.808〉), (〈0.198, 0.827〉, 〈0.214, 0.002〉),
(〈0.280, 0.759〉, 〈0.161, 0.821〉)}
LDFSSV-NIS= s−j = {ρ̈−1 , ρ̈−2 , ..., ρ̈−q } =
{(〈0.126, 0.967〉, 〈0.039, 0.880〉), (〈0.158, 0.916〉, 〈0.022, 0.928〉), (〈0.108, 0.954〉, 〈0.073, 0.852〉),
(〈0.046, 0.962〉, 〈0.038, 0.927〉), (〈0.094, 0.968〉, 〈0.031, 0.953〉), (〈0.077, 0.942〉, 〈0.028, 0.090〉),
(〈0.056, 0.940〉, 〈0.033, 0.949〉)}

Step 7: We determine the Table 3 LDFSS relative PIS and NIS for the calculated aggregated
weighted.

Table 3. Distance Measure of Each Alternative.

Alternatives aj dN+
E dN−

E

a1 0.0116 0.0112
a2 0.0083 0.0172
a3 0.0178 0.0065
a4 0.0141 0.0066
a5 0.0167 0.0061

Step 8: Table 4 shows the proximity coefficients calculated via LDFSS-Euclidean distances
of each alternative from LDFSSV-PIS and LDFSSV-NIS:
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Table 4. LDF Closseness Coefficient of Each Alternative.

Alternatives aj C+
j Rank

a1 0.49083 2
a2 0.67360 1
a3 0.26764 4
a4 0.32023 3
a5 0.26758 5

Step 9: The priority order of the robots as seen in Table 4 is a2 > a1 > a4 > a3 > a5: thus,
a2 is the best robot for the concerned problem of agriculture.

5. MCDM Using LDFSS VIKOR Method

VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) is a Serbian direct
reference to various efficiency and compromise parameters. Serafim Opricovic developed
it to alleviate decision-making problems with contrasting and non-commensurable (differ-
ent units) demands, assuming that compromise is suitable for conflict management, the
decision-maker appears to have a workable alternative that is the closest to the ideal, and
the alternatives are analysed using all indicators. VIKOR rates the options and determines
the workable compromise that is closest to the ideal.

We will start by demonstrating the proposed approach step by step:
We begin by breaking down the proposed approach piece by piece. We omit the very

first six stages since they are the same as in Algorithm 1 for the LDFSS TOPSIS technique.
The remaining stages are as follows:

Figure 2 depicts a flow chart of the planned LDFSS-VIKOR (Algorithm 2).

Figure 2. Procedural steps of Algorithm 2.
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Algorithm 2: LDFSS-VIKOR.

Step 1 to 6: See Algorithm 1
Step 7: Generate the VIKOR method’s core characteristics for each alternative, namely the

group utility value Sj, individual regret value Rj, and compromise value Qj,
using

Sj =
r

∑
k=1

Wk

(
d(ρ̈+k , ρ̈jk)

d(ρ̈+k , ρ̈−k )

)

Rj =
r

max
k=1

Wk

(
d(ρ̈+k , ρ̈jk)

d(ρ̈+k , ρ̈−k )

)

Qj = κ

(
Sj −S−

S+ −S−

)
+ (1− κ)

(
Rj −R−

R+ −R−

)
where S+ = maxjSj, S− = minjSj, R+ = maxjRj, R− = minjRj. The real value
κ is referred to as the decision mechanism coefficient. The purpose of the coefficient
κ is that if the compromise option is to be chosen by majority vote, we use κ > 0.5;
for concurrence, we use κ = 0.5; and κ < 0.5 symbolises veto. The weight of the k

criteria is represented by Wk, which reflects its relative relevance.
Step 8: Sort the options and come up with a reasonable solution. Organize Si, Ri, and Qi

in ascending order to create three rating lists, S[.], R[.], and Q[.]. The alternative ρ̈η

will be designated the compromise solution if it ranks first in Q[.] (with the least
value) and concurrently meets the accompanying main specifications:

C1 Acceptable advantage:
If ρ̈η and ρ̈ζ represent top two alternatives in Qj, then

Q(ρ̈η)−Q(ρ̈ζ) ≥
1

n− 1

where n is the number of parameters.
C2 Acceptable stability:

The alternative ρ̈η should be best ranked by Sj and/or Rj.

If the aforementioned two requirements are not satisfied simultaneously, there are
several compromise solutions:

(i) If only criterion [C1] is met, then both possibilities ρ̈η and ρ̈ζ are the compromise
solutions.

(ii) If condition [C1] is not met, the options ρ̈η , ρ̈ζ , . . . , ρ̈γ would be the acceptable
compromise solutions, where ρ̈γ may be calculated via

Q(ρ̈ζ)−Q(ρ̈γ) ≥
1

n− 1

for the maximum.

Example

We re-solve Example Section 4.1.2 using the VIKOR approach and the strategy de-
scribed in Algorithm 2. The first six stages are identical to those in Example Section 4.1.2.
So we will start with step 7.

Step 1 to 6: Refer Algorithm 1
Step 7: By taking κ = 0.5, we determine the important components of the VIKOR approach

for each choice, namely the group utility value Si, the individual regret value
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Ri, and the conciliation value Qi, using the following formulas the values are
calculated and displayed in Table 5 and Figure 3:

Sj =
r

∑
k=1

Wk

(
d(ρ̈+k , ρ̈jk)

d(ρ̈+k , ρ̈−k )

)

Rj =
r

max
k=1

Wk

(
d(ρ̈+k , ρ̈jk)

d(ρ̈+k , ρ̈−k )

)

Qj = κ

(
Sj −S−

S+ −S−

)
+ (1− κ)

(
Rj −R−

R+ −R−

)

Table 5. The values of Sj, Rj and Qj of Each Alternative.

Alternatives aj Sj Rj Qj

a1 0.6708 0.1416 0.1898
a2 0.6456 0.1356 0.0000
a3 0.8424 0.2100 0.8888
a4 0.8471 0.1586 0.5529
a5 0.8986 0.1749 0.7644

Step 8: The following are the options in order of preference:
By Si : a2 ≺ a1 ≺ a3 ≺ a4 ≺ a5
By Ri : a2 ≺ a1 ≺ a4 ≺ a5 ≺ a3
By Qi : a2 ≺ a1 ≺ a4 ≺ a5 ≺ a3
We have Q{(a1)− (a2)} = 0.1898− 0.0000 = 0.189 ≥ 1

6 , condition C1 is met. As a
result, we conclude that a2 is an acceptable advantage solution. Therefore, a2 is the
best robot for the concerned problem of agriculture.

Figure 3. Bar chart of rankings.

6. Multiple Criteria Decision Making Using LDFSS-AO Method

To begin, we generalize the LDFSS aggregation operators to meet our case. The very
first five phases are identical to those in Algorithm 1. As a consequence, we bypass them
and proceed to step 6.

The proposed LDFSS-VIKOR is represented as a flow chart in the Figure 4.
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Figure 4. Procedural steps of Algorithm 3.

Example

We repeat Example Section 4.1.2 using the extended LDFSS aggregation operators as
described in Algorithm 3.

Algorithm 3: LDFSS-aggregation operator(LDFSS-AO).

Step 1 to 5: Refer Algorithm 1
Step 6: Compute the cardinal matrix

MC(B) =

[
1
p

p

∑
i=1

apq : j = 1, 2, . . . , q

]
p×q

Step 7: Calculate the aggregated LDFSS matrix M∗ using M∗ =
B×MT

C(B)

|E| .

Step 8: The score function values are calculated with the formula
S(Ld) =

1
2 [(td − fd) + (αd − βd)]. The best option is the one with the largest S(Ld)

value.

Step 6: The cardinal matrix

MC(B) =

[
1
5

5

∑
i=1

aij : j = 1, 2, . . . , 7

]
5×7

MC(J) = [(〈0.215, 0.894〉, 〈0.065, 0.829〉), (〈0.273, 0.822〉, 〈0.132, 0.821〉),
(〈0.136, 0.890〉, 〈0.106, 0.811〉), (〈0.085, 0.916〉, 〈0.071, 0.880〉),
(〈0.227, 0.892〉, 〈0.124, 0.861〉), (〈0.145, 0.898〉, 〈0.078, 0.043〉),
(〈0.166, 0.836〉, 〈0.079, 0.868〉)]



Mathematics 2022, 10, 3080 19 of 22

Step 7: Gauge the aggregated LDFSS matrix M∗ with the formula M∗ =
B×MT

C(B)

|E| .

=


(〈0.0424, 0.9838〉, 〈0.0096, 0.8451〉)
(〈0.0374, 0.9823〉, 〈0.0135, 0.8429〉)
(〈0.0299, 0.9845〉, 〈0.0081, 0.8493〉)
(〈0.0348, 0.9858〉, 〈0.0085, 0.8568〉)
(〈0.0314, 0.9842〉, 〈0.0070, 0.8465〉)


Step 8: The score function for the alternatives found in step 7 is calculated using the

formula S(Ld) =
1
2 [(td − fd) + (αd − βd)].

S(a1) = −0.8401, S(a2) = −0.8369, S(a3) = −0.8448, S(a4) = −0.8523, S(a5) =
−0.8420 . Thus, the archetypal of the robots is a2 � a1 � a5 � a3 � a4. The
optimal choice is the one with the greatest score function value. i.e., S(a2).

7. Comparison and Advantages
7.1. Three Techniques Are Compared: Commentary

Figure 5 depicts the agri-robot ranks obtained using the TOPSIS, VIKOR, and gener-
alised LDFSS aggregation operator techniques. To make the comparison possible, we used
the values 1−Q instead of Q in VIKOR. In addition, to render the columns representing
score values legible, we normalized the scores by multiplying them by 1000. TOPSIS is the
first series on the left, VIKOR is the second, and scaled score values are the third.

Figure 5. LDFSSS-TOPSIS, VIKOR, and generalized AO approaches were used to compare rankings.

We can see that the best option for all three tactics is the same, which is a2. TOPSIS
simply has one check: the optimal solution must be closest to the positive ideal solution and
the furthest away from the negative ideal solution. VIKOR has a number of checkpoints.
For example, we choose Qj, Rj, and Sj values to ensure appropriate advantage and stability.
As a result, if a poor solution passes one check, it will be rejected at the next. VIKOR offers
a variety of compromise choices.

TOPSIS uses the grade metric, which takes into account distances between PIS and
NIS. Without consideration for their virtual importance, the predicted distances are simply
added. The distance may naturally represent some equilibrium between overall and
individual happiness, but in VIKOR, it does so in a different way. In VIKOR, the weight κ
is quite well. Both methods establish a ranking grade. The top-ranked answer obtained
by VIKOR is nearly perfect. Nonetheless, TOPSIS’s top-ranked choice takes priority in the
ranking table. This does not imply that it is always close to the ultimate solution. Apart from
ranking, VIKOR offers a compromise alternative with an improvement (advantage) level.

In comparison to the other two ways, the method of generalized LDFSS aggregation
operators is easier to handle and gives greater computational ease. Based on this debate,
we may infer that the VIKOR model outperforms TOPSIS and produces more dependable
results. However, in terms of computing convenience, the approach of generalized PFS
aggregation operators is preferred. How much precision we want depends on the problem
under consideration. We select the procedure based on the amount of precision necessary.
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7.2. Analysis of Comparisons and the Superiority of Suggested Work

We see that using any of the three algorithms in this article yields the same best answer.
Furthermore, the techniques provided in this article are simple to use and produce clear
results. Table 6 shows a comparison of final ranks with several known techniques.

Table 6. The proposed approaches are compared to certain existing procedures.

Methodology The Best Option

Prioritized weighted AOs (Liu et al. [29]) a2
IF AOs (Xu [25]) a2

Generalized IF soft power AOs (Garg and Arora [30]) a2
Pythagorean fuzzy AOs (Peng and Yuan [28]) a2

Algorithms 1–3 (Proposed) a2

Furthermore, in this section, we compared and analyzed the existing soft topological
space under different environments with the defined notion. Each FST, IFST, PyFST, SFST,
LDFT and LDFST is superior to the other but also has its own in-build limitation given in
Table 7.

Table 7. Comparison of different fuzzy soft extensions.

Set Advantages Limitations

FST [4] It can handle imprecise parametrized element It cannot handle dis-satisfaction grade values of parametrized element

IFST [7] It can handle both satisfaction and dis-satisfaction grade of
parametrized element

This theory could not support for some cases when sum of satisfaction and dis-
satisfaction grade of parametrized element exceeds unity. This concepts failed
to address grades such as abstinence

PyFST [34] This notion can support when satisfaction and dis-
satisfaction grade of parametrized element exceeds 1

It has inherent limitations like sum of square of satisfaction and dis-satisfaction
grade of parametrized element exceeds 1. This concepts failed to address grades
like abstinence

SFST [35] This concept can handle each parametrized elements positive,
neural and negative membership grade

It is not developed with reference parameters. It cannot handle when the sum
of squares of parametrized elements positive, neural and negative membership
grade exceeds 1.

LDFST (Proposed) This concept is initiated to deal the parametrized elements
with reference parameter We cannot use for some case which do not have reference parameters.

8. Conclusions

We proposed the concept of linear Diophantine fuzzy soft set topological spaces and
analyzed their features. We also suggested three strategies for modeling uncertainties in the
MCDM problem from agri robot selection using LDFSSs: LDFSS-TOPSIS, LDFSS-VIKOR,
and the extended LDFSS-AO approach. The suggested algorithms have been successfully
used to rate various robots. A brief but detailed description of the various types of robots, as
well as their job efficiency, was provided. We used statistical graphics to help us understand
the final ranks. A comparison of three ranks, as well as a good argument for the more viable
technique, was also discussed. With the help of a statistical chart, we compared the final
gradings provided by the three models. The suggested model has enormous theoretical and
application potential, and it may be conveniently utilized in different hybrid architectures
of fuzzy sets with little modifications. The notion may be utilized to deal with uncertainty
successfully in a variety of real-world situations, including artificial intelligence, business,
chemical engineering, coding theory, electoral system, energy management, environment
management, forecasting, game theory, image processing, logistics, machine learning,
manufacturing, marketing, medical diagnosis, pattern recognition, recruitment, robotics,
and trade analysis problems.
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