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Abstract: A finite-horizon linear stochastic quadratic optimal control problem is investigated by
the GE-evolution operator in the sense of the mild solution in Hilbert spaces. We assume that the
coefficient operator of the differential term is a bounded linear operator and that the state and input
operators are time-varying in the dynamic equation of the problem. Optimal state feedback along
with the well-posedness of the generalized Riccati equation is obtained for the finite-horizon case. The
results are also applicable to the linear quadratic optimal control problem of ordinary time-varying
linear stochastic systems.
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1. Introduction

In recent years, there has been increasing interest in the optimal control of stochastic
systems (e.g., [1–13]). However, these studies are limited to ordinary stochastic systems
with a time-invariant state operator in Hilbert spaces and have not involved a stochastic
generalized system in Hilbert spaces. Stochastic generalized systems in Hilbert spaces are
inherent in many application fields; among them, we mention input–output economics,
evolution of the free surface of seepage liquid, the stochastic generalized wave equation, the
heat equation, etc. (e.g., [14–27]). They are essentially different from an ordinary stochastic
system in Hilbert spaces. It is necessary to investigate the optimal control problem of
such systems in Hilbert spaces. Based on this point, we deal with the linear quadratic
optimal control problem of linear stochastic generalized systems in Hilbert spaces, in
which the coefficient operator of the differential term is a bounded linear operator and
the state and input operators are time-varying. As far as we know, even if the coefficient
operator of the differential term is the identical operator, which corresponds to the ordinary
time-varying linear stochastic system, there are no research results on this kind of optimal
control problem. Therefore, the research results of this paper are also applicable to the
linear quadratic optimal control problem of ordinary time-varying linear stochastic systems
in Hilbert spaces.

First of all, we formulate the optimal control problem. Let us consider the following
linear stochastic generalized system in Hilbert spaces:

Edξ(t) = (M1(t)ξ(t) + N1(t)η(t))dt + (M2(t)ξ(t) + N2(t)η(t))dw(t)

t ∈ [s, a], ξ(s) = ξ0. (1)

Here, E ∈ L(H,H); M1(t) : domM1(t) ⊆ H → H is a linear operator, where L(U,H)
denotes the set of all bounded linear operators from Hilbert space U to Hilbert space H,
and domM1(t) denotes the domain of operator M1(t). Let P([s, a], L(H,H)) = {D(·) ∈
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L(U,H) : D(·)η is continuous for every η ∈ U, and ‖D(·)‖ = supt∈[s,a]‖D(t)‖L(U,H) <

+∞}; ‖ · ‖H (or ‖ · ‖) and 〈·, ·〉H (or 〈·, ·〉) denote the norm and inner product on Hilbert
spaces H, respectively. Let (Ω,F,P) be a complete probability space, w(t) be a one di-
mensional standard Wiener process on (Ω,F,P), and the filtration Ft be the σ−algebra
generated by {w(r) : r ≤ t}. We suppose that all processes are adapted to the filtration Ft.
We denote by L2

m([s, a], Ω,Ft,H) the set of all processes ξ(t) ∈ H such that

(i)
∫ a

s ‖ξ(t)‖
2dt < +∞.

(ii) ξ(t) is Ft-measurable for ∀t ∈ [s, a].

We denote by L2
sm([s, a], Ω,Ft,H) the space of all strongly measurable square integral

processes ξ(t) ∈ H such that
∫ a

s E‖ξ(t)‖2dt < +∞, where E denotes the mathematical
expectation. η(·) ∈ L2

sm([s, a], Ω,Ft,U). ξ(·) and η(·) denote the state and input processes,
respectively. C2([s, a], Ω,Ft,H) denotes the set of all strongly measurable and continuous
processes from [s, a] to H.

Let M1(t) be a generator of the strongly continuous GE-evolution operator (i.e., gener-
alized evolution operator). T(t, s) induced by E, i.e.,

(i) T(t, r)ET(r, s) = T(t, s), 0 ≤ s ≤ r ≤ t, and T(r, r) = T0 is a definite operator
independent of r.

(ii) T(t, ·) is strongly continuous on [0, t], and T(·, s) is strongly continuous on [s, a].
(iii) There exist b ≥ 1 and ω > 0 such that

‖T(t, r)‖ ≤ beω(t−r), t ≥ r ≥ 0,

(iv)

M1(t)ξ = lim
h→0+

ET(h + t, t)E− ET(t, t)E
h

ξ,

for every ξ ∈ D0(t), where

D0(t) = {ξ : ξ ∈ domM1(t) ⊆ H, T(t, t)Eξ = ξ, ∃ lim
h→0+

ET(h + t, t)E− ET(t, t)E
h

ξ}.

In the following, we assume that

D0(t) = {ξ ∈ domM1(t), M1(t)ξ ∈ ranE} = D0

is independent of t,D = D0, and (T(t, r)E)|D is unique. Here, D0 denotes the closure of D0,
and (T(t, r)E)|D denotes the limitation of T(t, r)E on D.

See [16,23,26] for the details of the GE-evolution operator.
We introduce the following quadratic cost functional:

F(s, ξ0, η(·)) = E(
∫ a

s
(‖L(t)ξ(t)‖2 + ‖M(t)η(t)‖2)dt + ‖Nξ(a)‖2), (2)

where L(·), M(·), and N satisfy the following Hypothesis 3.
The optimal control problem considered in this paper is as follows:

Problem 1. For any given initial pair (s, ξ0) ∈ [0, a]×D, find a ηo(·) ∈ L2
sm([s, a], Ω,Ft,U),

such that
Fo(s, ξ0) = F(s, ξ0, ηo(·)) = minη(·)∈L2

sm([s,a],Ω,Ft ,U)F(s, ξ0, η(·)).

Any ηo(·) ∈ L2
sm([s, a], Ω,Ft,U) satisfying Problem 1 is called an optimal control of

Problem 1 for the initial pair (s, ξ0), and the corresponding state ξo(·) = ξ(s, ·, ξ0, ηo(·)) is
called an optimal state process; the pair (ξo(·), ηo(·)) is called an optimal pair. The function
Fo(·, ·) is called the value function of Problem 1.

In order to study the optimal control problem, we need the following hypotheses:
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Hypothesis 1. M1(t) is a generator of the strongly continuous GE-evolution operator T(t, r)
induced by E and ‖T(t, r)‖ ≤ cT , 0 ≤ r ≤ t ≤ a, where cT is a constant.

Hypothesis 2. M2(·) ∈ P([s, a], L(D, E(D))); N1(·), N2(·) ∈ P([s, a], L(U, E(D))); ‖M2(·)‖
≤ cMN , and ‖N1(·)‖ ≤ cMN , ‖N2(·)‖ ≤ cMN , where cMN is a constant number.

Hypothesis 3. L(·) ∈ P([s, a], L(D,L)); M(·) ∈ P([s, a], L(U,U)) is a strongly positive opera-
tor on [s, a]; N ∈ L(D,N), where L,N are Hilbert spaces.

Hypothesis 4. Stochastic GE-evolution operator V(t, r) induced by E is related to the linear
homogeneous equation

Edξ(t) = M1(t)ξ(t)dt + M2(t)ξ(t)dw(t), t ∈ [s, a], ξ(s) = ξ0, (3)

i.e., ξ(t) = V(t, s)Eξ0 is the mild solution of System (3) and satisfies

supr∈[s,a]‖V(t, r)ξ0‖2
D ≤ cV‖ξ0‖2.

See [19,23] for the details of the stochastic GE-evolution operator.

Remark 1. Hypotheses 1 and 2 can guarantee the existence and uniqueness of the mild solution of
System (1); Hypotheses 1–4 can guarantee that the optimal control solution satisfying Problem 1
is unique.

The organization of this paper is as follows: In Section 2, we discuss the mild solution
to the linear stochastic generalized System (1). In Section 3, we consider the existence of
the solution to the generalized integral Riccati equation and deal with the properties of the
Riccati operator. In Section 4, we investigate the generalized differential Riccati equation
from the generalized integral Riccati equation. In Section 5, we deal with the relation
between the solution to the generalized Riccati equation and the optimal control, extend
the result globally in time, and study the uniqueness of the solution to the generalized
Reccati equation. In Section 6, the main results are proved. In Section 7, the linear quadratic
optimal control problem for a class of linear stochastic generalized systems is discussed.
In Section 8, we give three examples to illustrate the theory. The conclusions are given in
Section 9.

It should be noted that paper [16], published by the author, mainly studies the control-
lability problem, while this paper mainly studies the optimal control problem. The contents
of the two studies are completely different.

2. Mild Solution of System (1)

Definition 1. A function ξ : [s, a] → D is called to be a mild solution of the linear stochastic
generalized System (1) if ξ(·) ∈ C2([s, a], Ω,Ft,D) and satisfies

ξ(t) = T(t, s)Eξ0 +
∫ a

s
T(t, r)N1(r)η(r)dr

+
∫ a

s
T(t, r)M2(r)ξ(r)dw(r)

+
∫ a

s
T(t, r)N2(r)η(r)dw(r).

Theorem 1. Suppose that Hypotheses 1–2 are true. For a given process η(·) ∈ L2
sm([s, a], Ω,Ft,U)

and an initial value ξ(s) = ξ0 ∈ D, there is a unique mild solution ξ(t) ∈ C2([s, a], Ω,Ft,D) to
the linear stochastic generalized System (1).
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Proof. Let S be the following operator:

S(ξ)(t) = T(t, s)Eξ0 +
∫ t

s
T(t, r)N1(r)η(r)ds

+
∫ t

s
T(t, r)M2(r)ξ(r))dw(r) +

∫ t

s
T(t, r)N2(r)η(r))dw(r)]

= T(t, s)Eξ0 + S0(ξ)(t) + S1(ξ)(t) + S2(ξ)(t),

t ∈ [s, a], η ∈ L2
sm([s, a], Ω,Ft,U).

We show that S maps C2([s, a], Ω,Ft,D) into C2([s, a], Ω,Ft,D).
Since ‖S0(ξ)‖2 ≤ c2

Tc2
MN aE

∫ a
s ‖η(r)‖

2dr,

‖S1(ξ)‖2 ≤ c2
Tc2

MNE
∫ a

s
‖ξ(r)‖2dr ≤ c2

Tc2
MN a‖ξ‖2,

‖S2(ξ)‖2 ≤ c2
Tc2

MNE
∫ a

s
‖η(r)‖2dr;

thus S0, S1, and S2 map C2([s, a], Ω,Ft,D) into C2([s, a], Ω,Ft,D).
In the following, let ξ1, ξ2 be arbitrary processes from C2([0, a], Ω,Ft,D), then

‖S(ξ2)− S(ξ1)‖ ≤ ‖S1(ξ2)− S1(ξ1)‖ = J1

and
J2
1 ≤ c2

Tc2
MNE

∫ a

s
‖(ξ2(r)− ξ1(r)‖2dr

≤ c2
Tc2

MN a‖ξ2 − ξ1‖2

for all ξ1, ξ2 ∈ C2([s, a], Ω,Ft,D). Therefore, if

c2
Tc2

MN a < 1 (4)

then the operator S has a fixed point ξ in C2([s, a], Ω,Ft,D), which, as is easy to see, is a mild
solution of the linear stochastic generalized System (1). The extra condition (4) on a can be
easily removed by considering the equation on [0, a1], [a1, 2a1], · · · with a1 satisfy (4).

Remark 2. The linear homogeneous Equation (3) is the linear homogeneous system of System (1).
Under Hypotheses 1, 2, and 4, the mild solution ξ(t) of System (3) satisfying

ξ(t) = T(t, s)Eξ0 +
∫ a

s
T(t, r)M2(r)ξ(r)dw(r)

can be expressed as
ξ(t) = V(t, s)Eξ0.

3. The Generalized Integral Riccati Equation

In this section, we consider the existence of a solution to a generalized integral Riccati
equation. The relevant generalized integral form of the generalized differential Riccati
equation is

R(t) =
∫ a

t
E∗T∗(r, t)L∗(r)L(r)U(r, t)Edr +

∫ a

t
E∗T∗(r, t)M∗2 T∗0 R(r)T0M2(r)U(r, t)Edr

+
∫ a

t
[E∗T∗(r, t)M∗2 T∗0 R(r)T0N2(r)(M2(r) + N∗2 (r)T

∗
0 R(r)T0N2(r))−1·

(N∗1 (r)T
∗
0 R(r) + N∗2 (r)T

∗
0 R(r)T0M2(r))U(r, t)E]dr
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+ E∗T∗(a, t)N∗NU(a, t)E. (5)

and
〈(M2(r) + N∗2 (r)T

∗
0 R(r)T0N2(r))η, η〉 > 0, ∀η 6= 0, η ∈ U.

Here, U(t, s) satisfies

U(t, s)Eξ0 = T(t, s)Eξ0 −
∫ t

s
[T(t, r)N1(r)(M2(r) + N∗2 (r)T

∗
0 R(r)T0N2(r))−1·

(N∗1 (r)T
∗
0 R(r) + N∗2 (r)T

∗
0 R(r)T0M2(r))U(r, s)Eξ0]dr. (6)

The main result of this section is the following theorem:

Theorem 2. The generalized integral Equations (5) and (6) have unique solutions R(t) ∈ P([s, a],
L(D,D)), and U(·, s) ∈ P([s, a], L(E(D),D)) for s = amax < a chosen such that a − amax is
sufficiently small. Moreover, R(t) is a positive self-adjoint operator on D.

First, we introduce the following marks: C([s, a],B) denotes the Banach space of all con-
tinuous functions g(·) on [s, a] into a Banach space B with the norm ‖g‖ = supt∈[s,a]‖g(t‖B.
Suppose ∆s = {(t, r) ∈ R2 : s ≤ r ≤ t ≤ a}.C(∆s, L(D,D)) denotes the Banach space with
the norm

‖g‖C(∆s ,L(D,D)) = sup(t,r)∈∆s
‖g(t, r)‖L(D,D).

Let Cs =
∫ t

s T(t, r)N1(r)dr, C∗s =
∫ t

s N∗1 (r)T
∗(t, r)dr. Then, Cs is continuous from

C([s, a],U) to C([s, a],D); C∗s is continuous from C([s, a],D) to C([s, a],U).

3.1. Linear Generalized Integral Equation

Now we investigate the linear generalized integral equation

R1(t) =
∫ a

t
E∗T∗(r, t)L∗(r)L(r)U1(r, t)Edr +

∫ a

t
E∗T∗(r, t)S∗(r)S(r)U1(r, t)Edr

+
∫ a

t
E∗T∗(r, t)M∗3(r)R1(r)M3(r)U1(r, t)Edr

−
∫ a

t
E∗T∗(r, t)φ∗(r)N∗1 (r)T

∗
0 R1(r)U1(r, s)Edr

+ E∗T∗(a, t)N∗NU1(a, t)E. (7)

and

U1(t, s)Eξ0 = T(t, s)Eξ0 −
∫ t

s
T(t, r)N1(r)φ(r)U1(r, t)Eξ0dr. (8)

In the following, we prove the existence of the solutions R1(t) and U1(t, s)E to the
linear generalized integral Equations (7) and (8).

Lemma 1. Let S(t), M3(t), φ(t) be given bounded operators for every t ∈ [s, a] satisfying

‖S(t)ξ‖H, ‖M3(t)ξ‖H, ‖φ(t)ξ‖H ≤ cr‖ξ‖H, ∀ξ ∈ D, t ∈ [s, a] (9)

for some suitable chosen cr > 0. Then, there exist R1(t) ∈ P([a0, a], L(D,D)) and U1(·, ·)E ∈
C(∆a0 , L(D,D)) to the set of linear generalized integral Equations (7) and (8).

In order to prove the existence of solutions R1(t) and U1(t, s)E, we can use the fixed
point theory on the map O defined by

O
[

l
m

]
(t) =

[
O11(m)(t) + O12(m)(t) + O13(l, m) + O14(l, m) + O15(m)

O2(m)

]
(t)
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for t ∈ [s, a] on the space

Y = P([s, a], L(D,D))× C(∆s, L(D,D)),

where
O11(m)(t) =

∫ a

t
E∗T∗(r, t)L∗(r)L(r)m(r, t)dr

O12(m)(t) =
∫ a

t
E∗T∗(r, t)S∗(r)S(r)m(r, t)dr

O13(l, m)(t) =
∫ a

t
E∗T∗(r, t)l(r)M∗3(r)m(r, t)dr

O14(l, m)(t) = −
∫ a

t
E∗T∗(r, t)φ∗(r)N∗1 (r)T

∗
0 l(r)m(r, t)dr

O15(m)(t) = −E∗T∗(a, t)N∗N
∫ a

t
T(a, r)N1(r)φ(r)m(r, t)dr + E∗T∗(a, t)N∗NT(a, t)E

and
O2(m)(t) = T(t, s)E− CsT0N1(t)φ(·)m(·, ·)(t).

Both of these two quantities are defined on Y. The fixed point l, m represents the
operators R1(t) and U1(t, s)E, respectively.

Lemma 2. The operator O maps the ball Scr (0) ⊂ Y into itself continuously, and is a contraction
on Scr (0) for suitably chosen cr > 0 and s = a0 such that a− a0 is sufficiently small.

Proof. Let
[

l
m

]
be an element in the ball Scr (0). According to each component, we

estimate the norm of O
[

l
m

]
in Y. Based on these estimates, we can obtain that there

exists b > 1 such that when cr = 2b and

a− s <
1

2b + 8b2 + 24b3 ,

O acts from Scr (0) into Scr (0) in Y. The property of contraction of map O can be estimated

by the norm of the difference of O
[

l1
m1

]
and O

[
l2

m2

]
. Taking s = a0 such that a− a0

is sufficiently small, we can obtain that O is a contraction on Scr (Y). Hence, map O has a

unique fixed point
[

l
m

]
∈ Y.

According to Lemma 2, the fixed point
[

l
m

]
represents solution

[
R1(t)

U1(t, s)E

]
∈ Y

to (7) and (8). Therefore, Lemma 1 is proved.

3.2. Property of Operator R1(t)

In this subsection, we consider the positivity and self-adjointness of operator R1(t),
which is the solution to (7), and the evolution property of U1(t, s) on C(∆s, L(E(D),D)).

Theorem 3. (i) U1(t, s), defined by (8), is a GE-evolution operator on C(∆s, L(E(D),D)).
(ii) R1(t), defined by (7), is self-adjoint and is positive on D.

Proof. (i) This can be derived by a standard method using the property of the GE-
evolution operator.
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(ii) From (8), we have

T(r, t)Eξ = U1(r, t)Eξ +
∫ r

t
T(r, v)N1(v)φ(v)U1(v, t)Eξdv.

Substituting the above expression into (7) and taking the inner product of (7) with
x ∈ D, we can obtain

〈R1(t)ξ, x〉 =
∫ a

t
〈L(r)U1(r, t)Eξ, L(r)U1(r, t)Ex〉dr

+
∫ a

t
〈S∗(r)S(r)U1(r, t)Eξ,

∫ r

t
T(r, v)N1(v)φ(v)U1(v, t)Exdv〉dr

+
∫ a

t
〈S(r)U1(r, t)Eξ, S(r)U1(r, t)Ex〉dr

+
∫ a

t
〈S∗(r)S(r)U1(r, t)Eξ,

∫ a

t
T(r, v)N1(v)φ(v)U1(v, t)Exdv〉dr

+
∫ a

t
〈M∗3(r)R1(r)M3(r)U1(r, t)Eξ, U1(r, t)Eξ〉dr

+
∫ a

t
〈M∗3(r)R1(r)M3(r)U1(r, t)Eξ,

∫ r

t
T(r, v)N1(v)φ(v)U1(v, t)Exdv〉dr

−
∫ a

t
〈φ∗(r)N∗1 (r)T

∗
0 R1(r)U1(r, t)Eξ, U1(r, t)Eξ〉dr

−
∫ a

t
〈φ∗(r)N∗1 (r)T

∗
0 R1(r)U1(r, t)Eξ,

∫ r

t
T(r, v)N1(v)φ(v)U1(v, t)Exdv〉dr

+〈NU1(a, t)Eξ, NU1(a, t)Ex〉

+〈N∗NU1(a, t)Ex,
∫ a

t
T(a, v)N1(v)φ(v)U1(v, t)Exdv〉.

=
∫ a

t
〈L(r)U1(r, t)Eξ, L(r)U1(r, t)Ex〉dr

+
∫ a

t
〈S(r)U1(r, t)Eξ, S(r)U1(r, t)Ex〉dr

+
∫ a

t
〈M∗3(r)R1(r)M3(r)U1(r, t)Eξ, U1(r, t)Ex〉dr

+ 〈NU1(a, t)Eξ, NU1(a, t)Ex〉, (10)

and
〈R∗1(t)ξ, x〉 =

∫ a

t
〈L(r)U1(r, t)Eξ, L(r)U1(r, t)Ex〉dr

+
∫ a

t
〈S(r)U1(r, t)Eξ, S(r)U1(r, t)Ex〉dr

+
∫ a

t
〈M∗3(r)R∗1(r)M3(r)U1(r, t)Eξ, U1(r, t)Ex〉dr

+〈NU1(a, t)Eξ, NU1(a, t)Ex〉.

Therefore, we can obtain

〈(R1 − R∗1)(t)ξ, x〉 =
∫ a

t
〈M∗3(r)(R1 − R∗1)(r)M3(r)U1(r, t)Eξ, U1(r, t)Ex〉dr.

This implies that there exists a constant cR1 > 0 such that

‖R1 − R∗1‖ ≤ cR1

∫ a

t
‖R1(r)− R∗1(r)‖dr.
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According to Gronwall’s inequality, we obtain R1(r) = R∗1(r) for all r ∈ [s, a].
In order to prove positivity, we define the operator O1 on P([s, a], L(D,D)) by

〈O1(R1)(t)ξ, x〉 =
∫ a

t
〈L(r)U1(r, t)Eξ, L(r)U1(r, t)Ex〉dr

+
∫ a

t
〈S(r)U1(r, t)Eξ, S(r)U1(r, t)Ex〉dr

+
∫ a

t
〈M∗3(r)R1(r)M3(r)U1(r, t)Eξ, U1(r, t)Ex〉dr

+〈NU1(a, t)Eξ, NU1(a, t)Ex〉.

It is obvious that O1 maps a positive operator to a positive operator. The set of positive
operators denoted by O+ in L(D,D) is a convex set, and the existence of a unique fixed
point for O1 on P([a0, a], O+) follows by the contraction mapping theorem, for a0 chosen
such that a− a0 is sufficiently small. The unique fixed point of map O1 is R1(t).

3.3. Proof of Theorem 2

Proof. In order to prove Theorem 2, we use an iteration scheme.

R1,k+1(t) =
∫ a

t
E∗T∗(r, t)L∗(r)L(r)U1,k(r, t)Edr

+
∫ a

t
E∗T∗(r, t)S∗k (r)Sk(r)U1,k(r, t)Edr

+
∫ a

t
E∗T∗(r, t)M∗3,k(r)R1,k+1(r)M3,k(r)U1,k(r, t)Edr

−
∫ a

t
E∗T∗(r, t)φ∗k (r)N∗1 (r)T

∗
0 R1,k+1(r)U1,k(r, t)Edr

+ E∗T∗(a, t)N∗NU1,k(a, t)E. (11)

Here,
Sk(r) = (M2(r) + N∗2 (r)T

∗
0 R1,k(r)T0N2(r))−1·

(N∗1 (r)T
∗
0 R1,k(r) + N∗2 (r)T

∗
0 R1,k(r)T0M2(r)),

M3,k = T0M2(r)− T0N2(r)(M2(r) + N∗2 (r)T
∗
0 R1,k(r)T0N2(r))−1·

(N∗1 (r)T
∗
0 R1,k(r) + N∗2 (r)T

∗
0 R1,k(r)T0M2(r)),

φk(r) = (M2(r) + N∗2 (r)T
∗
0 R1,k(r)T0N2(r))−1·

(N∗1 (r)T
∗
0 R1,k(r) + N∗2 (r)T

∗
0 R1,k(r)T0M2(r)),

R1,0(t) = E∗T∗(a, t)N∗NT(a, t)E,

and U1,k is the solution of

U1,k(t, s)Eξ = T(t, s)Eξ −
∫ t

s
T(t, v)N1(v)φ(v)U1,k(v, s)Eξdv. (12)

According to Lemma 1 and Theorem 3, each R1,k is well defined, positively self-adjoint,
and bounded with ‖R1,k‖ ≤ cr, ∀k ∈ N, and U1,k ∈ C(∆s, L(E(D),D)) satisfies

‖U1,k‖ ≤ cr,

and this implies that (M2(r) + N∗2 (r)T
∗
0 R1,k(r)T0N2(r))−1 is well defined and bounded on

D at each step. We can prove that the sequence {R1,k, U1,k} is Cauchy in Y for s = amax ≥ a0,
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chosen such that a− amax is sufficiently small and thus converges to
[

R(t)
U(t, s)

]
. From the

limit in (11) and (12), we can obtain (5) and (6).

4. The Generalized Differential Riccati Equation

In this section, we investigate the solution of the generalized differential Riccati
equation from the generalized integral Riccati Equation (5). The main result of this section
is the following theorem.

Theorem 4. The operator R(t), solving the generalized integral Riccati Equation (5), is a solution
to the generalized differential Riccati equation.

〈dR(t)
dt

ξ, x〉 = −〈L(t)ξ, L(t)x〉 − 〈R(t)T0M1(t)ξ, x〉 − 〈M∗1(t)T∗0 R(t)ξ, x〉

−〈M∗2(t)T∗0 R(t)T0M2(t)ξ, x〉

+〈(M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t))−1(N∗1 (t)T

∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))ξ,

(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))x〉 (13)

for all ξ, x ∈ D0

4.1. Some Lemmas

First, we define the operator P, which is given by

P =
∫ t

s
T(t, r)N1(r)(M2(r) + N∗2 (r)T

∗
0 R(r)T0N2(r))−1·

(N∗1 (r)T
∗
0 R(r) + N∗2 (r)T

∗
0 R(r)T0M2(r))dr.

Similar to the proof of [28,29], we can obtain the following lemma.

Lemma 3. (i) ‖P f ‖C([s,a],D) ≤ cP(a− s)‖ f ‖C([s,a],D), where cP is a constant.
(ii) The operator I + P is invertible on C([s, a],D), and the inverse satisfies

‖(I + P)−1 f ‖C([s,a],D) ≤ c1(a− s)‖ f ‖C([s,a],D),

where I denotes the identical operator, and c1 is a constant.
(iii) The GE-evolution operator U(t, s) satisfies

U(·, s)Eξ = (I + P)−1T(·, s)Eξ, ∀ξ ∈ D.

According to Lemma 3, we can obtain the following lemma.

Lemma 4. (i) U(t, s)N1(s)η ∈ C([s, a],D) for ∀η ∈ U.
(ii) The derivative of U(t, s)Eξ with respect to s in the weak sense is

∂U(·, s)
∂s

Eξ = −U(·, s)[M1(s)− N1(s)(M2(s) + N∗2 (s)T
∗
0 R(s)T0N2(s))−1·

(N∗1 (s)T
∗
0 R(s) + N∗2 (s)T

∗
0 R(s)T0M2(s))]ξ ∈ C([s, a],D), ∀ξ ∈ D0

and satisfies

‖∂U(·, s)
∂s

Eξ‖ ≤ c2‖ξ‖D0 ,

where c2 is a constant.
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4.2. Proof of Theorem 4

Proof. Assume ξ, x ∈ D0 and consider the generalized integral Riccati equation satisfied
by R(t) in (5). Taking the derivative with respect to t and using Lemma 4 (ii), we can obtain

〈dR(t)
dt

ξ, x〉 = −〈L∗(t)L(t)ξ, x〉 − 〈M∗2(t)T∗0 R(t)T0M2(t)ξ, x〉

+〈M∗2(t)T∗0 R(t)T0N2(t)(M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t))−1·

(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))ξ, x〉

−〈M∗1(t)T0R(t)ξ, x〉+ 〈
∫ a

t
E∗T∗(r, t)L∗(r)L(r)

∂U(r, t)
∂t

Eξdr, x〉

+〈
∫ a

t
E∗T∗(r, t)M∗2(r)T

∗
0 R(r)T0M2(r)

∂U(r, t)
∂t

Eξdr, x〉

−〈
∫ a

t
E∗T∗(r, t)M∗2(r)T

∗
0 R(r)T0N2(r)(M2(r) + N∗2 (r)T

∗
0 R(r)T0N2(r))−1·

(N∗1 (r)T
∗
0 R(r) + N∗2 (r)T

∗
0 R(r)T0M2(r))

∂U(r, t)
∂t

Eξdr, x〉

= −〈L∗(t)L(t)ξ, x〉 − 〈M∗2(t)T∗0 R(t)T0M2(t)ξ, x〉

+〈M∗2(t)T∗0 R(t)T0N2(t)(M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t))−1·

(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))ξ, x〉 − 〈M∗1(t)T0R(t)ξ, x〉

−〈R(t)(T0M1(t)− T0N1(t)(M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t))−1)·

(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))ξ, x〉

= −〈L∗(t)L(t)ξ, x〉 − 〈R(t)T0M1(t)ξ, x〉 − 〈M∗1(t)T∗0 R(t)ξ, x〉

−〈M∗2(t)T∗0 R(t)T0M2(t)ξ, x〉

+〈(M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t))−1(N∗1 (t)T

∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))ξ,

(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))x〉.

This is the generalized Riccati differential equation.

5. The Generalized Riccati Equation and the Optimal Control

In this section, we consider the relation between the optimization problem and the
solution of the generalized differential equation by using Ito’s formula.

Theorem 5. The quadratic cost function (2) has the following form:

F(t, ξ0, η(·)) = 〈R(t)ξ0, ξ0〉+E(
∫ a

t
‖(M2(r) + N∗2 (r)T

∗
0 R(r)T0N2(r))1/2η(r)

+(M2(r) + N∗2 (r)T
∗
0 R(r)T0N2(r))−1/2·

(N∗1 (r)T
∗
0 R(r) + N∗2 (r)T

∗
0 R(r)T0M2(r))ξ(r)‖2

Udr) (14)

for s ≤ t ≤ a and s = amax. Here, R(t) is a solution to the generalized differential Riccati
Equation (13), and ξ(·) is the mild solution of the linear stochastic generalized System (1) corre-
sponding to η(·) ∈ L2

sm([s, a], Ω,Ft),U).
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Proof. Suppose that ξ(t) is the mild solution of System (1) corresponding to η(·) ∈
L2

sm([s, a], Ω,Ft),U). First of all, we assume that ξ(t) is a strong solution of System (1).
If R(t) satisfies (13), then, by Ito’s formula, we have

d〈R(t)ξ(t), ξ(t)〉 = 〈dR(t)
dt

ξ(t), ξ(t)〉dt + 〈R(t)ξ(t), T0M1(t)ξ(t) + T0N1(t)η(t)〉dt

+〈R(t)ξ(t), T0M2(t)ξ(t) + T0N2(t)η(t)〉dw(t)

+〈R(t)(T0M1(t)ξ(t) + T0N1(t)η(t)), ξ(t)〉dt

+〈R(t)(T0M2(t)ξ(t) + T0N2(t)η(t)), ξ(t)〉dw(t)

+〈R(t)(T0M2(t)ξ(t) + T0N2(t)η(t)), T0M2(t)ξ(t) + T0N2(t)η(t)〉dt

= −〈L∗(t)L(t)ξ(t), ξ(t)〉dt + 〈(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))∗·

(M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t))−1·

(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))ξ(t), ξ(t)〉dt

+2〈R(t)T0N1(t)η(t), ξ(t)〉dt + 〈(M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t))η(t), η(t)〉dt

+2〈R(t)ξ(t), T0M2(t)ξ(t) + T0N2(t)η(t)〉dw(t)

+2〈N∗2 (t)T∗0 R(t)T0M2(t))ξ(t), η(t)〉dt− 〈M2(t)η(t), η(t)〉dt

= −‖L(t)ξ(t)‖2dt + ‖(M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t))−1/2·

(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))ξ(t)

+(M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t))1/2η(t)‖2dt− 〈M2(t)η(t), η(t)〉dt

+2〈R(t)ξ(t), T0M2(t)ξ(t) + T0N2(t)η(t)〉dw(t).

Therefore,∫ a

s
[‖M(t)η(t)‖2 + ‖L(t)ξ(t)‖2]dt + ‖Nξ(a)‖2 = 〈R(s)ξ0, ξ0〉

+
∫ a

s
‖(M2(t) + N∗2 (t)T

∗
0 R(t)T0N2(t))−1/2(N∗1 (t)T

∗
0 R(t)

+N∗2 (t)T
∗
0 R(t)T0M2(t))ξ(t) + (M2(t) + N∗2 (t)T

∗
0 R(t)T0N2(t))1/2η(t)‖2dt

+2
∫ a

s
〈R(t)ξ(t), T0M2(t)ξ(t) + T0N2(t)η(t)〉dw(t),

F(s, ξ0, η(·)) = 〈R(s)ξ0, ξ0〉

+E[
∫ a

s
‖(M2(t) + N∗2 (t)T

∗
0 R(t)T0N2(t))−1/2(N∗1 (t)T

∗
0 R(t)

+N∗2 (t)T
∗
0 R(t)T0M2(t))ξ(t) + (M2(t) + N∗2 (t)T

∗
0 R(t)T0N2(t))1/2η(t)‖2dt]

since ξ(t) ∈ D0, and D0 = D. Therefore, (14) holds for ∀η(·) ∈ L2
sm([s, a], Ω,Ft),U)

Corollary 1. The solution of the generalized Riccati equation in Theorem 4 can be extended to a
global solution on any time interval [s, a].

Proof. According to Hypotheses 3 and 4, we have

〈R(s)ξ0, ξ0〉 ≤ F(s, ξ0, η = 0) = E(
∫ a

s
‖L(t)ξ(t)‖2]dt + ‖Nξ(a)‖2) ≤ cR‖ξ0‖2

for all t ∈ [amax, a], i.e., ‖R(t)‖ ≤ cR, where cR is a constant. This implies that the proofs
of Lemma 1 and Theorem 2 hold on a new interval [a1, amax] with N = R1/2(amax). The



Mathematics 2022, 10, 3118 12 of 20

bound ensures that all the estimates are uniform and that cr and the step amax − a1 are the
same. Hence, the results can be extend to any time interval [s, a] by repeating the above
proof processes on equal time steps.

Corollary 2. The solution to the generalized differential Riccati equation is unique in the class of
self-adjoint operators in P([s, a], L(D,D)).

Proof. If there exists another solution R1(t) to the generalized differential Riccati equation
in this class, then, by the same method as that of Theorem 5, we can obtain that

minF(t, ξ0, η(·)) = 〈R(t)ξ0, ξ0〉 = 〈R1(t)ξ0, ξ0〉

for ∀ξ0 ∈ D. Therefore, for any ξ0, x ∈ D, we can obtain that

0 = 〈(R(t)− R1(t))(ξ0 + x), ξ0 + x〉 = 2〈(R(t)− R1(t))ξ0, x〉

by the self-adjoints of R and R1. This implies that R(t) = R1(t).

6. Main Results and Proofs

Theorem 6. Under the Hypotheses 1–4, there is a positive self-adjoint operator

R(t) ∈ P([s, a], L(D,D))

satisfying the generalized Riccati differential equation

〈dR(t)
dt

ξ0, x〉 = −〈L∗(t)L(t)ξ0, x〉 − 〈R(t)T0M1(t)ξ0, x〉 − 〈M∗1(t)T∗0 R(t)ξ0, x〉

−〈M∗2(t)T∗0 R(t)T0M2(t)ξ0, x〉

+〈(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))∗(M2(t) + N∗2 (t)T

∗
0 R(t)T0N2(t))−1·

(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))ξ0, x〉 (15)

M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t) > 0 (16)

R(a)ξ0 = N∗Nξ0, (17)

for ∀ξ0, x ∈ D. Furthermore, the following statements hold:

(i) minη(·)∈L2
sm([s,a],Ω,Ft ,D)F(t, ξ0, η(·)) = 〈R(t)ξ0, ξ0〉.

(ii) R(t) is unique in the class of self-adjoint operators in P([s, a], L(D,D))
(iii)

‖R(t)ξ0‖ ≤ cR‖ξ0‖, ∀t ∈ [0, a], ξ0 ∈ D. (18)

Proof. (i) According to (14) in Theorem 5, F satisfies

minη(·)∈L2
sm([s,a],Ω,Ft ,D)F(t, ξ0, η(·)) = 〈R(t)ξ0, ξ0〉

Here, R(t) is the solution to the generalized differential Riccati equation.
(ii) The existence of the solution to the generalized differential Riccati equation in P([s, a],

L(D,D)) can be obtained by Theorem 4, and the uniqueness has been proved in
Corollary 2.

(iii) According to Corollary 1, we can obtain (18).
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Theorem 7. Under Hypotheses 1–4, the optimal control Problem 1 with the linear stochas-
tic generalized System (1) and initial condition ξ0 ∈ D has a unique optimal input solution
ηo(s, ·, ξ0) ∈ L2

sm([s, a], Ω,Ft,U) and a corresponding optimal state

ξo(s, ·, ξ0) ∈ C2([s, a], Ω,Ft,D).

Furthermore, ηo has feedback characterization in terms of the ξo

ηo(s, t, ξ0) = −(M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t))−1·

(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))ξo(s, t, ξ0).

Here, R(t) is the unique solution to (15)–(17).

Proof. In order to prove that the minimum of F is realized in (14), we can construct the
existence of a unique solution

ηo(s, ·, ξ0) ∈ L2
sm([s, a], Ω,Ft,U)

to the equation
ηo(s, t, ξ0) = −(M2(t) + N∗2 (t)T

∗
0 R(t)T0N2(t))−1·

(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))ξ(s, t, ηo, ξ0),

via a fixed point argument on L2
sm([s, a], Ω,Ft,U). Therefore,

ηo(s, t, ξ0) = −(M2(t) + N∗2 (t)T
∗
0 R(t)T0N2(t))−1·

(N∗1 (t)T
∗
0 R(t) + N∗2 (t)T

∗
0 R(t)T0M2(t))ξo(s, t, ξ0)

such that F(s, ξ0, ηo) = 〈R(s)ξ0, ξ0〉.

7. Linear Quadratic Optimal Control Problem for a Class of Linear Stochastic
Generalized Systems

In this section, we investigate the following linear quadratic optimal control problem.
We consider the following linear stochastic generalized system

E1dξ(t) = (M11ξ(t) + N11η(t))dt + (M12ξ(t) + N12η(t))dw(t)

t ∈ [0, a], ξ(0) = ξ0. (19)

0 = σ(t)dt + N21η(t)dt, t ∈ [0, a], σ(0) = σ0. (20)

The following quadratic cost functional is introduced:

F(0,
[

ξ0
σ0

]
, η(·)) = E(

∫ a

0
(‖L

[
ξ(t)
σ(t)

]
‖2 + ‖Mη(t)‖2)dt + ‖Nξ(a)‖2). (21)

Here, M is a strongly positive operator, and L and N are bounded linear operators.
Let H = H1 ⊕H2,

E =

[
E1 0
0 0

]
, M1 =

[
M11 0

0 I

]
, N1 =

[
N11
N21

]

M2 =

[
M12 0

0 0

]
, N2 =

[
N12

0

]
,

D = H1, ξ(t) ∈ H1, σ(t) ∈ H2.

The optimal control problem considered in this section is as follows:
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Problem 2. For any given initial value
[

ξ0
σ0

]
∈ H1 ×H2, find a

ηo(·) ∈ L2
sm([0, a], Ω,Ft,U),

such that

Fo(0,
[

ξ0
σ0

]
) = F(0, ξ0, ηo(·)) = minη(·)∈L2

sm([0,a],Ω,Ft ,U)F(0, ξ0, η(·)).

Any ηo(·) ∈ L2
sm([0, a], Ω,Ft,U) satisfying Problem 2 is called an optimal control of

Problem 2 for the initial value
[

ξ0
σ0

]
, and the corresponding state

[
ξo(·)
σo(·)

]
=[

ξ(0, ·, ξ0, ηo(·))
σ(0, ·, ξ0, ηo(·))

]
is called an optimal state process; the pair (

[
ξo(·)
σo(·)

]
, ηo(·)) is called

an optimal pair. The function Fo(0, ·) is called the value function of Problem 2.

Definition 2. If ξ(t) is the mild solution of system (19), σ(t) = −N21η(t), then
[

ξ(t)
σ(t)

]
is

called the solution of linear stochastic generalized systems (19)–(20).

Theorem 8. Let E and M1 satisfy Hypothesis 1 and define

L∗L =

[
L11 L12
L∗12 L22

]
, L = L11 − L12N21M−1N∗21L∗12, M = M2 + N∗21L22N21 (22)

M11 = M11 + N11M−1N∗21L∗12 (23)

M12 = M12 + N12M−1N∗21L∗12. (24)

Then, by the controller substitution

η(t) = u(t) + M−1N∗21L∗12ξ(t), (25)

the optimal control for the linear stochastic generalized system (19)–(20) with the cost functional
(21) can be converted into the following linear quadratic optimal control problem:

E1dξ(t) = (M11ξ(t) + N11u(t))dt + (M12ξ(t) + N12u(t))dw(t),

t ∈ [0, a], ξ(0) = ξ0. (26)

with the cost functional

F(0,
[

ξ0
σ0

]
, η(·)) = E(

∫ a

0
(‖L1/2

ξ(t)‖2 + ‖M1/2u(t)‖2)dt + ‖Nξ(a)‖2). (27)

Proof. According to (20), we obtain σ(t) = −N21η(t). From the operators L11, L12, L
defined by (22) and σ(t) = −N21η(t), the cost functional (21) can be converted as

F(0,
[

ξ0
σ0

]
, η(·)) = E(

∫ a

0
〈
[

L∗L 0
0 M2

] ξ(t)
σ(t)
η(t)

,

 ξ(t)
σ(t)
η(t)

〉dt + ‖Nξ(a)‖2)

= E(
∫ a

0
〈

 L11 L12 0
L∗12 L22 0
0 0 M2

 ξ(t)
σ(t)
η(t)

,

 ξ(t)
σ(t)
η(t)

〉dt + ‖Nξ(a)‖2)
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= E(
∫ a

0
〈
[

L11 −L12N21
−N∗21L∗12 M

][
ξ(t)
η(t)

]
,
[

ξ(t)
η(t)

]
〉dt + ‖Nξ(a)‖2)

(where (22) and σ(t) = −N21η(t) are used)

= E(
∫ a

0
(〈L11ξ(t), ξ(t)〉 − 〈N∗21L∗12ξ(t), η(t)〉 − 〈L12N21η(t), ξ(t)〉

+〈Mη(t), η(t)〉)dt + ‖Nξ(a)‖2)

= E(
∫ a

0
(〈L11ξ(t), ξ(t)〉 − 〈L12N21M−1N∗21L∗12ξ(t), ξ(t)〉

+〈L12N21M−1N∗21L∗12ξ(t), ξ(t)〉)dt

+
∫ a

0
(−〈N∗21L∗12ξ(t), η(t)〉 − 〈L12N21η(t), ξ(t)〉

+〈Mη(t), η(t)〉)dt + ‖Nξ(a)‖2)

= E(
∫ a

0
(〈(L11 − L12N21M−1N∗21L∗12)ξ(t), ξ(t)〉

+〈M(η(t)−M−1N∗21L∗12ξ(t)),

η(t)−M−1N∗21L∗12ξ(t)〉)dt + ‖Nξ(a)‖2)

= E(
∫ a

0
(‖L1/2

ξ(t)‖2 + ‖M1/2u(t)‖2)dt + ‖Nξ(a)‖2), (28)

where
L = L11 − L12N21M−1N∗21L∗12

is used, and
u(t) = η(t)−M−1N∗21L∗12ξ(t),

i.e.,
η(t) = u(t) + M−1N∗21L∗12ξ(t).

This is the same as (27). Substituting (25) into (19), we can obtain System (26) given by
(23) and (24).

In order to finish the proof, we need to show that L is a symmetric nonnegative
operator. Since[

L 0
0 M

]
=

[
I −L12N21M
0 I

][
L11 L12N21

N∗21L∗12 M

][
I 0

−N∗21L∗12M I

]
,

we obtain that operator L is symmetrically nonnegative.

As can be seen from the above, Problem 2 is transformed into the following problem:

Problem 3. For any given initial value ξ0 ∈ H1, find a

uo(·) ∈ L2
sm([0, a], Ω,Ft,U),

such that
Fo(0, ξ0) = F(0, ξ0, uo(·)) = minu(·)∈L2

sm([0,a],Ω,Ft ,U)F(0, ξ0, u(·)),

where
F(0, ξ0, u(·)) = E(

∫ a

0
(‖L1/2

ξ(t)‖2 + ‖M1/2u(t)‖2)dt + ‖Nξ(a)‖2).

Any uo(·) ∈ L2
sm([0, a], Ω,Ft,U) satisfying Problem 3 is called an optimal control of

Problem 3 for the initial value ξ0, and the corresponding state ξo(·) = ξ(0, ·, ξ0, uo(·)) is
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called an optimal state process; the pair (ξo(·), uo(·)) is called an optimal pair. The function
Fo(0, ·) is called the value function of Problem 3.

Obviously, Problem 3 can be solved by the method of Problem 1. According to
Theorem 7, we can obtain the following results:

Corollary 3. Under Hypotheses 1–4, corresponding to Problem 3, the optimal control Problem
3 with the linear stochastic generalized System (26) and initial condition ξ0 ∈ D have a unique
optimal input solution uo(0, ·, ξ0) ∈ L2

sm([0, a], Ω,Ft,U) and a corresponding optimal state

ξo(0, ·, ξ0) ∈ C2([0, a], Ω,Ft,D).

Furthermore, uo has feedback characterization in terms of the ξo

uo(0, t, ξ0) = −(M + N∗12T∗0 R(t)T0N12)
−1·

(N∗11T∗0 R(t) + N∗12T∗0 R(t)T0M12)ξo(0, t, ξ0).

Here, R(t) is the unique solution to (15)–(17) corresponding to Problem 3.

8. Application Examples

In this section, three application examples are given to illustrate the effectiveness of
the theoretical results obtained in this paper.

Example 1. Consider the following linear quadratic optimal control problem.
The linear stochastic generalized system is the generalized heat equation:[

I 0
0 0

][
dξ(t, τ)
dσ(t, τ)

]
=

[
M11 0

0 (1 + t2)I

][
ξ(t, τ)
σ(t, τ)

]
dt +

[
(1 + t)I

0

]
η(t, x)dt

+

[
M21(t) 0

0 M22(t)

][
ξ(t, τ)
σ(t, τ)

]
dt +

[
N21(t)

0

]
η(t, x)dw(t),

ξ(0, x) = ξ0(x), σ(0, x) = σ0(x), 0 ≤ t ≤ a, 0 ≤ x ≤ π. (29)

Here, M11ξ = d2ξ
dτ2 with domain domM11 = {ξ ∈ H1, ξ, dξ

dτ are absolutely continuous,
d2ξ
dτ2 ∈ H1, ξ(0) = ξ(π) = 0}, H1 = L2(0, π). The cost function takes the following form:

F(0,
[

ξ0
σ0

]
, η(·)) = E(

∫ a

0
(‖
[

ξ(t)
σ(t)

]
‖2 + ‖η(t)‖2)dt + ‖ξ(a)‖2). (30)

Find η to minimize (30). This kind of optimal control problem can be classified as Problem 1
and solved.

Let

H = H1 ⊕ H1,U = H1, E =

[
I 0
0 0

]
,

M1: domM1 ⊆ H→ H be an operator defined by

M1(t) =
[

M11 0
0 (1 + t2)I

]
,D = H1

N1(t) =
[

(1 + t)I
0

]
, M2(t) =

[
M21(t) 0

0 M22(t)

]
, N2(t) =

[
N21(t)

0

]
.

Then, (29) can be rewritten as

Edξ(t) = (M1(t)
[

ξ(t)
σ(t)

]
+ N1(t)η(t))dt + (M2(t)

[
ξ(t)
σ(t)

]
+ N2(t)η(t))dw(t)
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t ∈ [0, a],
[

ξ(0)
σ(0)

]
=

[
ξ0
σ0

]
. (31)

It is obvious that Hypotheses 1 and 3 are true for (30) and (31). As long as M2(t) and N2(t)
satisfy Hypotheses 2 and 4, then (30) and (31) satisfy Hypotheses 1–4. Hence, Theorem 7 is true for
(30) and (31).

Example 2. In Example 1, we take the state equation and cost functional as the following,
respectively:[

I 0
0 0

][
dξ(t, τ)
dσ(t, τ)

]
=

[
M11 0

0 I

][
ξ(t, τ)
σ(t, τ)

]
dt +

[
I
I

]
η(t, x)dt

+

[
I 0
0 I

][
ξ(t, τ)
σ(t, τ)

]
dt +

[
αI
0

]
η(t, x)dw(t),

ξ(0, x) = ξ0(x), σ(0, x) = σ0(x), 0 ≤ t ≤ a, 0 ≤ x ≤ π. (32)

F(0,
[

ξ0
σ0

]
, η(·)) = E(

∫ a

0
(‖
[

ξ(t)
σ(t)

]
‖2 + ‖η(t)‖2)dt + ‖ξ(a)‖2). (33)

Here, α is an appropriate constant. Find η to minimize (33). This kind of optimal control
problem can be classified as Problem 3 and solved.

It is obvious that E and M1 satisfy the condition of Theorem 8. According to Theorem 8, (32)
and (33) can be converted to the following state equation and cost functional, respectively:

dξ(t) = (M11ξ(t) + η(t))dt + (ξ(t) + αη(t))dw(t) (34)

with the cost functional

F(0, ξ0, η(·)) = E(
∫ a

0
(‖ξ(t)‖2 + 2‖η(t)‖2)dt + ‖ξ(a)‖2). (35)

It is obvious that Corollary 3 is applicable to this kind of optimal control problem.

Next, we will explain Problem 1 through the input–output problem in economics.

Example 3. From [14], in input–output economics, many models were established to describe the
real economics. The economics Leontief dynamic input–output model can be extended as an ordinary
differential equation of the form:

E
dξ(t)

dt
= M1(t)ξ(t) + N1(t)η(t), t ∈ [s, a], ξ(s) = ξ0 (36)

in the Hilbert space H, where E ∈ L(H,H) M1(t) : domM1(t) ⊆ H → H is a linear operator,
and N1(t) ∈ P([s, a], L(H,H)), while ξ(t), η(t) ∈ H for t ≥ s ≥ 0. However, in reality, there are
many unpredicted parameters and different types of uncertainties that have not been implemented
in the mathematical modelling process of this system. Nonetheless, we can consider a stochastic
version of the generalized System (36) with the standard Wiener process w(t) used to model the
uncertainties of the form:

Edξ(t) = (M1(t)ξ(t) + N1(t)η(t))dt + (M2(t)ξ(t) + N2(t)η(t))dw(t),

t ∈ [s, a], ξ(s) = ξ0 (37)

This stochastic version of the input–output model is a linear stochastic generalized system in
the Hilbert space H of the Form (1). The following quadratic cost functional is introduced:

F(s, ξ0, η(·)) = E(
∫ a

s
(‖ξ(t)‖2 + ‖η(t)‖2)dt + ‖ξ(a)‖2), (38)
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Find η to minimize (38). This kind of optimal control problem can be classified as Problem 1
and solved.

The unforced linear stochastic generalized system, i.e., η(t) = 0 in (37) is the linear homoge-
neous system of (37):

Edξ(t) = M1(t)ξ(t) + M2(t)ξ(t)dw(t),

t ∈ [s, a], ξ(s) = ξ0. (39)

The linear stochastic generalized System (39) is the form of System (3). In what follows, we
will verify the effectiveness of Theorem 7.

If, for some concrete engineering practices, the following data are taken in (37):

E =

[
I1 0
0 0

]
, M1(t) =

[
−tI1 0

0 t2 I2

]
, N1(t) =

[
(t2 + 1)I1

0

]
,

M2(t) =
[

I1 0
0 (1 + t3)I2

]
, N2(t) =

[
(2t2 + 1)I1

0

]
,

where I1, I2 are identical operators in the Hilbert spaces H1 and H2, respectively. Systems (37) and
(39) can be written as (40) and (41), respectively:[

I1 0
0 0

][
dx1(t)
dx2(t)

]
=

[
−tI1 0

0 t2 I2

][
x1(t)
x2(t)

]
dt +

[
(t2 + 1)I1

0

]
η(t)dt

+

[
I1 0
0 (1 + t3)I2

][
x1(t)
x2(t)

]
dw(t)

+

[
(2t2 + 1)I1

0

]
η(t)dw(t), (40)

where [
x1(t)
x2(t)

]
= ξ(t) ∈ H1 ⊕ H2 = H,

t ∈ [0, a], ξ(0) =
[

x1(0)
x2(0)

]
=

[
x10
x20

]
.

[
I1 0
0 0

][
dx1(t)
dx2(t)

]
=

[
−tI1 0

0 t2 I2

][
x1(t)
x2(t)

]
dt

+

[
I1 0
0 (1 + t3)I2

][
x1(t)
x2(t)

]
dw(t), (41)

where t ∈ [0, a],
[

x1(0)
x2(0)

]
=

[
x10
x20

]
. We can obtain that D = H1; the GE-evolution operator

T(t, s) induced by E with generator M1(t) is

T(t, s) =

[
e−

1
2 (t

2−s2) 0
0 0

][
I1 0
0 I2

]
;

and the stochastic GE-evolution operator V(t, r) induced by E related to the linear homogeneous
Equation (41) is

V(t, r) =

[
e−

1
2 (t

2+t−r2−r)+w(t)−w(r) 0
0 0

][
I1 0
0 I2

]
.

It is obvious that Hypotheses 1–4 hold. Therefore, according to Theorem 7 we can obtain the
optimal control, optimal state, and minimum of (38).
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9. Conclusions

We have investigated the linear quadratic optimal control problem for linear stochastic
generalized systems by using the GE-evolution operator in the sense of the mild solution in
Hilbert spaces. Sufficient conditions have been proposed for the linear quadratic optimal
control problem of the linear stochastic generalized systems. These results are very con-
venient and effective for judging the existence and uniqueness of the optimal control and
for giving the state feedback expression of the optimal control. If System (1) is a nonlinear
stochastic generalized system, the results of this paper need to be considered again. This is
our next research goal.
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