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Abstract: The stability analysis of the numerical solutions of stochastic models has gained great
interest, but there is not much research about the stability of stochastic pantograph differential
equations. This paper deals with the almost sure exponential stability of numerical solutions for
stochastic pantograph differential equations interspersed with the Poisson jumps by using the
discrete semimartingale convergence theorem. It is shown that the Euler–Maruyama method can
reproduce the almost sure exponential stability under the linear growth condition. It is also shown
that the backward Euler method can reproduce the almost sure exponential stability of the exact
solution under the polynomial growth condition and the one-sided Lipschitz condition. Additionally,
numerical examples are performed to validate our theoretical result.

Keywords: stochastic pantograph differential equation with jumps; Poisson process; Euler–Maruyama
method; backward Euler–Maruyama method almost sure exponential stability; Lipschitz condition;
polynomial growth condition

MSC: 60H35; 60H10; 65C30

1. Introduction

Stochastic differential equations (SDEs) have been widely used in a variety of fields,
such as physics, chemistry, engineering, biology and mathematical finance, to describe
models of dynamical systems affected by uncertain factors. In order to have more realistic
simulations for random systems, it is more desirable and efficient to study SDEs with
delay. SDEs with delay are named stochastic functional differential equations [1] and they
act better than SDEs. Hobson and Rogers [2] gave a new non-constant volatility model
with past dependency in finance. Arriojas et al. [3] assumed that the stock price follows a
stochastic model with delay. Recently, stochastic models with variable delay have received
intensive attention [4–8] and have been used in many applications in finance, biology,
control and stochastic neural networks [9–12]. These types of models are called stochastic
pantograph differential equations (SPDEs), and they have received great concern and have
been used in different fields of science. The pantograph model was used by Ockendon and
Tayler [13] to know how the electric current is gathered by the pantograph of an electric
locomotive, from where it gets the name.

On the other hand, it is desirable to incorporate jumps into stochastic models for
more realistic simulations and data fitting. Thus, jump models are important and play
a vital role in describing a sudden change in the system [14,15]. It is often better to use
jump–diffusion models when the stochastic systems are interspersed with some randomly
occurring impulses to describe them [16–18]. It is also preferable to study SDEs with delay
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and jump [19,20]. In this paper, we deal with the stochastic pantograph differential model
interspersed with Poisson jumps.

Most of the stochastic pantograph differential equations with jumps have difficulties
in their analytical solutions; therefore, numerical schemes have to be used to solve them.
There is much research that focuses on the convergence of these numerical methods.
For example, Fan et al. [21] presented numerical algorithms for solving SPDEs via the
Razumikhin technique. Fan et al. [8] applied Euler methods on SPDEs and proved the
existence, uniqueness and convergence of these numerical schemes. Moreover, Li et al. [22]
applied the Euler technique on SPDEs and proved the convergence of that scheme.

The stability analysis is another important factor in the numerical analysis. There
are two common concepts, namely the mean square stability and asymptotic stability.
Guo and Li [23] formulated the global mean square stability of the Euler–Maruyama
method. Higham et al. [24–27] studied the stability of the numerical techniques for SDEs.
Mao [28–30] studied the almost sure asymptotic stability of stochastic differential equations
with and without delay based on the continuous semimartingale convergence theorem.
Rodkina and Schurz [31] studied the almost sure asymptotic stability of numerical solutions
for linear SDEs based on the discrete semimartingale convergence theorem. Recently,
Wu et al. [32] studied the almost sure exponential stability of Euler-type techniques for
the nonlinear stochastic delay differential equations based on using the semimartingale
convergence theorem. Zhou et al. [33] investigated the exponential stability for stochastic
functional differential equations using the polynomial growth condition. Zhou [33] studied
the almost sure exponential stability of numerical solutions for SPDEs. This paper extends
the previous work which was concerned with the almost sure exponential stability of
SPDEs and discusses the almost sure exponential stability of numerical solutions for
SPDEs interspersed with Poisson jumps with the help of the discrete semimartingale
convergence theorem.

The structure of this paper is arranged as follows. Section 2 gives some important
notations and discusses the global and almost sure exponential stability of the analytical
solution. The almost sure exponential stability of the Euler–Maruyama method is presented
in Section 3. Then, Section 4 discusses the almost sure exponential stability of the backward
Euler method when imposing the one-sided Lipschitz condition. Numerical examples are
given in Section 5 to validate our theoretical results. Finally, the conclusions are given in
Section 6.

2. Almost Sure Exponential Stability of the Analytical Solution

Throughout this paper, let (Ω,F , {Ft}t≥0, P) be a complete probability space with
filtration {Ft}t≥0, satisfying the usual conditions (i.e., it is increasing and right continuous
while F0 contains all P-null sets). Let W(t) be a d−dimension Brownian motion defined
on the probability space and N(t) be a scalar Poisson process independent of W(t) with
parameter λ > 0 defined on the same probability space. Let | · | denote the Euclidean
vector norm or Frobenius matrix norm and let 〈x, y〉 be the inner product of x, y in Rm and
for a ∈ R, [a] denotes the integer part of a. a

∨
b represents max(a, b) and a

∧
b represents

min(a, b).
Consider the following m−dimensional stochastic pantograph differential equation

interspersed with Poisson jumps of the form

dx(t) = f (x(t−), x(qt−))dt + g(x(t−), x(qt−))dW(t)

+ h(x(t−), x(qt−))dN(t), t > 0,
(1)

with initial data x(0−) = x0, where 0 < q < 1, x(t) is m−dimensional state process,
x(t−) := lims→t−x(s), x(qt−) := lims→qt−x(s), f : Rm ×Rm → Rm, g : Rm ×Rm → Rm×d

and h : Rm×Rm → Rm are Borel-measurable functions. Let the initial data x0 be a bounded
F0−measurable random variable and E|x0|2 < ∞ and f (0, 0) = g(0, 0) = h(0, 0) = 0 which
indicate that Equation (1) has a trivial solution. An important thing in our analysis is the
compensated Poisson process
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Ñ(t) := N(t)− λt, (2)

which is considered as a martingale.

Proof. Let s < t, then we have

E
[

Ñt|Fs

]
= E[Nt − λt|Fs]

= E
[

Ñs + (Nt − Ns)− λ(t− s)|Fs

]
= Ñs +E[(Nt − Ns)]− λ(t− s)

= Ñs + λ(t− s)− λ(t− s) = Ñs.

It is also clear that Ñt is a function of Nt and it is integrable as Nt has a Poisson
distribution. Therefore, we conclude that (2) is a martingale. By defining

fλ(x, y) = f (x, y) + λh(x, y) (3)

it can be easily seen that Equation (1) may be written in the form

dx(t) = fλ(x(t−), x(qt−))dt + g(x(t−), x(qt−))dW(t)

+ h(x(t−), x(qt−))dÑ(t).
(4)

Assumption 1. The functions f , g and h satisfy the local Lipschitz condition, that is, for each
integer j ≥ 1, there exists a positive constant Lj such that

|υ(x1, y1)− υ(x2, y2)|2 ≤ Lj(|x1 − x2|2 + |y1 − y2|2), (5)

for all t ≥ 0, υ = f , g, or h, and xk, yk ∈ Rm with |xk| ∨ |yk| ≤ j(k = 1, 2)

Assumption 2. The polynomial growth conditions. For all x ∈ Rm, there exist positive constants
α, β, γ, δ, a, ā, ã, b, b̄, b̃, c, c̄, c̃ such that

〈x(s), f (x(s), x(qs))〉
≤ −a|x(s)|α+2 + ā(|x(qs)|β+2 + |x(s)|β+2)− ã|x(s)|2,

(6)

|g(x(s), x(qs))|2 ≤ b|x(s)|γ+2 + b̄(|x(qs)|γ+2 + b̃|x(s)|2, (7)

|h(x(s), x(qs))|2 ≤ c|x(s)|δ+2 + c̄(|x(qs)|δ+2 + c̃|x(s)|2. (8)

Theorem 1. Let Assumptions 1 and 2 hold with 2ã > b̃ + λ(c̃ + 1), 2a > 2ā(1 + 1
q ) + b + b̄

q +

λ(c + c̄
q ) and α ≥ β ∨ γ ∨ δ. Then, for any initial data x0, there almost surely exists unique global

solution x(t) to Equation (1) on t ≥ 0.

Proof. Under Assumption 1, applying the standing truncation technique to Equation (1)
for any initial data x0, there exists a unique maximal local strong solution 0 < t < τe, where
τe is the explosion time. In order to show that the solution is global, it is only needed to
show that τe = ∞ a.s. Let n0 be sufficiently large such that n0 > |x0|. For each integer
n ≥ n0, define the stopping time

τn = inf{t ∈ [0, τe) : |x(t)| ≥ n}, n ∈ N (9)

where, throughout this paper, we set inf φ = ∞ (φ is the empty set). It is clear that τn, n ≥ n0
is an increasing sequence; therefore, τn → τ∞ ≤ τe(n → ∞)a.s. If it can be shown that
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τ∞ = ∞ a.s., then τe = ∞ a.s. which indicates that x(t) is global. In other words, our target
is to prove that P(τn ≤ t)→ 0(n→ ∞, t > 0).

Define V(x) = |x|2. Because of P(τn ≤ t)V(x(τn)) ≤ EV(x(t∧ τn)), our objective will
be to prove that EV(x(t ∧ τn)) < +∞ because V(x(τn)) = |x(τn)|2 = n2 → ∞. Applying
the Itô formula [34], we obtain

V(x(t ∧ τn)) = V(x(0)) + 2
∫ t∧τn

0
〈x(s), fλ(x(s), x(qs))〉ds

+
∫ t∧τn

0
|g(x(s), x(qs))|2ds + M(t),

(10)

where
M(t) =

∫ t∧τn

0
2〈x(s), g(x(s), x(qs))〉dW(s)

+
∫ t∧τn

0
2〈x(s), h(x(s), x(qs))〉dÑ(s)

+
∫ t∧τn

0
|h(x(s), x(qs))|2dÑ(s)

(11)

is a local martingale with M(0) = 0. Using Assumption 2, we may compute

2〈x(s), fλ(x(s), x(qs))〉+ |g(x(s), x(qs))|2

= 2〈x(s), f (x(s), x(qs))〉
+ 2λ〈x(s), h(x(s), x(qs))〉
+ |g(x(s), x(qs))|2,

(12)

therefore, 2〈x(s), fλ(x(s), x(qs))〉+ |g(x(s), x(qs))|2

≤ −2a|x(s)|α+2 − 2ã|x(s)|2

+ 2ā(|x(qs)|β+2 + |x(s)|β+2)

+ λ|x(s)|2 + λc|x(s)|δ+2

+ λc̄|x(s)|δ+2 + λc̃|x(s)|2

+ b|x(s)|γ+2 + λb̄|x(s)|δ+2

+ λb̃|x(s)|2,

(13)

which equals to

2〈x(s), fλ(x(s), x(qs))〉+ |g(x(s), x(qs))|2

≤ −2a|x(s)|α+2

+
2ā
q
(q|x(qs)|β+2 − |x(s)|β+2)

+
λc̄
q
(q|x(qs)|δ+2 − |x(s)|δ+2)

+
b̄
q
(q|x(qs)|γ+2 − |x(s)|γ+2)

− (2ã− b̃− λ(c̃ + 1))|x(s)|2

+ 2ā(1 +
1
q
)|x(s)|β+2

+ (b +
b̄
q
)|x(s)|γ+2

+ λ(c +
c̄
q
)|x(s)|δ+2.

(14)
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Let
I(x(s)) = (2ã− b̃− λ(c̃ + 1))|x(s)|2 − 2ā(1 +

1
q
)|x(s)|β+2

+ 2a|x(s)|α+2 − (b +
b̄
q
)|x(s)|γ+2 − λ(c +

c̄
q
)|x(s)|δ+2

(15)

Recall that 2ã > b̃ + λ(c̃ + 1), 2a > 2ā(1 + 1
q ) + b + b̄

q + λ(c + c̄
q ), α ≥ β ∨ γ ∨ δ.

By Lemma 1, in [33], there exists a positive constant ξ0 such that I(x(s)) ≥ ξ0|x(s)|2.
Substituting (14) and (15) into (10) yields

V(x(t ∧ τn)) ≤ V(x(0)) +
2ā
q

∫ t∧τn

0
(q|x(qs)|β+2 − |x(s)|β+2)ds

+
b̄
q

∫ t∧τn

0
(q|X(qs)|γ+2 − |x(s)|γ+2)ds

+
λc̄
q

∫ t∧τn

0
(q|x(qs)|δ+2 − |x(s)|δ+2)ds

− ξ0

∫ t∧τn

0
|x(s)|2ds + M(t).

(16)

Using the property of integral, we may estimate∫ t

0
(q|x(qs)|β+2 − |x(s)|β+2)ds =

∫ t

0
q|x(qs)|β+2ds−

∫ t

0
|x(s)|β+2ds. (17)

Letting z = qs and ds = (1/q)dz in the first integral of the right hand side of (17)
lead to ∫ t

0
(q|x(qs)|β+2 − |x(s)|β+2)ds =

∫ qt

0
|x(z)|β+2dz−

∫ t

0
|x(s)|β+2ds. (18)

By making change of variable for the dummy variable z in the first integral of right
hand side of (18) and making it equal to s, we obtain the following∫ t

0
(q|x(qs)|β+2 − |x(s)|β+2)ds =

∫ qt

0
|x(s)|β+2ds−

∫ t

0
|x(s)|β+2ds

= −
∫ t

qt
|x(s)|β+2ds

(19)

By the same analogy, we obtain∫ t

0
(q|x(qs)|γ+2 − |x(s)|γ+2)ds ≤ −

∫ t

qt
|x(s)|γ+2ds, (20)

and ∫ t

0
(q|x(qs)|δ+2 − |x(s)|δ+2)ds ≤ −

∫ t

qt
|x(s)|δ+2ds. (21)

By plugging (19)–(21) into (16) and taking expectation, we obtain

EV(x(t ∧ τn)) ≤ V(x(0))− 2ā
q
E
∫ t∧τn

q(t∧τn)
|x(s)|β+2ds

− b̄
q
E
∫ t∧τn

q(t∧τn)
|x(s)|γ+2ds

− λc̄
q
E
∫ t∧τn

q(t∧νk)
|x(s)|δ+2ds

− ξ0E
∫ t∧τn

0
|x(s)|2ds,

(22)
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which indicates that there exists a positive constant D such that EV(x(t ∧ τn)) ≤ D. As
mentioned before, P(τn ≤ t)V(x(τn)) ≤ EV(x(t ∧ τn)) and V(x(τn)) = |x(τn)|2 = n2,
allowing n→ ∞ leads to

lim sup
n→∞

P(τn ≤ t) = 0. (23)

This indicates that Equation (1) has a unique global solution.

Assumption 3. The polynomial growth conditions. For all x ∈ Rm, there exist positive constants
α, β, γ, δ, a, ā, ã, b, b̄, b̃, c, c̄, c̃ such that

〈x(s), f (x(s), x(qs))〉

≤ −a|x(s)|α+2 + ā(e−(1−q)εs|x(qs)|β+2 + |x(s)|β+2)− ã|x(s)|2,
(24)

|g(x(s), x(qs))|2 ≤ b|x(s)|γ+2 + b̄e−(1−q)εs|x(qs)|γ+2 + b̃|x(s)|2, (25)

|h(x(s), x(qs))|2 ≤ c|x(s)|δ+2 + c̄e−(1−q)εs|x(qs)|δ+2 + c̃|x(s)|2. (26)

Theorem 2. Let Assumptions 1–3 hold with 2ã > b̃ + λ(c̃ + 1), 2a > 2ā(1 + 1
q ) + b + b̄

q +

λ(c + c̄
q ) and α ≥ β ∨ γ ∨ δ. Then, for any initial data x0, the solution x(t) to Equation (1) is

almost sure exponentially stable, that is,

lim sup
t→∞

1
t

log |x(t)| ≤ − ε

2
, (27)

where ε ≤ 2ã− b̃− λ(c̃ + 1).

Proof. Let V(x) = |x|2 and for any ε > 0, we obtain the following by applying the Itô
formula

eεtV(x(t)) = V(x(0)) +
∫ t

0
eεs(εV(x(s)) + 2〈x(s), fλ(x(s), x(qs))〉

+ |g(x(s), x(qs))|2)ds + M̄(t),
(28)

where

M̄(t) =
∫ t

0
2eεs〈x(s), g(x(s), x(qs))〉dW(s)

+
∫ t

0
2eεs〈x(s), h(x(s), x(qs))〉dÑ(s)

+
∫ t

0
eεs|h(x(s), x(qs))|2dÑ(s)

(29)

is a local martingale with M̄(0) = 0. Using Assumption 3, we obtain

εV(x(s))+2〈x(s), fλ(x(s), x(qs))〉+ |g(x(s), x(qs))|2

≤ ε|x(s)|2 − 2a|x(s)|α+2 − 2ã|x(s)|2

+ 2ā(e−(1−q)εs|x(qs)|β+2 + |x(s)|β+2)

+ λ|x(s)|2 + λc|x(s)|δ+2 + λc̄e−(1−q)εs|x(qs)|δ+2

+ λc̃|x(s)|2 + b|x(s)|γ+2 + b̄e−(1−q)εs|x(qs)|δ+2

+ b̃|x(s)|2,

(30)

which equals to
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εV(x(s))+2〈x(s), fλ(x(s), x(qs))〉+ |g(x(s), x(qs))|2

≤ 2ā
q
(qe−(1−q)εs|x(qs)|β+2 − |x(s)|β+2)

+
2ā
q
(qe−(1−q)εs|x(qs)|β+2 − |x(s)|β+2)

+
b̄
q
(qe−(1−q)εs|x(qs)|γ+2 − |x(s)|γ+2)

+
λc̄
q
(qe−(1−q)εs|x(qs)|δ+2 − |x(s)|δ+2)− 2a|x(s)|α+2

− (2ã− b̃− λ(c̃ + 1)− ε)|x(s)|2 + 2ā(1 +
1
q
)|x(s)|β+2

+ (b +
b̄
q
)|x(s)|γ+2 + λ(c +

c̄
q
)|x(s)|δ+2.

(31)

Let
I(x(s)) = (2ã− b̃− λ(c̃ + 1)− ε)|x(s)|2 − 2ā(1 +

1
q
)|x(s)|β+2

+ 2a|x(s)|α+2 − (b +
b̄
q
)|x(s)|γ+2 − λ(c +

c̄
q
)|x(s)|δ+2

. (32)

Recall that 2ã > b̃+ λ(c̃+ 1), 2a > 2ā(1+ 1
q ) + b+ b̄

q + λ(c+ c̄
q ), ε < 2ã− b̃− λ(c̃+ 1),

α ≥ β ∨ γ ∨ δ. By Lemma 1, in [33], there exists a positive constant ξ̄0 such that I(x(s)) ≥
ξ̄0|x(s)|2. Substituting (31) and (32) into (28) yields

eεtV(x(t)) ≤ V(x(0))

+
2ā
q

∫ t

0
eεs(qe−(1−q)εs|x(qs)|β+2 − |x(s)|β+2)ds

+
b̄
q

∫ t

0
eεs(qe−(1−q)εs|x(qs)|γ+2 − |x(s)|γ+2)ds

+
λc̄
q

∫ t

0
eεs(qe−(1−q)εs|x(qs)|δ+2 − |x(s)|δ+2)ds

− ξ̄0

∫ t

0
eεs|X(s)|2ds + M̄(t).

(33)

Using the property of the integral, the following is obtained∫ t

0
eεs(qe−(1−q)εs|x(qs)|β+2−|x(s)|β+2)ds

≤
∫ qt

0
eεs|x(s)|β+2ds−

∫ t

0
|x(s)|β+2ds

= −
∫ t

qt
eεs|x(s)|β+2ds,

(34)

by the same analogy, the following are obtained∫ t

0
eεs(qe−(1−q)εs|x(qs)|γ+2 − |x(s)|γ+2)ds ≤ −

∫ t

qt
eεs|x(s)|γ+2ds, (35)

and ∫ t

0
eεs(qe−(1−q)εs|x(qs)|δ+2 − |x(s)|δ+2)ds ≤ −

∫ t

qt
eεs|x(s)|δ+2ds. (36)
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By plugging (34)–(36) into (33), we obtain

eεtV(x(t)) ≤ V(x(0))− 2ā
q

∫ t

qt
eεs|x(s)|β+2ds

− b̄
q

∫ t

qt
eεs|x(s)|γ+2ds− λc̄

q

∫ t

qt
eεs|x(s)|δ+2ds

− ξ̄0

∫ t

0
eεs|x(s)|2ds + M̄(t)

(37)

Applying the nonnegative semimartingale convergence theorem [33], we obtain

lim sup
t→∞

eεtV(X(t)) < ∞ a.s. (38)

That is, there exists a finite positive random variable C0 such that

sup
0≤t<∞

eεtV(xt) ≤ C0 a.s. (39)

Which implies

sup
0≤t<∞

1
t

log |x(t)| ≤ − ε

2
a.s. (40)

The proof is completed.

Remark 1.

1. The solution x(t) to Equation (1) is said to be almost sure exponential stable if there exists a
constant c > 0 such that

lim sup
t→∞

1
t

log |x(t)| ≤ −c a.s.

for any initial data x0.
2. The solution x(t) to Equation (1) is said to be mean square stable if for every ε > 0 there

exists a constant c > 0 such that

sup
t0≤t<∞

E‖x(t)‖2 ≤ ε

for any initial data x0 such that ‖ x0 ‖≤ c.

3. Almost Sure Stability of Euler–Maruyama Method

For a given step-size ∆t ∈ (0, 1), the Euler–Maruyama method for (4) is defined
as follows

Xn+1 = Xn + fλ(Xn, X[qn])∆t + g(Xn, X[qn])∆Wn

+ h(Xn, X[qn])∆Ñn, n = 0, 1, 2, ...
(41)

where Xn is an approximation value of x(tn), tn = n∆t, 0 < q < 1 and X0 = x0. ∆Wn =
W(tn+1) −W(tn) represents the Brownian motion increments and ∆Ñn = Ñn+1 − Ñn
represents the increments of the compensated Poisson process. The delay argument may
not hit the previous time step which appears in the numerical method while dealing with
the pantograph delay. This problem is tackled by interpolating the unknown approximate
values of the solution to the closet grid point on the left endpoint of the interval containing
the delay argument using piecewise constant polynomials.

Assumption 4. The Linear Growth Conditions. For any x ∈ Rm, there exist positive constants
a, ā, b, b̄, c, c̄, d, d̄ such that
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〈x(s), f (x(s), x(qs))〉 ≤ −a|x(s)|2 + āe−(1−q)εs|x(qs)|2, (42)

| f (x(s), x(qs))|2 ≤ c|x(s)|2 + c̄e−(1−q)εs|x(qs)|2 (43)

|g(x(s), X(qs))|2 ≤ b|x(s)|2 + b̄e−(1−q)εs|x(qs)|2 (44)

|h(x(s), x(qs))|2 ≤ d|x(s)|2 + d̄e−(1−q)εs|x(qs)|2 (45)

Theorem 3. Let Assumption 4 hold. Then, for any given ε > 0, there exists a small ∆t∗ ∈ (0, 1)
such that if ∆t < ∆t∗, then the approximate solution {Xn} defined by (41) has the property

lim sup
n→∞

1
n∆t

log |Xn| ≤ −
ε

2
a.s. (46)

Proof. Using Assumption 4 and Euler–Maruyama technique (41), we may calculate

|Xn+1|2 = |Xn|2 + 2〈Xn, fλ(Xn, X[qn])〉∆t + | fλ(Xn, X[qn])|2∆t2

+ |g(Xn, X[qn])∆Wn|2 + |h(Xn, X[qn])∆Ñn|2

+ 2〈Xn + fλ(Xn, X[qn], g(Xn, X[qn])∆Wn)〉

+ 2〈Xn + fλ(Xn, X[qn], h(Xn, X[qn])∆Ñn)〉

+ 2〈g(Xn, X[qn])∆Wn, h(Xn, X[qn])∆Ñn〉,

(47)

|Xn+1|2 ≤ |Xn|2 + 2〈Xn, f (Xn, X[qn])〉∆t + λ∆t|h(Xn, X[qn])|2

+ λ∆t|Xn|2 + 2∆t2| f (Xn, X[qn])|2 + 2(λ∆t)2|h(Xn, X[qn])|2

+ |g(Xn, X[qn])|2∆t + |g(Xn, X[qn])|2(∆W2
n − ∆t)

+ |h(Xn, X[qn])|2λ∆t + |h(Xn, X[qn])|2(Ñ2
n − λ∆t)

+ 2〈Xn + fλ(Xn, X[qn], g(Xn, X[qn])∆Wn)〉

+ 2〈Xn + fλ(Xn, X[qn], h(Xn, X[qn])∆Ñn)〉

+ 2〈g(Xn, X[qn])∆Wn, h(Xn, X[qn])∆Ñn〉,

(48)

|Xn+1|2 ≤ (1− 2a∆t + b∆t + 2c∆t2 + λ∆t(1 + 2d(1 + λ∆t))|Xn|2

+ (2ā + 2c̄∆t + b̄ + 2λd̄(1 + λ∆t))e−(1−q)εn∆t|X[qn]|2∆t

+ Sn,

(49)

where
Sn = |g(Xn, X[qn])|2(∆W2

n − ∆t) + |h(Xn, X[qn])|2(Ñ2
n − λ∆t)

+ 2〈Xn + fλ(Xn, X[qn], g(Xn, X[qn])∆Wn)〉

+ 2〈Xn + fλ(Xn, X[qn], h(Xn, X[qn])∆Ñn)〉

+ 2〈g(Xn, X[qn])∆Wn, h(Xn, X[qn])∆Ñn〉,

(50)

after obtaining (50), it is easy to have

eε(n+1)∆t|Xn+1|2 − eεn∆t|Xn|2 ≤ (A− e−ε∆t)eε(n+1)∆t|Xn|2

+ Beε(qn+1)∆t|X[qn]|2∆t

+ eε(n+1)∆tSn,

(51)

where
A = 1− 2a∆t + b∆t + 2c∆t2 + λ∆t(1 + 2d(λ∆t)), (52)
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and
B = 2ā + 2c̄∆t + b̄ + 2λd̄(1 + λ∆t). (53)

By applying the recursive method, it is easy to obtain

eεn∆t|Xn|2 ≤ |X0|2 + (A− e−ε∆t)
n−1

∑
i=0

eε(i+1)∆t|Xi|2

+ B
n−1

∑
i=0

eε(i+1)∆t(e−(1−q)εi∆t|X[qi]|2 − eε∆t|Xi|2)∆t

+ Beε∆t
n−1

∑
i=0

eε(i+1)∆t|Xi|2∆t +
n−1

∑
i=0

eε(i+1)∆tSi

(54)

eεn∆t|Xn|2 ≤ |X0|2 − (
e−ε∆t − A

∆t
− Beε∆t)

n−1

∑
i=0

eε(i+1)∆t|Xi|2∆t

+ B
n−1

∑
i=0

eε(i+1)∆t(e−(1−q)εi∆t|X[qi]|2 − eε∆t|Xi|2)∆t

+
n−1

∑
i=0

eε(i+1)∆tSi,

(55)

where ∑n−1
i=0 eε(i+1)∆tSi is a martingale. Assume that [qi] = j; then j ≤ qi < j + 1; therefore,

qi− 1 < j ≤ qi. If 0 ≤ i ≤ n− 1, then −1 < j ≤ q(n− 1) ≤ [qn] + 1− q ≤ [qn] + 1. This
leads to

n−1

∑
i=0

eε(i+1)∆t(e−ε(1−q)i∆t|X[qi]|2 − eε∆t|Xi|2)

=
n−1

∑
i=0

eε(1+qi)∆t|X[qi]|2 −
n−1

∑
i=0

eε(i+2)∆t|Xi|2

=
[qn]+1

∑
i=0

eε(i+2)∆t|Xi|2 −
n−1

∑
i=0

eε(i+2)∆t|Xi|2

≤ −
n−1

∑
i=[qn]+2

eε(i+2)∆t|Xi|2.

(56)

Let

f (∆t) = 2a− b∆t− 2c∆t− λ(1 + 2d(λ∆t)) +
e−ε∆t − 1

∆t
− Beε∆t. (57)

Using the Taylor series, we obtain

e−ε∆t = 1− ε∆ +
(ε∆t)2

2
− (ε∆t)3

3!
+ · · · > 1− ε∆t,

which leads to
e−ε∆t − 1

∆t
> −ε. (58)

Thus,
f (∆t) > 2a− b∆t− 2c∆t− λ(1 + 2d(λ∆t))− ε− Beε∆t. (59)

For a given ε, pick up a very small ∆t∗ such that for all ∆t < ∆t∗,

2a− b∆t− 2c∆t− λ(1 + 2d(λ∆t))− ε− Beε∆t > 0. (60)

After plugging (56) and (60) into (55), the discrete semimartingale theorem which was
stated in [33] implies that there exists a positive constant C0 such that

eεn∆t|Xn|2 ≤ C0. (61)
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Which implies

lim sup
n→∞

1
n∆t

log |Xn| ≤ −
ε

2
a.s. (62)

The proof is completed.

4. Almost Sure Stability of Backward Euler–Maruyama Method

In this section, it will be shown that the backward Euler–Maruyama technique can
reproduce the almost sure exponential stability of the exact solution of SPDE interspersed
with Poisson jumps.

Assumption 5. The Polynomial Growth Conditions. For any x ∈ Rm, there exist positive
constants α, a, ā, ã, b, b̄, b̃, c, c̄, c̃ such that

〈x(s), f (x(s), x(qs))〉

≤ −a|x(s)|α+2 + āe−(1−q)εs|x(qs)|α+2 − ã|x(s)|2,
(63)

|g(x(s), x(qs))|2 ≤ b|x(s)|α+2 + b̄e−(1−q)εs|x(qs)|α+2 + b̃|x(s)|2, (64)

|h(x(s), x(qs))|2 ≤ c|x(s)|α+2 + c̄e−(1−q)εs|x(qs)|α+2 + c̃|x(s)|2. (65)

Given a step-size ∆t ∈ (0, 1) and for t ∈ [0, T], let N∆t = T for some positive integer N and
tn = n∆t (n ≥ 0). Then, the backward Euler–Maruyama technique is defined as follows

Xn+1 = Xn + f (Xn+1, X[q(n+1)])∆t + g(Xn, X[qn])∆Wn

+ h(Xn, X[qn])∆Nn.
(66)

To ensure that this scheme is well-defined, the following one-sided Lipschitz condition is
imposed on the drift coefficient f (x, y) in x.

Assumption 6. One-sided Lipschitz condition. There exists a constant ζ such that for any
x1, x2, y ∈ Rm and t ≥ 0

〈x1 − x2, f (x1, y)− f (x2, y)〉 ≤ ζ|x1 − x2|2. (67)

Under this condition, if ζ∆t < 1, then the backward Euler scheme (66) is well-defined (see,
e.g., [35]). The following theorem shows the almost sure exponential stability of the backward
Euler scheme.

Theorem 4. Let Assumptions 5 and 6 hold. Then, there exists a small ∆t∗ ∈ (0, 1) such that if
∆t < ∆t∗, then the approximate solution {Xn} defined by (66) has the property

lim sup
n→∞

1
n∆t

log |Xn| ≤ −
ε

2
a.s. (68)

where ε < 2ã−mb̃− λmc̃.

Proof. Using Assumption 5 and Equation (66), we may calculate

|Xn+1|2 = 〈Xn+1, Xn + f (Xn+1, X[q(n+1)])∆t + g(Xn, X[qn])∆Wn

+ h(Xn, X[qn])∆Ñn + λh(Xn, X[qn])∆t〉,
(69)

which equals to
|Xn+1|2 = 〈Xn+1, f (Xn+1, X[q(n+1)])〉∆t

+ 〈Xn+1, Xn + g(Xn, X[qn])∆Wn

+ h(Xn, X[qn])∆Ñn + λh(Xn, X[qn])∆t〉,
(70)
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then
|Xn+1|2 ≤ (−a|Xn+1|α+2 + āe−ε(1−q)(n+1)|X[q(n+1)]|α+2 − ã|Xn+1|2)∆t

+
1
2
|Xn+1|2 + |Xn|2 +

1
2
(b|Xn|α+2 + b̄e−ε(1−q)n∆t|X[qn]|α+2

+ b̃|Xn|2)|∆Wn|2 +
1
2
(c|Xn|α+2 + c̄e−ε(1−q)n∆t|X[qn]|α+2

+ c̃|Xn|2)|∆Ñn|2 + (c|Xn|α+2 + c̄e−ε(1−q)n∆t|X[qn]|α+2

+ c̃|Xn|2)|λ∆t|2 + 〈Xn, g(Xn, X[qn])〉∆Wn

+ 〈g(Xn, X[qn])∆Wn, h(Xn, X[qn])∆Ñn〉
+ 〈g(Xn, X[qn])∆Wn, λh(Xn, X[qn])〉∆t

+ 〈h(Xn, X[qn])∆Ñ, λh(Xn, X[qn])〉∆t

+ 〈Xn, h(Xn, X[qn])〉∆Ñn.

(71)

This leads to the following

(1 + 2ã∆t)|Xn+1|2 ≤ (2 + mb̃∆t + λc̃(m + 2λ∆t)∆t)|Xn|2

− 2(a|Xn+1|α+2 − āe−ε(1−q)n∆t|X[q(n+1)]|α+2)∆t

+ (mb|Xn|α+2 + mb̄e−ε(1−q)n∆t|X[qn]|α+2)∆t

+ λ(mc|Xn|α+2 + mc̄e−ε(1−q)n∆t|X[qn]|α+2)∆t

+ 2λ2(c|Xn|α+2 + c̄e−ε(1−q)n∆t|X[qn]|α+2)∆t2

+ Sn,

(72)

where

Sn = (b|Xn|α+2 + b̄e−ε(1−q)n∆t|X[qn]|α+2 + b̃|Xn|2)(|∆Wn|2 −m∆t)

+ (c|Xn|α+2 + c̄e−ε(1−q)n∆t|X[qn]|α+2 + c̃|Xn|2)(|∆Ñn|2 − λm∆t)

+ 2〈Xn, g(Xn, X[qn])〉∆Wn

+ 2〈g(Xn, X[qn])∆Wn, h(Xn, X[qn])∆Ñn〉
+ 2〈g(Xn, X[qn])∆Wn, λh(Xn, X[qn])〉∆t

+ 2〈h(Xn, X[qn])∆Ñ, λh(Xn, X[qn])〉∆t

+ 2〈Xn, h(Xn, X[qn])〉∆Ñn.

(73)

Then, we may obtain

(1 + 2ã∆t)(eε(n+1)∆t|Xn+1|2 − eεn∆t|Xn|2)

≤ (2 + mb̃∆t + λc̃(m + 2λ∆t)∆t− (1 + 2ã∆t)e−ε∆t)eε(n+1)∆t|Xn|2

− 2aeε(n+1)∆t|Xn+1|α+2∆t + 2āeεq(n+1)∆t|X[q(n+1)]|α+2∆t

+ mbeε(n+1)∆t|Xn|α+2∆t + mb̄e−ε(qn+1)∆t|X[qn]|α+2∆t

+ λ(mceε(n+1)∆t|Xn|α+2 + mc̄e−ε(qn+1)∆t|X[qn]|α+2)∆t

+ 2λ2(ceε(n+1)∆t|Xn|α+2 + c̄e−ε(qn+1)∆t|X[qn]|α+2)∆t2

+ eε(n+1)∆tSn.

(74)
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By using the recursive method, we obtain

(1 + 2ã∆t)eεn∆t|Xn|2

≤ (1 + 2ã∆t)|X0|2 + (2 + mb̃∆t + λc̃(m + 2λ∆t)∆t

− (1 + 2ã∆t)e−ε∆t)
n−1

∑
i=0

eε(i+1)∆t|Xi|2

− 2a
n−1

∑
i=0

eε(i+1)∆t|Xi+1|α+2∆t

+ 2ā
n−1

∑
i=0

eεq(i+1)∆t|X[q(i+1)]|α+2∆t

+ mb
n−1

∑
i=0

eε(i+1)∆t|Xi|α+2∆t + mb̄
n−1

∑
i=0

eε(qi+1)∆t|X[qi]|α+2∆t

+ λc(m + 2λ∆t)
n−1

∑
i=0

eε(i+1)∆t|Xi|α+2∆t

+ λc̄(m + 2λ∆t)
n−1

∑
i=0

eε(qi+1)∆t|X[qi]|α+2∆t

+
n−1

∑
i=0

eε(i+1)∆tSi,

(75)

which equals to

(1 + 2ã∆t)(eεn∆t|Xn|2

≤ (1 + 2ã∆t)|X0|2 + ((2 + mb̃∆t + λc̃(m + 2λ∆t)∆t)eε∆t

− (1 + 2ã∆t))
n−1

∑
i=0

eεi∆t|Xi|2 − 2a
n

∑
i=1

eεi∆t|Xi|α+2∆t

+ mb
n−1

∑
i=0

eε(i+1)∆t|Xi|α+2∆t + λc(m + 2λ∆t)
n−1

∑
i=0

eε(i+1)∆t|Xi|α+2∆t

+ 2ā
n−1

∑
i=0

eε(i+1)∆t|Xi|α+2∆t + mb̄
n−1

∑
i=0

eε(i+2)∆t|Xi|α+2∆t

+ λc̄(m + 2λ∆t)
n−1

∑
i=0

eε(i+2)∆t|Xi|α+2∆t

+ 2ā
n−1

∑
i=0

eε(i+1)∆t(e−ε(1−q)(i+1)∆t|X[q(i+1)]|α+2 − |Xi|α+2)∆t

+ mb̄
n−1

∑
i=0

eε(i+1)∆t(e−ε(1−q)i∆t|X[qi]|α+2 − eε∆t|Xi|α+2)∆t

+ λc̄(m + 2λ∆t)
n−1

∑
i=0

eε(i+1)∆t(e−ε(1−q)i∆t|X[qi]|α+2 − eε∆t|Xi|α+2)∆t

+
n−1

∑
i=0

eε(i+1)∆tSi,

(76)

where ∑n−1
i=0 eε(i+1)∆tSi is a martingale. Then, we could proceed as we did before in (56) and

obtain the following
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n−1

∑
i=0

eε(i+1)∆t(e−ε(1−q)i∆t|X[qi]|α+2 − eε∆t|Xi|α+2)

=
n−1

∑
i=0

eε(1+qi)∆t|X[qi]|α+2 −
n−1

∑
i=0

eε(i+2)∆t|Xi|α+2

=
[qn]+1

∑
i=0

eε(i+2)∆t|Xi|α+2 −
n−1

∑
i=0

eε(i+2)∆t|Xi|α+2

≤ −
n−1

∑
i=[qn]+2

eε(i+2)∆t|Xi|α+2.

(77)

By the same analogy, we obtain

n−1

∑
i=0

eε(i+1)∆t(e−ε(1−q)(i+1)∆t|X[q(i+1)]|α+2 − |Xi|α+2)

≤ −
n−1

∑
i=[qn]+2

eε(i+1)∆t|Xi|α+2.

(78)

After plugging (77) and (78) into (76), we obtain the following

(1 + 2ã∆t)eεn∆t|Xn|2

≤ (1 + 2ã∆t)|X0|2 +
n−1

∑
i=1

eε(i+1)∆t|Xi|2 − 2aeεn∆t|Xn|α+2∆t

− (1 + 2ã∆t− (1 + mb̃∆t + λc̃(m + 2λ∆t)∆t)eε∆t)
n−1

∑
i=0

eεi∆t|Xi|2

+ (−2a + mbeε∆t + 2āeε∆t + mb̄e2ε∆t)
n−1

∑
i=1

eεi∆t|Xi|α+2∆t

+ λeε∆t(m + 2λ∆t)(c + c̄eε∆t)
n−1

∑
i=1

eεi∆t|Xi|α+2∆t

+ (2ā + mb + mb̄eε∆t + λ(m + 2λ∆t)(c + c̄eε∆t))eε∆t|X0|α+2∆t

− 2ā
n−1

∑
[qi]+2

eε(i+1)∆t|Xi|α+2∆t−mb̄
n−1

∑
[qi]+2

eε(i+2)∆t|Xi|α+2∆t

− λc̄(m + 2λ∆t)
n−1

∑
[qi]+2

eε(i+2)∆t|Xi|α+2∆t +
n−1

∑
i=0

eε(i+1)∆tSi.

(79)

We follow the same procedures as in [33] and denote

f (∆t) = 1 + 2ã∆t− (1 + mb̃∆t + λc̃(m + 2λ∆t)∆t)eε∆t. (80)

Upon differentiating with respect to ∆t yields

f
′
(∆t) = 2ã− (mb̃ + λc̃(m + 4λ∆t))eε∆t

− (1 + mb̃∆t + λc̃(m + 2λ∆t)∆t)εeε∆t,
(81)

and
f
′′
(∆t) = −(1 + mb̃∆t + λc̃(m + 2λ∆t)∆t)ε2eε∆t − (4λ2 c̃)eε∆t

− 2(mb̃ + λc̃(m + 4λ∆t))εeε∆t.
(82)
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Clearly, f
′
(0) = 2ã−mb̃− λmc̃− ε > 0, f

′′
(0) < 0, then there exists a ∆t such that

f
′
(∆t) = 0. f (∆t) is non-decreasing function for values of ∆t less than ∆t and noting that

f (0) = 0; therefore, there exists a small ∆t∗ less than ∆t such that for all ∆t < ∆t∗

1 + 2ã∆t− (1 + mb̃∆t + λc̃(m + 2λ∆t)∆t)eε∆t > 0. (83)

On the other hand, because 2a > (2ā+mb̄+λmc̄)
q + b + λc, then there exists a small

∆t < ∆t∗ such that

2a− 2āeε∆t −m(b + b̄eε∆t)eε∆t − λ(m + 2λ∆t)(c + c̄eε∆t)eε∆t > 0. (84)

Then, after plugging (83) and (84) into (79), the discrete semimartingale theorem which
was stated in [33] implies that there exists a positive constant C0 such that

(1 + 2ã∆t)eεn∆t|Xn|2 ≤ C0. (85)

Which implies

lim sup
n→∞

1
n∆t

log |Xn| ≤ −
ε

2
a.s. (86)

The proof is completed.

5. Numerical Examples

In this section, we will present examples to illustrate our theory.

Example 1. Consider the following nonlinear SPDE with Poisson jumps

dx(t) = [−0.5x(t)− 4x5(t) + 2x5(qt)]dt + x3(t)dW(t) + x3(t)dN(t), (87)

where W(t) is Brownian motion and N(t) is Poisson process. Define f (x, y) = −0.5x− 4x5 + 2y5

and g(x, y) = h(x, y) = x3. Then, we compute the following

f (x1, y)− f (x2, y) = −0.5(x1 − x2)− 4(x5
1 − x5

2)

≤ −0.5(x1 − x2)[1 + 8(x4
1 + x3

1x2 + x2
1x2

2 + x1x3
2 + x4

2)].

Noting that A2 + B2 ≥ (A+B)2

2 , calculate

x4
1 + x3

1x2 + x2
1x2

2 + x1x3
2 + x4

2 ≥
(x2

1 + x2
2)

2

2
+ x1x2(x2

1 + x2
2) + (x1x2)

2

≥
(x2

1 + x2
2)

2

4
+ x1x2(x2

1 + x2
2) + (x1x2)

2

= [
x2

1 + x2
2

2
+ x1x2]

2,

which implies
〈x1 − x2, f (x1, y)− f (x2, y)〉 ≤ −0.5(x1 − x2)

2.

This indicates that f (x, y) satisfies the one-sided Lipschitz condition, and upon using the
inequality ApBq ≤ p

p+q Ap+q + q
p+q Bp+q, it is easy to calculate

〈x, f (x, y)〉 ≤ −0.5x2 − 4x6 + 2y5x

≤ −0.5x2 − 11
3

x6 +
5
3

y6,

and |g(x(t), y(t))|2 = |h(x(t), y(t))|2 ≤ x6. By Theorems 1, 2 and 4, Equation (87) has a unique
global solution and the solution is almost surely exponentially stable.
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Example 2. Consider the following nonlinear SPDE with Poisson jumps

dx(t) = [−0.4x(t)− 5x3(t) + x3(qt)]dt + x2(t)dW(t) + x2(t)dN(t). (88)

Define f (x, y) = −0.4x − 5x3 + y3, g(x, y) = x2 and h(x, y) = x2. Then, we compute
the following

f (x1, y)− f (x2, y) = −0.4(x1 − x2)− 5(x3
1 − x3

2)

= −0.4(x1 − x2)[1 + 12.5(x2
1 + x1x2 + x2

2)].

Now, we test the one-sided Lipschitz condition

〈x1 − x2, f (x1, y)− f (x2, y)〉 = −0.4(x1 − x2)
2[1 + 12.5(x2

1 + x1x2 + x2
2)]

≤ −0.4(x1 − x2)
2.

This indicates that f (x, y) satisfies the one-sided Lipschitz condition and it is easy to calculate

〈x, f (x, y)〉 ≤ −0.4x2 − 5x4 + xy3

≤ −0.4x2 − 4.75x4 + 0.75y4,

and |g(x(t), y(t))|2 ≤ x4 and |h(x(t), y(t))|2 ≤ x4. By Theorems 1, 2 and 4, Equation (88) has
a unique global solution and the solution is almost surely exponentially stable, and the backward
Euler technique can reproduce the almost sure exponential stability.

Example 3. Consider the following nonlinear SPDE with Poisson jumps

dx(t) = [−x(t)− 2x5(t) + 10x5(qt)]dt + x3(t)sin(x(qt))dW(t) + x3(t)cos(x(qt))dN(t). (89)

Define f (x, y) = −x− 2x5 + 10y5, g(x, y) = x3sin(y) and h(x, y) = x3cos(y). Then, we
compute the following

f (x1, y)− f (x2, y) = −(x1 − x2)− 2(x5
1 − x5

2)

= −(x1 − x2)[1 + 2(x4
1 + x3

1x2 + x2
1x2

2 + x1x3
2 + x4

2)].

Now, we test the one-sided Lipschitz condition

〈x1 − x2, f (x1, y)− f (x2, y)〉 = −(x1 − x2)
2[1 + 2(x4

1 + x3
1x2 + x2

1x2
2 + x1x3

2 + x4
2)]

≤ −(x1 − x2)
2.

This indicates that f (x, y) satisfies the one-sided Lipschitz condition and it is easy to calculate

〈x, f (x, y)〉 ≤ −x2 − 2x6 + 10xy5

≤ −x2 − 1
3

x6 +
25
3

y6,

and |g(x, y)|2 = |x3sin(y)|2 ≤ x6 and |h(x, y)|2 = |x3cos(y)|2 ≤ x6. By Theorems 1, 2 and 4,
Equation (89) has a unique global solution and the solution is almost surely exponentially stable,
and the backward Euler technique can reproduce the almost sure exponential stability.

6. Conclusions

The conclusions of this paper can be summarized as follows:

• The almost sure exponential stability of the analytical solution of SPDEs interspersed
with the Poisson jumps has been proved with the help of the continuous semimartin-
gale convergence theorem.
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• The existence and the uniqueness of the global solution of the exact solution have also
been proven.

• In using the discrete semimartingale convergence theorem, it has been shown that the
explicit Euler–Maruyama technique reproduces the almost sure exponential stability
of the exact solution under the assumption of the linear growth condition.

• By replacing the linear growth condition with the polynomial growth condition, im-
posing the one-sided Lipschitz condition on the drift coefficient and using the discrete
semimartingale convergence theorem, it has been demonstrated that the backward
Euler technique is capable of reproducing the almost sure exponential stability.
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