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Abstract: In this study, acoustic wave scattering in a homogeneous media by an obstacle is examined
in the case of plane wave excitation and the formation of acoustic jets is explored. Spectral element
method (SEM) is employed for the approximate solution of scattered acoustic waves’ calculations.
An important finding of the study is the concurrence of whispering gallery modes and acoustic
jet in the case of proper adjustment of structural parameters, which has not been reported before
in the literature. Furthermore, numerical findings based on SEM calculations show that the main
characteristics of acoustic jet can be explored and controlled by changing the targeted parameters.
Microscopy and imaging applications utilizing acoustic wave can benefit from the conducted study
presented in this manuscript.

Keywords: acoustic jet (acoustojet); photonic nanojet; whispering gallery modes; subwavelength
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1. Introduction

Since their first proposal in 2004, photonic nanojets have been studied intensely in
recent years [1]. Photonic nanojets that allow realizing high-intensity subwavelength
localized beam exist at the shadow-side of low-loss dielectric objects. Proper selection of
optical parameters, as well as the adapting the structural characteristic of the photonic
lenses provide to adjust the nanojet performance of the lens system [2,3]. In analogy to the
nanojet effect, subwavelength beam localization is also possible for acoustic and ultrasound
fields, which is termed as “acoustic jets” or “acoustojets” [4–10]. In this case, pressure waves
interact with a penetrable cylindrical object and corresponding acoustic wave processes
could be solved based on the Helmholtz equation.

Among the appealing properties of nanojets in optics are the stronger intensity arous-
ing at the back side of the cylinder, wavelength- and even sub-wavelength scale focusing
(ultra-narrow beam waist), and larger depth of field along the optical axis. Besides, it has
been shown that such structures may support whispering gallery modes (WGMs), as well, if
the optical and structural parameters such as diameter, refractive index of the cylinder and
incident wavelength are appropriately selected [2]. Phase-front retardation, shaping wave-
fronts, and focusing (lensing and even superlensing) are obvious outcomes of mesoscale
dielectric cylinders. The generation of WGM is more appealing due to satisfied resonance
condition. WGMs are bounded at around the circumference of the resonator based on the
total internal reflection mechanism. The first observation of this phenomenon is associated
with the acoustic wave confinement date back to the study of L. Rayleigh [11]. As expected,
this concept can be applied to light waves interacting with dielectric materials [12,13].
Small mode volumes and large Q values with field enhancement are unique features of
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photonic WGMs [14–16]. Wave propagation is one of essential interests in several fields of
electro-magnetism and acoustics. There is a long-standing interest in scattering of acoustic
waves by spherical obstacle, which has been recently studied by many researchers. Recent
studies such as acoustic wave propagation in different media, wave propagation in un-
bounded elastic domains and a theoretical analysis of acoustic jets are several hot-topics in
acoustics that have underlined the importance and the need to acoustic wave in medical
and industrial fields. The initial experimental researches of the characteristics of acoustic
jets were described in acoustic wave physics long time ago. In Ref. [17], the apparatus was
prepared and studied in relation to the practical mission of powder spraying to generate
the jet by a low frequency resource of a vibration-resonance type. In Ref. [18], the jets were
formed as a product of the propagation of intensive sound through a small hole in a screen
placed in the cross section of the waveguide. In acoustics and ultrasound fields, there are
some interests in the possibility of focusing subwavelength in both fields as demonstrated
in Ref. [19], in which a plane acoustic wave was simulated in a spherical cavity filled
with different gases. There has also been a growing interest in the focusing properties
of scattered waves by a sphere of different sizes when excited by several wavelengths to
generate an acoustic jet with a narrow and high-intensity beam which appear from the
shadow side of the sphere’s surface [20,21].

It is possible to analyze the acoustic plane wave scattering by using the spectral element
method (SEM). SEM has been utilized, at first, in the computation of fluid dynamics by
Patera et al. [22]. He suggested that SEM combines the precision of spectral method (the
case where P-type method is used for one element domain) with the pliability of the finite
element method (FEM). In SEM, Patera applied the high-order Lagrangian polynomial
interpolants on Chebyshev collocation points to represent the speed of all elements in
the computational domain. Mady and patera developed an alternative method to the
Chebyshev SEM [23]. Komatitsch and Tromp introduced SEM which has become advanced
and original numerical method to calculate synthetic seismograms in three-dimensional
earth models [24,25]. SEM is considered as a type of approximation schemes according to
Galerkin method. Discretization of the computational domain is common characteristic
between SEM and FEM, and this gives the reason why SEM can be viewed as a new
version of finite element method. On the other hand, SEM utilizes high degree polynomials
on a fixed geometric mesh in order to enhance accuracy. The latter is considered the
unique feature of SEM characterizing the new version of the FEM [15]. As a comparison
between SEM and other numerical methods such as FEM and finite difference method
(FDM), SEM has more accuracy and requires lower computational costs [26–29]. This
study aims to formulate the SEM for acoustic wave propagation in bounded homogenous
media and to solve the problem that is governed by more than one differential equation.
In addition, to the best of our knowledge, we introduce the derivation of the governing
SEM equations by using decomposition of functions for the first time. Finally, and most
importantly, the formation of acoustojets and WGMs is presented for the first time by using
SEM formulation. This study is organized as follows: The mathematical formulation of
the acoustic wave equation in frequency domain is presented in Section 2. Then, SEM
formulation is detailed in Section 3. The simulation results and conclusions of the study
are discussed in Sections 4 and 5, respectively.

2. Mathematical Derivation of Acoustic Wave Equation

Wave scattering in a homogenous material (denoted by Ω0) immersed inside another
homogeneous material (Ω1), in the harmonic case, can be solved by using Helmholtz
equation, which is expressed as [30]:

∇2St + k2St = 0 (1)

where k is the wave number, ∇2 is the Laplacian operator, and St denotes the total field in
the computational domain.
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As the domain is unbounded, perfectly matched layers (PML) are applied: the PML
boundaries result in having a zero Dirichlet boundary condition in the exterior nodes of
the PML. Therefore, paying attention to the Equation (1), the solution will be trivially zero.
For this reason, we decompose the total field into an incident field (Sinc ) and a scattered
field (Ssca ) in this work as follows:

St = Sinc + Ssca (2)

Substituting Equation (2) into Equation (1), we obtain:

∇2(Sinc + Ssca) + k2(Sinc + Ssca) = 0 (3)

Here, we assume that K2 = mK2
0 , in which K0 stands for the wave number in Ω0 , and

m is a constant number (normalization factor). Equation (3), then, turns out to be:

∇2Sinc + mk2
0Sinc +∇2Ssca + mk2

0Ssca = 0 (4)

or
∇2Ssca + mk2

0Ssca = −[∇2Sinc + mk2
0Sinc] (5)

In Ω1, due to the fact that linearity holds for Helmholtz equation, we have the follow-
ing relation:

∇2Sinc + k2
0Sinc = 0 (6)

or
∇2Sinc = −k2

0Sinc (7)

By substituting Equation (7) which is equivalent to Equation (6), into Equation (4) or
Equation (5), we obtain a governing equation to the scattered field inside Ω1 as follows:

∇2Ssca + mk2
0Ssca = k2

0(1−m)Sinc (8)

Since is known, the right-hand side of Equation (8) will act as a forcing function. In
Ω0, the following equation must be satisfied after substituting m = 1:

∇2Ssca + k2
0Ssca = 0 (9)

Such formulation is important when solving Helmholtz equation in frequency domain
while utilizing PML as a truncation technique.

3. SEM Formulation

For simulations associated with acoustic wave propagation in bounded domains, trun-
cation of the domain is required due to limited computational resources. Perfectly Matched
Layers (PML) have been proven as the optimum absorbing boundaries for wave propa-
gation due to its flexibility and efficiency when compared with other techniques [31–36].
Based on the PML formulation presented in Ref. [35], and the above formulation that
governs the field within the region of interest, Equation (9) can be re-formulated as:

∇.∧∇Ssca + amk2
0Ssca = k2

0(1−m)Sinc (10a)

For X = (x, y) ∈ Ω ⊃ R2, scattered fields are subject to the following boundary conditions:

Ssca|∂ΩD = f ,
∂

∂n
Ssca |∂ΩN= g (10b)

on the boundary ∂Ω = ∂ΩD ∪ ∂ΩN . ∧ is a tensor defined as:

∧ =

[
a1 0
0 a2

]
(10c)
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where [a1a2] = [ 1
a a] to be satisfied for attenuating the wave within the PML in x-direction;

[a1a2] = [ 1
a

1
a ] to be satisfied for attenuating the wave in y-direction; [a1a2] = [a 1

a ] to be
satisfied for attenuating the wave within the PML in xy-direction and a = 1 within Ω0 with
m being greater than 1 in Ω1 only, and 1.0 elsewhere.

SEM equation includes test and trial spaces as function spaces. Equation (10) could be
approximated in the trial space such as the following;

∪ = {u ∈ H|u|∂ΩD = f ,
∂

∂n
u|∂ΩN = g} (11)

where u denotes Ssca. The projection of the residual space, created by substituting the
approximate solution from the trial space into Equation (10), is made onto the test space;

V = {v ∈ H|v|∂ΩD = 0}, and set to zero : (12)

(v,∇.∧∇u + amk2
0u− k2

0(1−m)Sinc)ω = 0 (13)

That relation provides to set the trial function as exact in the test space. That projection
is provided via the weighted inner product operation:

(v, u)ω ≡
∫

Ω
ωvudx, (14)

in the Hilbert space H and overbar denotes complex conjugation. The implemented
projection results in the following variational (weak) formation:∫

Ω
∇(ωv).∧∇udx− ak2

0

∫
Ω

ωvudx =
∫

∂ΩN
ωvgdx− k2

0(1−m)
∫

Ω
ωWvSincdx (15)

After making integration by parts, the boundary integrals are introduced over the Neumann
boundary ∂ΩN . Applying the decomposition of the trial function, the nonhomogeneous
Dirichlet boundary conditions are, then, formulated as follows:

U = Uh + Ub, where Uh|∂ΩD = 0 and Ub|∂ΩD = f (16)

and by substituting that equation into Equation (15) results in such as the following:

∫
Ω
∇(ωv).∧∇uhdx− ak2

0

∫
Ω

ωvuhdx = −
∫

Ω
∇(ωv).∧∇ubdx + ak2

0

∫
Ω

ωvubdx
∫

∂ΩN
ωvgdx− k2

0(1− εr)
∫

Ω
ωvSincdx (17)

In this case, the boundary conditions in the variational form with the particular
solution satisfy the nonhomogeneous Dirichlet boundary condition. As a further step, the
SEM formulation is adapted to arbitrary domain geometry and to do this, the domain is
partitioned into mutually disjoint elements:

Ω = ∪M
e=1Ωe (18)

and corresponding disjoint elements Ωe are introduced into the variational form of Equa-
tion (14) to yield the following relation by the linearity of integration operation:

∫
Ω

ωvuhdx =
M

∑
e=1

∫
Ωe

ωvuhdx (19)

The integral operations could be simplified when the standard square element is introduced:

Ωstd = {(ξ, η) ∈ R2| − 1 6 ξ 6 1,−1 6 η 6 1} (20)
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and it is connected to each quadrilateral element through the mapping such as the following:

x = χe
1(ξ, η), y = χe

2(ξ, η). (21)

That equation also alleviates the complex integral operations over a general quadrilateral
element Ωe with curved sides. The operations can then be converted using the rules:

[
dx
dy

]
=

 ∂χe
1

∂ς
∂χe

1
∂η

∂χe
2

∂ς
∂χe

2
∂η


︸ ︷︷ ︸

J

=

[
dς
dη

]
∇ =

[
∂

∂x
∂

∂y

]
=

1
|J| =

 ∂χe
2

∂η − ∂χe
1

∂η

− ∂χe
2

∂ς
∂χe

1
∂ς

 =

[
∂
∂ς
∂

∂η

]
(22)

where |J| is the determinant of the Jacobian J . The trial and test spaces are taken as finite
dimensional spaces and a spatial discretization, which is required to facilitate such complex
numerical calculations. For that purpose, the space of polynomials are selected to be
spanned, in particular, by Jacobi polynomials as Eigen functions of singular Sturm–Lowville
differential operator. Such selection, in turn, provides numerically stable interpolation
as well as highly accurate quadrature integration approximation by means of utilizing
the nodes and the weights associated with the Jacobi polynomials. As a special choice,
Legendre polynomials could be convenient selection since they are orthogonal under the
weighted inner product with unity weight, i.e., ω = 1 . The associated roots ςm as nodes
provide the stable form of interpolation:

u(ς) =
N

∑
m=0

u(ς)Lm(ς), (23)

where L denotes respective Lagrange interpolants with the typical form like the following:

Lk(ς) =
N

∏
l=0,l=k

(ς− ς)

(ςk − ςt)
′ (24)

that satisfies the cardinality property Lk(ςl) = δkl and Lk(ςl) = δkl . The derivatives may
also be evaluated by:

d
dς

u(ς)|ςK =
N

∑
m=0

u(ςm)L
′
m(ςk) =

N

∑
m

uςm L
′
m(ςk)︸ ︷︷ ︸
DKm

, (25)

where DKm is referred to as the differentiation matrix. It further provides Gauss-Legendre-
Lobatto (GLL) quadrature:

∫ 1

−1
u(ς)dς =

N

∑
K=0

ωku(ςk), (26)

which is the exact solution for the integrand a polynomial of degree 6 2N − 1. These
one-dimensional relations can easily be extended to two dimensions over the tensor grid
(ςK, ηl) with the mapping functions χi(ς, η) constructed using the linear blending function
approach. The proposed SEM theory could be easily implemented for proper acoustic wave
scattering analyses and optical wave propagation simulations, as well.

4. Results and Discussion

Proposed SEM model has the capability of scaling its size from cm− to µm− due
to fact that the dimensions are normalized with respect to the wavelength. In this way,
subwavelength localization can be generated across the acoustic spectrum from kHz to
GHz ranges. One crucial parameter of the simulation model is the radius of the penetrable
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spherical particle, R, which determines the wave-scattering characteristic inside the sphere
and normalized with the wavelength. Another critical parameter, m, is defined by the
index ratio of sphere and surrounding medium, i.e., m =

nsphere
nmedium

, which directly affects the
speed of sound ratio at the simulation domain. In this case, the simulation model (sphere-
surrounding medium) could be designed as either liquid-solid (the lens is immersed in
fluid) or air-solid materials. Thus, the spherical lens could be realized by different materials
such as silicone oil, steel and lead in terms of the acoustic system requirements.

SEM acoustic simulations are performed for varying parameters {R, m}. The structural
parameters are adjusted in terms of incident wavelength. While keeping the radius of the
particle as well as the index ratio of the system in a specific range, the SEM simulations
predict that the subwavelength localization and acoustic jet formation could be achieved,
see Figures 1–4. As an illustration, the structural parameters are set to be {R, m} = {3, 3}
and the corresponding scattering wave distribution is calculated via SEM method, see
the two-dimensional (2D) acoustic intensity distribution in Figure 1. The acoustic jet
excitation is realized at the shadow of the particle, which can be observed explicitly in the
figure; subwavelength localization is generated with a full-width at half maximum value
of FWHM = 0.51λ and the corresponding field enhancement is around I

I0
= 3.7, which is

the indication of the strong field localization in terms of incident wave.
Figure 1 (Color online). The 2D intensity distribution of the Wave scattering on the

sphere with diameter: R = 3 and m = 3. Corresponding FWHM of the generated acoustojet
is calculated as 0.51λ.

Figure 1. (Color online). The 2D intensity distribution of the Wave scattering on the sphere with
diameter: R = 3 and m = 3. White arrow indicates the direction of incident plane wave while the
dashed region represents the boundary of the sphere. The corresponding FWHM of the generated
acoustojet is calculated as 0.51λ.

Proper arrangement of structural parameters enhances the field intensity as well as
the subwavelength localization capability of the generated acoustic jet. For that purpose,
the structural parameters are adjusted to be {R, m} = {3.5, 2.89} and the corresponding
field intensity distribution is represented in Figure 2. Stronger subwavelength localization
is achieved with FWHM = 0.29λ and the field enhancement of I

I0
= 10.48. Another

important finding is simultaneous existence of whispering gallery modes (WGMs) with
acoustic jet, which has not been reported before in acoustic jet studies. Corresponding radial
and angular mode number of existing WGMs equals {n, l} = {2, 58}. While fixing the ratio
of the lens as in Figure 1, the index ratio is arranged to be m = 2. In this case, subwavelength
localization is still conserved with FWHM = 0.67λ and the field enhancement of I

I0
= 3.7.

Comparing both Figures 1 and 3, it can be noted that an increment in the index ratio directly
enhances the strength of the wave localization as well as subwavelength focusing capability
of the particle. In Figure 4 the real part of the scattered field on a sphere with diameter:
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R = 3 and m = 3 is shown. The plane wave is incident from the left side and the dashed
region represents the boundary of the penetrable particle.

Figure 2. (Color online). Scattering on spheres with diameter: R = 3.5 and m = 2.89. Corresponding
FWHM of the generated acoustojet is calculated as 0.29λ.

Figure 3. (Color online). Scattering on spheres with diameter: R = 3 and m = 2. Corresponding
FWHM of the generated acoustojet is calculated as 0.67λ.

Figure 3 (Color online) has the scattering on spheres with diameter: R = 3 and m = 2.
The corresponding FWHM of the generated acoustojet is calculated as 0.67λ.

Figure 4 (Color online). Scattering on spheres with diameter: R = 3 and m = 3. The
plane wave is incident from the left side and the dashed region represents the boundary of
the penetrable particle.

SEM-simulated acoustic jet phenomenon could also be validated in macroscopic scale
via the following experimental setup: A delay line can be placed in front of the ultrasound
transducer to provide plane waves excitation toward the spherical lens. Then, the incoming
plane wave scatters on the spherical lens and acoustic jet is generated at the shadow-side of
the penetrable particle. The produced acoustic jet could be probed by needle microphone
that is very close to the sphere for the measurement of the output acoustic field in spatial
domain. The detected field could be amplified, band-pass filtered to reduce the received
background noise, and visualized by an oscilloscope [6].
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Figure 4. (Color online). Scattering on spheres with diameter: R = 3 and m = 3.

As a future aspect, the acoustojet phenomenon could be implemented for subwave-
length acoustic lensing [37] and the proposed structure could be modified intentionally to
gather acoustic hook or tweezer effect [38].

5. Conclusions

In conclusion, SEM formulation is revised to enable acoustic wave scattering calcu-
lations. It has been proved via 2D acoustic simulations that the proper adjustment of
structural parameters in acoustic SEM model provides acoustic jet formation. Furthermore,
possible experimental setup for the validation of investigated acoustic jet phenomenon is
explained in detail. As a novelty of the study, in addition to the provided SEM formulation,
resonant propagation modes may occur simultaneously with acoustojets, which has never
been reported before in the literature.
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