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Abstract: A calibrated mathematical model of antiviral immune response to SARS-CoV-2 infection
is developed. The model considers the innate and antigen-specific responses to SARS-CoV-2 infec-
tion. Recently published data sets from human challenge studies with SARS-CoV-2 were used for
parameter evaluation. The calibration of the mathematical model of SARS-CoV-2 infection is based
on combining the parameter guesses from our earlier study of influenza A virus infection, some
recent quantitative models of SARS-CoV-2 infection and clinical data-based parameter estimation of
a subset of the model parameters. Hence, the calibrated mathematical model represents a theoretical
exploration type of study, i.e., ‘in silico patient’ with mild-to-moderate severity phenotype, rather than
a completely validated quantitative model of COVID-19 with respect to all its state-space variables.
Understanding the regulation of multiple intertwined reaction components of the immune system is
necessary for linking the kinetics of immune responses with the clinical phenotypes of COVID-19.
Consideration of multiple immune reaction components in a single calibrated mathematical model
allowed us to address some fundamental issues related to the pathogenesis of COVID-19, i.e., the
sensitivity of the peak viral load to the parameters characterizing the antiviral specific response
components, the kinetic coordination of the individual innate and adaptive immune responses, and
the factors favoring a prolonged viral persistence. The model provides a tool for predicting the
infectivity of patients, i.e., the amount of virus which is transmitted via droplets from the person
infected with SARS-CoV-2, depending on the time of infection. The thresholds for variations of the
innate and adaptive response parameters which lead to a prolonged persistence of SARS-CoV-2 due
to the loss of a kinetic response synchrony/coordination between them were identified.

Keywords: SARS-CoV-2 infection; innate immune response; antigen-specific immune response;
kinetic coordination; mathematical model; pathogenesis; long COVID-19

MSC: 92-10

1. Introduction

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
continues to persist in the population worldwide, causing the disease known as COVID-
19. The time-course and severity of COVID-19 is extremely heterogenous including
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asymptomatic-, mild-, severe- and critical disease phenotypes [1]. Mathematical mod-
elling is considered to be an important tool for understanding pathophysiology of the
SARS-CoV-2 infection via integration of multiple interaction processes of the virus with the
human host organism at the molecular-, cellular- and the systemic levels [2]. It enables to
reveal key regulatory events in the course and the outcome of their dynamical interaction.
The difficulties in developing relevant mathematical models of COVID-19 are due to the
systemic nature of the infection that involves a variety of organs and physiological systems
to be considered in the models, and the lack of coherent time-series data on the immune
response to the infection which are required to calibrate the described processes robustly.
So far, more than a dozen of mathematical models of SARS-CoV-2 infection have been
developed [3–21].

They differ enormously in their complexity ranging from low-dimensional models
(e.g., the ODE systems of two to five equations) [4,5,7,11,15]) through medium-size models
(about ten equations) [3,6,8,13,14,16,20,21] up to high resolution models of ODEs (up to
60 equations) [9,10] or hybrid multi-scale models [17,19]. The latter can be categorized as
“experimental mathematical” models. The set of data used for the parameter estimation in
the models is mainly based on similar sets of viral load kinetics data in upper and lower
respiratory tract or data from non-human primates. The biological questions addressed in
the models include:

• a prediction of the effect of therapies [4,7–10,12];
• relationship between the disease phenotype and immune response parameters [4,7,11,13,18];
• effect of aging on disease course [7,14].

Finally, the models can be categorized by the processes describing the interactions between
in the virus and the host organism:

• virus spreading in tissues/organs [4,7,17,18,20];
• virus spreading and innate immune response [3,13,14,21];
• virus spreading and adaptive immune response [5,6,9,11,15];
• virus spreading and innate/adaptive immune response [8,12,16];
• virus spreading and immunophysiological responses of the host (including cytokine-

mediated inflammation and provoked haemostasis and renin-angiotensin system
response [10,19]).

Understanding the regulation of multiple intertwined reaction components of the
immune system is necessary for linking the clinical phenotypes of COVID-19 with the
kinetics of the immune responses. One of the challenges is the need to understand the
pathogenesis of long COVID-19. Conceptual view of the regulation of immune reactions by
Grossman and Paul [22] suggests that the immune system responds to a rapid perturbation
of an antigenic homeostasis. The antigenic perturbation percolates through the immune
system being sequentially sensed by the innate and adaptive branches of the system. Hence,
the innate (e.g., the type I interferon and inflammation) and antigen-specific responses (CD4
T cells, CD8 T cells, B cell-mediated) need to be coordinated both in time and scale. This
fundamental issue of a kinetic synchronization of innate and adaptive immune responses
has not been addressed yet. The objectives of our study are

1. to develop a calibrated mathematical model of antiviral innate and adaptive immune
responses to SARS-CoV-2 during mild-to-moderate symptoms infection;

2. to infer the sensitivity of the peak viral load to the kinetics of innate and adaptive
responses;

3. to quantify the infectiousness of the COVID-19 patients from the onset to the recovery
phase of the infection;

4. to examine the effect of the accelerated or decelerated components of the immune
response on the viral load and prolonged viral persistence;

5. to evaluate the person’s infectiousness and effectiveness of testing procedures.

To proceed with the analysis of SARS-CoV-2 infection, we consider our previously
developed mathematical model of antiviral immune responses [23]. Recently, it was
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used to infer multiplicative cooperativity of CTL and antibody responses in protection
against cytopathic and non-cytopathic virus infections [24]. Originally, the model was
calibrated to describe an influenza A virus infection. Both influenza A and SARS-CoV-2
are controlled by immune reactions that proceed in the system of lymph nodes draining
the upper and lower respiratory tract and follow a stereotypical clonal expansion kinetics.
The use of the influenza infection model as a starting point to proceed with modelling of
SARS-CoV-2 infection has been shown to be useful as providing some initial parameter
values [3,8,17]. Using recently published extensive data sets on the kinetics of viral load in
adult humans [25] as well as some other reference data for the observed levels of CD8 T
cells, antibodies and type I IFNs in serum, we refine a subset of the model parameters to
reproduce the observed dynamics of the SARS-CoV-2 loads. Then, the sensitivity of the
infection characteristics to model parameters is computationally studied.

In Section 2 we present the details of the mathematical model, the data used for calibra-
tion and the resulting trajectory of SARS-CoV-2 infection in terms of model characteristics.
Section 3 summarizes the results of computational experiments studying the effects of
variations of the process parameters on kinetics of the viral load. Finally, in Section 4 we
discuss the implications of our analysis for SARS-CoV-2 infection (long COVID) and the
coordinated regulation of immune response components.

2. Materials and Methods
2.1. Mathematical Model of Antiviral Immune Response

Mathematical model of antiviral immune response considers three major sets of the
virus-host interaction processes, i.e., the virus spreading in sensitive tissue, induction of
the innate response and antigen-specific immune reactions as shown in Figure 1 and is
described in details below. Consideration of innate cellular and humoral immune responses
in conjunction with the infection of target organ cells and virus replication dynamics
provides a tool to examine the joint impact and coordination of the considered arms of the
immune system on the protection against virus infection and to reveal the critical aspects
of developing disbalanced (biased) reactions.

2.1.1. Virus Spreading in Sensitive Tissue

SARS-CoV-2 targets primarily the respiratory tract spreading in upper (nasal mucosa
and pharynx) and lower respiratory tract (bronchi and lungs). It infects epithelial cells,
ciliated airway cells, alveoli Type 2 cells [26]. The rate of change of the populations of virus-
infected target cells CV(t), type I interferon protected cells CR(t), damaged target cells D(t),
and freely circulating virus V(t) is considered to be governed by the following equations:

dV
dt

(t) = νCV(t)− (γVC(C∗ − CV(t)− CR(t)− D(t)) +

γVF fV(l)F(t) + γVM)V(t), (1)
dCV
dt

(t) = σV(t)(C∗ − CV(t)− CR(t)− D(t))− (bCE fC(l)E(t) + bm)CV(t), (2)

dCR
dt

(t) = σR I(t)(C∗ − CV(t)− CR(t)− D(t))− αRCR(t), (3)

dD
dt

(t) = (bCE fC(l)E(t) + bm)CV(t)− αmD(t). (4)

2.1.2. Innate Immune Defence Reaction

The first line of reaction is related to sensing of the pathogen by the cells of the innate
immune system. The innate immune response module considers the activation of profes-
sional antigen-presenting cells (including CD169 macrophages, and conventional dendritic
cells, DCs) MV(t), type I Interferon (IFN) producing cells (including plasmacytoid DCs)
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MI(t), and type I IFN I(t). The rate of changes of the concentration of these components is
described by the following set of equations:

dMV
dt

(t) = γMV M∗V(t)− αM MV(t), (5)

dMI
dt

(t) = γMI (M∗I −MI)V(t)− αMI MI(t), (6)

dI
dt

(t) = ρI MI(t)− (σI(C∗ − CV(t)− CR(t)− D(t)) + αI)I(t). (7)

Virus spreading in 
sensitive tissue

Innate immune 
response

Antigen-specific immune 
response

Figure 1. Biological scheme of the mathematical model of the immune response in SARS-CoV-2
infection depicting three levels of the virus interactions with the host organism. The first level
is the virus (V) spreading in a sensitive epithelial tissue that consists of the known concentration
of epithelial cells (C∗). Some of them, get infected (CV) and produce new viruses. The infected
cells die (D) either due to the cytopathic effect of the virus or the CTL-mediated killing. At the
second level of the virus-host interaction, the viral population is recognized by cells of the innate
immune system, i.e., the type I IFN-producing cells (APCI) and the antigen-presenting cells (APCV).
The produced type I IFN makes some of the target cells protected from the viral infection (CR). Free
viruses are eliminated by specific antibodies (IgG). Professional antigen-presenting cells activate
the two subsets of CD4 T cells (Th1 and Th2) participating in the regulation of the cellular (CTL)
and humoral immune reactions comprising the third level of the virus-host interaction. B cells
(B) differentiate into plasma cells (P) which secret virus-specific antibodies (IgG) via multiple
interactions. The damage of the target organs induces suppression of the immune responses via
a negative feedback. The inflammation-related enhancement of the functional effect of CTLs and
antibodies on elimination of infected cells and free viruses, respectively, is parameterized in the
model via the relative abundance of virus-infected cells. All viral-, humoral- or cellular components
in the model either die or degrade, however, the respective processes are not shown for clarity of
the figure.

2.1.3. Antigen-Specific Immune Response

The viral antigens processed by antigen-presenting cells activate the clones of CD4
T cells (Th1 HE(t), Th2 HB(t)), CD8 T cells E(t), B cells B(t), the latter resulting in the
generation of plasma cells P(t) and antigen-specific antibodies F(t) via multiple interactions
as shown in Figure 1. The respective equations of their dynamics have the structure
presented below:
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dHE
dt

(t) = bE
H(ξ(m)ρE

H MV(t− τE
H)HE(t− τE

H)−MV(t)HE(t))

−bHE
p MV(t)HE(t)E(t) + αE

H(H∗E − HE(t)), (8)
dHB

dt
(t) = bB

H(ξ(m)ρB
H MV(t− τB

H)HB(t− τB
H)−MV(t)HB(t))

−bHB
p MV(t)HB(t)B(t) + αB

H(H∗B − HB(t)), (9)
dE
dt

(t) = bE
p (ξ(m)ρE MV(t− τE)HE(t− τE)E(t− τE)−MV(t)HE(t)E(t))

−bECCV(t)E(t) + αE(E∗ − E(t)), (10)
dB
dt

(t) = bB
p (ξ(m)ρB MV(t− τB)HB(t− τB)B(t− τB)−MV(t)HB(t)B(t))

+αB(B∗ − B(t)), (11)
dP
dt

(t) = bP
p (ξ(m)ρP MV(t− τP)HB(t− τP)B(t− τP) + αP(P∗ − P(t)), (12)

dF
dt

(t) = ρFP(t)− (γFVV(t) + αF)F(t). (13)

2.1.4. Effects of Inflammation and Tissue Damage

Acute infection with SARS-CoV-2 is characterized by inflammatory reactions and
immune cell recruitment to the site of infection [27]. To represent this enhancing effect of
elimination on the infected cells and free viruses, the following parameterizations are used

fi(l) = 1 + µil, i = V, C, l = CV(t)/C∗. (14)

Finally, severe damage of the upper and lower respiratory tract suppresses the antigen-
specific immune responses [28,29]. This negative feedback regulation is taken into account
via the following function

ξ(D) = 1− D(t)/C∗. (15)

2.1.5. Initial Conditions

The initial conditions for model Equations (1)–(15) were defined as folows:

V(0) = V0, HE(0) = H∗E, HB(0) = H∗B, E(0) = E∗,

B(0) = B∗, P(0) = P∗, F(0) = F∗,

CV(0) = 0, CR(0) = 0, D(0) = 0, MV(0) = 0, MI(0) = 0, I(0) = 0,

(16)

where V0 is the initial viral load in the upper respiratory tract, H∗E, H∗B, E∗ and B∗ are
homeostatic concentrations for antigen-specific Th1, Th2, CTL and B cells in the lung-
draining LNs, P∗ and F∗ are homeostatic concentrations for antigen-specific plasma cells
and antibodies in blood, respectively. We assume no immune activation is present before
the moment of infection:

MV(t) = 0, HE(t) = H∗E, HB(t) = H∗B, E(t) = E∗, B(t) = B∗, t < 0. (17)

2.2. Reference Data on SARS-CoV-2 Infection

In our study, we used recent data on viral kinetics during SARS-CoV-2 human chal-
lenge in young adults [25]. Healthy adult volunteers without evidence of previous infection
were challenged intranasally with 10 TCID50 of a wild-type SARS-CoV-2. Viral load in
twice-daily nose and throat swab samples was measured by qPCR. The original data from
18 infected individuals were expressed as mean ± sem copies per mL. The data set on
viral load kinetics to be used for model calibration was obtained using WebDigitizer from
the Figure 2a of the published study. Mild-to-moderate symptoms defining the reference
disease phenotype were observed in most (89%) of the participants starting from 2 to 4 days
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after inoculation. We did not consider the individual participant data as the summary
statistics on the viral load consistently represent the infection kinetics of the above disease
phenotype. The inter-patient variability of the viral load data is presented as pink shaded
area in Figure 2. Additionally, the data on the scale of the interferon response [30], and the
serum levels of the infected patients of antigen-specific antibodies and CTLs [31] were
taken into account during the model calibration. The data ranges from the above studies
are plotted as green shaded areas in Figure 2.

2.3. Calibration of the Model

The estimate for initial viral load V0 can be derived from the experimental data on
viral load [25] which we aim to reproduce. The participants were inoculated intranasally
with the dose of 10 TCID50 ≈ 7 PFU of SARS-CoV-2. To obtain the initial concentration
V0, we estimate the volume of nasal mucosa as 120–150 cm2 of surface area times the
thickness of 0.3–5 mm [32,33]. This gives us the range of values from 3.6 to 75 mL, with
7 mL being a harmonic mean. Thus, we fix V0 ≈ 7 PFU/7 mL = 1 virion/mL. Note that
more thorough estimates for infection dose and model parameters affecting the incubation
period dynamics should be obtained using discrete-state stochastic models.

The homeostatic concentrations H∗E, H∗B, E∗, B∗ are estimated as follows: the frequency
of antigen-specific cells is about 10−7–10−4 [34–37], there are about 2 × 1011 immune
cells of each type totally in approximately 1 litre of lymphoid tissue of the organism [38],
the volume of the lung-draining lymphoid tissue is about 10 mL (=1%) [23], which gives
the range (10−7, 10−4)× 2× 1011 × 0.01/10 = (20, 20,000) cells/mL. We use the geometric
mean of around 600 cells/mL for the point estimate. The estimates for P∗ and F∗ are
borrowed from [23].

The calibration procedure consists of three stages: (i) deriving the estimates for ad-
missible ranges and initial guesses of model parameters based on available literature,
(ii) choosing a subset of parameters having a large effect on discrepancy between model
solution and data based on sensitivity analysis, (iii) tuning parameters from a chosen subset
in specified ranges to obtain an overall good fit, (iv) final refinement of parameters by
solving a local nonlinear optimization problem to minimize the specified discrepancy.

The measure of discrepancy to be minimized is defined as

Φ(p) =
M

∑
j=1

(V(tj, p)−Vobs
j

Vobs
j

)2

+

(
V(tj, p)−Vobs

j

V(tj, p)

)2, (18)

where V(tj, p) is the viral load predicted by the model with parameter values p at M time
points tj, Vobs

j is the experimental data on viral load at corresponding time points. This
functional weighs similarly both deviations at high and low viral load values [23].

As a starting point, we used the parameter values and ranges specified in the previ-
ously calibrated model of influenza A virus infection [23,24]. Some parameter estimates
were refined, as described below.

To determine a subset of parameters to variate, we analyzed the sensitivity of param-
eters towards the partial sums of functional (18) at certain time points, corresponding to
different stages of infection (see Section 2.4). We can select the following parameters as
having the most effect on each stage:

• First stage (incubation period, 0–3 days): ν, σ, γVC, γVM.
• Second stage (activation of immune response and peak of viral load, 4–7 days) and

third stage (recovery period, 8–13 days): σR, ρI , γVF, γFV , σI , µV , γMI , bP
p , γMV .

• Forth stage (post-symptomatic period, 14–19 days): bCE, γVC, bB
H .

Note that some parameters naturally have influence on several stages. However, one
can derive a good fit by sequentially tuning the subsets of parameters for each stage. Also,
the parameters reported above don’t include parameters for which we already have a good
estimate and narrow ranges from [23].
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For the rate of SARS-CoV-2 virions secretion per infected epithelial cell, ν, we set the
initial guess ν = 130 day−1 and admissible range (10, 1000) day−1 based on our previous
experience of modelling SARS-CoV-2 replication cycle [39,40].

The infection rate of target epithelial cells with SARS-CoV-2, σ, can be estimated
as σ ≈ 1/(tl.c. × VMOI × fD × C∗), where tl.c. is a typical duration of the intracellular
replication cycle, VMOI is a multiplicity of single cell infection, and fD is a fraction of
epithelial cells in lungs damaged during infection [23]. Taking the ranges tl.c. ∈ (7, 24) h,
VMOI ∈ (1, 10) [39,40], and fD ∈ (0.1, 0.5), C∗ ∈ (109, 1010) cells [23], we arrive to the
estimate σ ∈ (2× 10−11, 3× 10−8) (cells/mL)−1day−1.

The expenditure rate of virions on the infection of target cells, γVC, should be balanced
with the infection rate σ. These parameters can be related through γVC = VMOI × σ, where
VMOI is the number of virions infecting a single target cell, for which we set the initial guess
and the range VMOI = 10 ∈ (1, 20).

The rate of CTL-mediated destruction of epithelial cells, bCE, can be estimated using
the scheme suggested in [23]: bCE ≈ 1/(tLN→RT × Esu f ). Here, Esu f is the number of
CTLs sufficient to destroy fD × C∗ epithelial cells, and tLN→RT ∈ (2, 12) h is the typical
time for a CTL to reach the target compartment of respiratory tract mucosa from LNs
draining the lungs. As one CTL can destroy several target cells (≈10), the estimate is
bCE ∈ (4× 10−9, 4× 10−7) (virions/mL)−1day−1.

We used the estimates as initial guesses and ranges from [23] for parameters γVM, γMI ,
σR, σI , γVF, γFV , µV , bP

p , bB
H .

The remaining model parameters were not varied; instead, their values were fixed
to the estimates from [23]. Note that concentrations are reported in Table 1 as numbers of
cells, virions or molecules per mL as opposed to molar units used in the previous work.

Table 1. Parameters of the calibrated model.

Parameter, Units Range, Initial Guess Estimate

M∗ Concentration of APCs, cells/mL (3× 105, 2× 106) 6× 105

M∗I Concentration of IFN-producing APCs, cells/mL (107, 109) 109

H∗E Concentration of SARS-CoV-2 specific Th1 cells, cells/mL (20, 20,000) 600

H∗B Concentration of SARS-CoV-2 specific Th2 cells, cells/mL (20, 20,000) 600

E∗ Concentration of SARS-CoV-2 specific CTLs, cells/mL (20, 20,000) 600

B∗ Concentration of SARS-CoV-2 specific B cells, cells/mL (20, 20,000) 600

P∗ Concentration of SARS-CoV-2 specific plasma cells, cells/mL (2, 42) 10

F∗ Concentration of SARS-CoV-2 specific antibodies, molecules/mL (107, 108) 5× 107

C∗ Concentration of epithelial cells, cells/mL (109, 1010) 1010

αM Rate of stimulated state loss for APCs, day−1 (1, 3.3) 3.3

αE
H Rate of activated state loss for Th1 cells, day−1 (0.8, 1.2) 1

αB
H Rate of activated state loss for Th2 cells, day−1 (0.8, 1.2) 1

αE Rate of natural death for CTLs, day−1 (0.33, 0.5) 0.4

αB Rate of natural death for B cells, day−1 (0.05, 0.1) 0.1

αP Rate of natural death for plasma cells, day−1 (0.33, 0.5) 0.4

αF Rate of natural death for antibodies, day−1 (0.033, 0.1) 0.043

τE
H Duration of Th1 cell division cycle, days (0.4, 0.8) 0.6

τB
H Duration of Th2 cell division cycle, days (0.4, 0.8) 0.6

τE Duration of CTL division cycle, days (0.5, 1) 0.5

τB Duration of B cell division cycle, days (0.5, 1) 0.5

τP Duration of B cell differentiation into plasma cells, days (0.5, 1) 0.5



Mathematics 2022, 10, 3154 8 of 27

Table 1. Cont.

Parameter, Units Range, Initial Guess Estimate

ρE
H Number of Th1 cells created during division cycle (2, 4) 4

ρB
H Number of Th2 cells created during division cycle (2, 4) 4

ρE Number of CTLs created during division cycle (2, 4) 2

ρB Number of B cells in clone created by series of 1 or 2 divisions (1.5, 3) 3

ρP Number of plasma cells in clone created by series of 1 or 2 divisions (0.5, 1) 1

ρF Rate of IgG production per plasma cell, molecules/cell/day (8.5× 105, 1.7× 106) 1.7× 106

bE
H Rate of Th1 cells stimulation, (cells/mL)−1day−1 (5× 10−7, 4.5× 10−4), 4.5× 10−5 4.8× 10−5

bB
H Rate of Th2 cells stimulation, (cells/mL)−1day−1 (5× 10−7, 4.5× 10−4), 4.5× 10−5 9.2× 10−5

bE
p Rate of CTL stimulation, (cells/mL)−2day−1 (6× 10−11, 4× 10−6), 1.4× 10−8 2.4× 10−6

bB
p Rate of B cell stimulation, (cells/mL)−2day−1 (6× 10−12, 5× 10−8), 2.2× 10−9 3.9× 10−8

bP
p Rate of plasma cell stimulation, (cells/mL)−2day−1 (1.4× 10−10, 3× 10−9), 2.2× 10−9 3× 10−9

bHE
p Rate of Th1 cells suppression, (cells/mL)−2day−1 (6× 10−15, 4× 10−10) 2.8× 10−13

bHB
p Rate of Th2 cells suppression, (cells/mL)−2day−1 (6× 10−16, 5× 10−12) 2.8× 10−13

γMV Rate of APC stimulation, (cells/mL)−1day−1 (1.7× 10−13, 10−7), 2× 10−6 1.9× 10−9

γFV Rate of IgG binding to SARS-CoV-2, (virions/mL)−1day−1 (1.4× 10−10, 1.4× 10−8),
1.4× 10−9 2.8× 10−9

σ Rate of epithelial cell infection with SARS-CoV-2, (cells/mL)−1day−1 (2× 10−11, 3× 10−8), 10−10 1.4× 10−10

bCE Rate of infected epithelial cell damage by CTLs, (virions/mL)−1day−1 (4× 10−9, 4× 10−7), 5× 10−8 4× 10−9

bEC
Rate of CTL death due to lytic interactions with infected cells,
(cells/mL)−1day−1 (10−10, 4× 10−7) 2.7× 10−10

bm Rate of infected cell damage due to SARS-CoV-2 cytopathicity, day−1 (0.5, 2) 1.5

αm Rate of epithelial cell regeneration, day−1 (1, 4) 4

ν Rate of SARS-CoV-2 virions secretion per infected epithelial cell, day−1 (10, 104), 130 144

γVC Rate of SARS-CoV-2 absorption by epithelial cell, (cells/mL)−1day−1 (2× 10−11, 6× 10−7), 10−9 3.2× 10−9

γVM Rate of nonspecific SARS-CoV-2 elimination, day−1 (2, 4), 1.7 4

γVF Rate of SARS-CoV-2 neutralization by specific IgG, (virions/mL)−1day−1 (1.4× 10−11, 1.4× 10−8),
1.4× 10−9 1.4× 10−8

µV Parameter for inflammation-based enhancement of IgG effect (10, 105), 1000 2628

µC Parameter for inflammation-based enhancement of CTL effect (10, 105), 1000 1407

γMI Rate of induction of IFN-producing state in APCs, (cells/mL)−1day−1 (2.3× 10−9, 2.3× 10−7),
1.7× 10−8 5.7× 10−8

αMI Rate of IFN-producing state loss by APCs, day−1 (0.3, 0.5) 0.5

ρI Rate of IFN production per IFN-producing cells, molecules/cell/day (500, 12,000) 6000

αI Type I IFN clearance rate, day−1 (10, 100) 24

σI Rate of IFN binding with epithelial cells, (cells/mL)−1day−1 (1.7× 10−11, 1.7× 10−9),
1.7× 10−9 1.7× 10−11

σR Rate of virus-resistant state induction in epithelial cells, (cells/mL)−1day−1 (3.3× 10−12, 3.3× 10−10),
3.3× 10−11 9.9× 10−11

αR Rate of virus-resistant state loss in epithelial cells, day−1 (0.5, 1.5) 1

For final stage of calibration, we numerically solved a problem of minimizing (18)
with respect to parameters, using a local method. We used first the derivative-free Nelder-
Mead method, followed by the derivative-based quasi-Newton L-BGFS method using the
meta-package Optimization.jl in julia language.

The final estimates of calibrated model parameters p are presented in Table 1. Initial
guess is reported only for parameters which were tuned during the calibration process.
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The calibrated model parameters correspond to discrepancy Φ(p) = 1086. The baseline
solution of the model describing the intra-host SARS-CoV-2 infection and antiviral immune
response dynamics and the available clinical data are shown in Figure 2.

Figure 2. Baseline solution of the model describing the intra-host SARS-CoV-2 infection dynamics
and the available clinical data. The inter-patient variability of the viral load data is presented as a
pink shaded area. The scale of the type I interferon response and the serum levels of antigen-specific
antibodies and CTLs are shown as green shaded areas. The dotted line on the viral load panel refers
to the median level of viral load on the day of symptoms onset [41].

2.4. Sensitivity Analysis

Sensitivity analysis was employed both as exploratory tool in the calibration process,
and as a way to derive meaningful predictions of the calibrated model. We used a local
sensitivity approach, in which sensitivity indices of some functional of the model solution
Φ(y(p)) with respect to variations in model parameters pj are defined as

sj =
dΦ
dpj

(p), ŝj = pjsj, (19)

and provide a measure of the influence of parameter variations on the functional. The
normalized version ŝj of sensitivity indices provides the way to compare and rank the
parameters based on their effect.

We used the following functionals of interest in this work:

ΦAUC =
∫ T

0
V(t)dt, Φpeak = max

t∈[0,T]
(V(t)), (20)

where ΦAUC refers to the cumulative viral load during the time course of infection, Φpeak is
the peak viral load. Additionally, we analyzed sensitivity of the functional of discrepancy
with experimental data (18) at various subsets of time points during the calibration process.
The value of T is taken to be 25 days corresponding to the time of virus clearance according
to the clinical data. All sensitivity indices were calculated using forward-mode automatic
differentiation available in the package ForwardDiff.jl in julia language.
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The calibrated mathematical model is a nonlinear system of equations with parame-
ters characterized by uncertainty ranges specified in Table 1. Hence, a global sensitivity
analysis of the model output is required to complement the local analysis. A likely non-
monotonic relationship between the parameters and the model output suggests that the
variance-based method of sensitivity analysis based on decomposition of the output vari-
ance needs to be applied. We utilized the extended Fourier Amplitude Sensitivity Test
(eFAST) method which allows to quantify the fraction of the model output variance that
can be explained by variation in every model input parameter [42]. The total number
of samples per search curve was Ns = 2000. The eFAST provides the estimates of the
first-order sensitivity and total-order sensitivity for each model parameter. They were
averaged over Nr = 10 resamples.

3. Results
3.1. Local Sensitivity Analysis

The sensitivity analysis of the cumulative viral load, which is an important character-
istic affecting positively and negatively the dynamics of immune responses [43], showed a
strong positive dependence on the virus secretion rate, the target cell infection rate and the
number of available target cells expressing ACE2. It is most strongly negatively affected
by the parameter of innate immune response related to activation of APCs and type I IFN
system as summarized in Figure 3. The peak viral load has a similar sensitivity ranking
with respect to the most influential parameters, see Figure 4.
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Figure 3. Local parameter variation. Normalized sensitivity indices for cumulative viral load
ΦAUC(p) = 1.6× 108.
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Figure 4. Local parameter variation. Normalized sensitivity indices for viral load peak
Φpeak(p) = 5.9× 107.

3.2. Global Sensitivity Analysis

To examine the variability of the model output emerging from uncertainty in param-
eter values, a global sensitivity analysis was performed by applying the eFAST method.
As model solution-dependent functional, we considered two model outputs, i.e., cumula-
tive viral load and the peak viral load. Although the estimates for the admissible ranges on
model parameters are specified in Table 1, a direct use of them as lower and upper bounds
in sampling parameters might be inappropriate as these ranges characterize the uncer-
tainty for each individual parameter without taking into account their possible interactions.
To keep the parameter uncertainty within the range consistent with the mild-to-moderate
disease phenotype, the respective scale of the parameter variance was identified to be
around 20% of the basal values. The 90% band characterising the variability of the model
solution is shown in Figure 5. The uniform distribution on the ranges was assumed for all
model parameters. The results are summarized in Figures 6 and 7, respectively. For both
outputs, the virus spreading parameters in target organs, the free virus elimination rates
and the type I IFN response demonstrate the strongest parameter-specific contribution to
the variability in virus dynamics.
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Figure 5. Mild-to-moderate disease severity phenotype. Variability of the model solution due to
20% variation of the parameter values around their basal values specified in Table 1 is presented as
medians and 90% confidence bands based on 0.05 and 0.95 percentiles.

3.3. Induction of Antigen-Presenting Cells

The cascade of antiviral immune responses starts with activation of antigen-presenting
cells. The sensitivity threshold is characterized by the model parameter γMV . We examined
the effect of its 10-times increase and decrease on the course of the virus infection as shown
in Figure 8 characterizing the rate constant of the antigen-presenting cell stimulation.
The model predicts that a higher sensitivity induces faster and stronger responses, which
spread through the whole response cascade (see the panel under heading Antigen-specific
immune response). However, a ten-fold decrease results in higher viral antigen levels
which are needed to induce activation of the immune system, which delays the immune
response and finally favours prolonged viral persistence (see the panel under heading
Infection spreading). Interestingly, that a stronger type I IFN response is not sufficient to
clear the infection in this case (see the panel under heading Innate response).
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Figure 8. Effect of the rate constant of the antigen presenting cell stimulation. Dashdot: 10-fold
increase of γMV , dot: 10-fold decrease of γMV relative to baseline value.

3.4. Induction of Type I IFN Response

The ten-fold increase in the rate constant of activation of type I IFN response γMI
results in a lower viral peak, as one can see in Figure 9 (see also the panel under heading
Infection spreading). However, this affects the activation of antigen-presenting cells and the
resulting reduced response percolates through to antigen-specific arms (see the panel under
heading Innate response). Both the T-cell and B-cell responses appear to be weaker (see
the panel under heading Antigen-specific immune response). The virus is not eliminated
within 25 days, so that the viral persistence is observed. A similar decrease in γMI leads to
a poorer control of viral load so that it reaches higher peaks. The antigen-specific response
turns out to be stronger. However, the damage of the target organs also increases by one
order of magnitude.

The effect of 10-fold variation of the parameter σR characterizing the rate constant of
type I IFN-mediated induction of resistance to infection of target cells expressing ACE2 is
displayed in Figure 10. Its impact on the solution of the model is similar to that of γMI .
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Figure 9. Effect of the rate constant of the activation of type I IFN response. Dashdot: 10-fold increase
of γMI , dot: 10-fold decrease of γMI relative to baseline value.

Figure 10. Effect of the rate constant of type I IFN-mediated induction of resistance to infection of
target cells. Dashdot: 10-fold increase of σR, dot: 10-fold decrease of σR relative to baseline value.

3.5. Disregulation of CTL and B-Cell Responses

Next, we examined the extent of kinetic cooperativity between the T- and B cell
responses. To this end, a 10-fold variation was applied to parameter bB

p , the clonal activation
rate constant of B cells. The results are summarized in Figure 11. An earlier activation
of the humoral immune response (see the panel under heading Antigen-specific immune
response) results in faster (by 5 days) viral elimination (see the panel under heading
Infection spreading) but reduces the CTL response (see the panel under heading Antigen-
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specific immune response). A delayed activation of B cells critically affects the dynamics of
infection, resulting in a prolonged viral persistence.

Figure 11. Effect of the rate constant of the B cell clonal activation. Dashdot: 10-fold increase of bB
p ,

dot: 10-fold decrease of bB
p relative to baseline value.

A similar exploration of the effect of two-fold increasing the activation rate constant of
CTL clonal expansion, i.e., bE

p , at the background of an opposite two-fold variation of the
activation rate of B cells bB

p is shown in Figure 12. The increase in CTL responsiveness turns
out to be much stronger (see the panel under heading Antigen-specific immune response)
but it fails to eliminate the infection (see the panel under heading Infection spreading)
because the humoral immune response is not sufficient. The effect of the reduced activation
rate of CTL response can be compensated by a two-fold increase in the activation rate of B
cells, so that the infection is completely eliminated.

The 10-fold increase in the differentiation rate constant of antigen-specific B cells into
plasma cells bP

p leads to an earlier appearance of antibodies, as displayed in Figure 13 (see
the panel under heading Antigen-specific immune response). However, the clonal expan-
sion of B cells and CTL is smaller, which finally results in failure of the system to eliminate
the virus (see the panel under heading Infection spreading). Reduced differentiation rate
slightly increases the duration of the peak viral load but stronger B- and T cell responses
finally eliminate the virus infection five days earlier compared to the basal solution pattern.
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Figure 12. Effect of the rate constant of the CTL clonal activation. Dashdot: 2-fold increase of bE
p with

2-fold decrease of bB
p , dot: 2-fold decrease of bE

p with 2-fold increase of bB
p relative to baseline value.

Figure 13. Effect of the differentiation rate constant of antigen-specific B cells into plasma cells.
Dashdot: 10-fold increase of bP

p , dot: 10-fold decrease of bP
p relative to baseline value.

A higher extent of variation of the differentiation rate of B cells into plasma cells bP
p

(i.e., by 40-times) changes the dynamics as shown in Figures 14. The respective increase
results in sufficient production of antibodies (see the panel under heading Antigen-specific
immune response) eliminating the virus (see the panel under heading Infection spreading).
However, the cumulative viral load is smaller and, hence, we observe the expansion of T
cells and B cells. The decrease of the differentiation rate of B cells into plasma cells results in
an delayed but enhanced Th1, Th2, CTL and B cell and plasma cell expansion (see the panel
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under heading Antigen-specific immune response). This solution trajectory is characterized
by a higher number of damaged infected target cells and prolonged viral persistence at the
peak levels (see the panel under heading Infection spreading).

Figure 14. Effect of stronger variation of the differentiation rate constant of antigen-specific B cells into
plasma cells. Dashdot: 40-fold increase of bP

p , dot: 40-fold decrease of bP
p relative to baseline value.

3.6. Asymmetry of Th1 versus Th2 Responses

It has been recently observed that epidemiological data show a reduced risk of severe
COVID-19 in SARS-CoV-2 infected patients with the type 2 asthma [44]. Asthma is con-
sidered to be associated with a dominance of T helper 2 (Th2) cells. We used the model
to predict the impact of a stronger activation rate constant of Th2 cells bB

H compared to
Th1 cells on the dynamics of infection. The results are presented in Figure 15. The ten-fold
increase of the clonal expansion rate of Th2 cells leads to an earlier elimination of virus
(see the panel under heading Infection spreading) due to enhanced (by several orders or
magnitude) humoral immune response, with the CTL response left almost unchanged (see
the panel under heading Antigen-specific immune response). However, a similar reduc-
tion in the activation rate essentially reduced all components of the B-cell and antibody
responses. The stronger induction of CTL response is not enough to compensate for the
weaker humoral immune response and the prolonged viral persistence is predicted.

The biased towards Th2 cells antigen-specific immune response could also be a conse-
quence of a larger homeostatic number of this population compared to Th1 cells, i.e., the
concentration of SARS-CoV-2 specific Th2 cells. Figure 16 shows the effect of a five-times
variation of the respective parameter H∗B. A higher initial number of SARS-CoV-2-specific
Th2 cells leads to an earlier and stronger B-cell response (see the panel under heading
Antigen-specific immune response) and faster virus elimination (see the panel under head-
ing Infection spreading). Similar reduction results in a delayed CTL and B-cell responses
and prolonged viral persistence.
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Figure 15. Effect of the activation rate constant of Th2 cells. Dashdot: 10-fold increase of bB
H , dot:

10-fold decrease of bB
H relative to baseline value.

Figure 16. Effect of the homeostatic concentration of SARS-CoV-2 specific Th2 cells. Dashdot: 5-fold
increase of H∗B, dot: 5-fold decrease of H∗B relative to baseline value.

3.7. Kinetic Mechanisms of Long COVID-19 Pathogenesis

Following the above examination of the degree of synchrony in the cascade of antiviral
immune response, we estimated the degree of variation in the respective parameters which
lead to prolonged viral persistence, i.e., beyond 30 days post infection. The results are
summarized in Table 2.
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Table 2. Thresholds for individual parameter variations which lead to virus persistence. Abbrevia-
tions for the parameters: γMV—rate constant of APC stimulation; bP

p —rate constant of plasma cell
stimulation; bB

p —rate constant of B cell stimulation; bE
p —rate constant of CTL stimulation; bB

H—rate
constant of Th2 cells stimulation; bE

H—rate constant of Th1 cells stimulation; γMI —rate constant of
induction of IFN-producing state in APCs; σR—rate constant of virus-resistant state induction in
epithelial cells; µV—parameter for accounting the inflammation-based enhancement of IgG effect;
µC—parameter for accounting the inflammation-based enhancement of CTL effect.

Parameter γMV bP
p bB

p bE
p bB

H bE
H γMI σR µV µC

Variation ÷1.12 ×3 ÷1.4 − ÷1.15 − ×1.15 ×1.06 ×1.3 ×8× 104

The model predicts that a 12%, 15% and 6% shift in the values of innate immune
cell activation parameters, i.e., γMV , γMI , σR respectively, turns out to be sufficient to
extend the viral persistence beyond 30 days post infection. Thus, the kinetic ratios
between the parameters of the innate immunity (rate of APCs activation, rate of induction
of IFN-producing state in APCs and rate of virus-resistant state induction in epithelial
cells) appeared to be of high importance for the host to resist the infection and to eliminate
the virus quickly. The model predicts that 12% decrease of activated APCs could result
in a prolonged virus persistence and can be dangerous. Indeed, severe SARS-CoV-2
infection is associated with the impaired ability of dendritic cells to present antigens and
to produce type-I IFN [45]. The robustness with respect to the B cell proliferation and
differentiation shift is stronger. The inflammation-related enhancement of virus- and
infected cell elimination parameters µV , µC is robust to 30% and 8× 104-fold increase,
respectively. 15% reduction of the activation rate of Th2 cells compared to Th1 cells results
in prolonged virus persistence.

3.8. Individual’s Infectiousness

The kinetics of the viral load in upper respiratory tract reproduced by the model can
be translated into the estimates of the number of viruses expelled by an infected individual
during talking via droplets [9]. Given the estimate of the volume of the expelled droplets
Vdroplets = 1.1× 10−4 mL [9], we can obtain the number of expelled virions (infectiousness)
as Vdroplets × V(t). The time-course of an airborne transmission intensity of an infected
person as predicted by the calibrated model is presented in Figure 17.

3.9. Day-by-Day Use of the Model

Mathematical models provide a theoretical tool to describe, explain, and predict the
features of SARS-CoV-2 interaction with the human organism. The developed model of
infection with SARS-CoV-2 describes some of the available patients’ data [25]. It proposes
a novel hypothesis on the effect of kinetic coordination of innate and adaptive immune
reactions in the establishment of prolonged viral persistence. A rigorous validation of this
conceptually new regulatory mechanism requires substantial well controlled experimental
and clinical studies and thus goes beyond the scope of our research. To illustrate the
power of the model in addressing existing controversial issues concerning the pathogenesis
and treatment of SARS-CoV-2 infection, we added the analysis of the effect of passive
immunotherapy with virus-specific antibodies on the duration of the infectiousness and
symptoms for COVID-19 patents. The existing treatments with immunoglobulins include
the use of convalescent plasma therapy, intravenous immunoglobulins, and monoclonal
antibody therapy [46]. The regimens used are highly variable [47,48]. As a proof-of-
concept, we simulated a daily introduction of virus-specific IgG at doses ranging from
0.4 × 1010 to 1011 molecules/mL starting from day 2 post establishment of symptoms
during 5 days treatment period. The model predicts that 25-times increase of the dose of
administered IgG results in shortening of the period of viral load above the infectiousness
threshold from 7 days to 3 days for the considered set of model parameters as shown in
Figure 18. Further translation of the predicted dynamics of viral load into infectiousness
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of the patients requires application of the probabilistic model linking the viral load to the
infectiousness, as elaborated recently in [21]. The duration of the symptomatic period of
COVID-19 reduced from 8 to 3.6 days. The simulations also showed that smaller amounts
(below some threshold) of IgG can favour a prolonged viral persistence resembling the
experimental observation that convalescent plasma, administered to medium titers, has
limited efficacy, even when given very early after infection [47]. Overall, these model-
generated predictions corroborate empirical findings that the use of high doses of virus-
specific immunolglobulins in treatment of COVID-19 is effective but not without potentially
adverse consequences [47,49,50].

Figure 17. Kinetics of the number of virions in expelled droplets during the time course of mild-to-
moderate severity infection.

Figure 18. The predicted effect of immunoglobulins-based treatment on the duration of symptoms
(left) and the period of viral load above the infectiousness threshold (right). The simulations consider
daily injection of virus-specific IgG at doses ranging from 0.4× 1010 to 1011 molecules/mL starting
from day 2 post establishment of symptoms during 5 days treatment period.
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4. Discussion

In this study we developed a calibrated mathematical model of antiviral immune
response to SARS-CoV-2 infection. Recently published data sets from the human challenge
studies with SARS-CoV-2 were used for parameter estimation [25]. The viral load data
for the model calibration characterize the kinetics in the upper respiratory tract (the nose
compartment). The data on the scale of the interferon response [30], the antigen-specific
antibodies and CTLs [31] refer to their respective levels in serum of the infected patients.
The model considers innate and antigen-specific responses to SARS-CoV-2 infection. In turn,
the innate subsystem of equations describes the dynamics of the type I IFN response and
antigen presentation. The antigen specific immune response includes the clonal dynamics
of Th1- and Th2 CD4 T cells, CD8 T cells, B cells, plasma cells and antibodies. The effect of
inflammatory responses on elimination of the virus and infected cells is taken into account.
The damage of the infected target cells (epithelial and endothelial cells, ciliated airway
cells, alveoli type 2 cells) results in the suppression of antigen-specific immune responses.
In our view, the model details provide an appropriate balance between the description of
the complexity of SARS-CoV-2 infection and the consistency with the quantitative view of
a mild-to-moderate symptoms COVID-19 [1,30,31,51].

Consideration of multiple immune reaction components in a single calibrated mathe-
matical model allows one to address some fundamental issues related to the pathogenesis of
COVID-19, e.g., sensitivity of peak viral load to parameters characterizing specific response
components, the kinetic coordination of the individual responses, and factors favoring
prolonged viral persistence. The sensitivity of the dynamics of viral load to the activation
rates of the immune system components is examined at two scales, i.e., a fine-resolution
scale and globally. The first one allowed us to identify the exact biases in the activation rates
that lead to a prolonged persistence of SARS-CoV-2. To check whether this phenomenon is
robust, we also considered a large-scale variation of the activation rates, e.g., the 10-fold
change of the respective parameters.

Our model-based analyses suggest that the sequele of immune responses differentially
mounted by innate and adaptive subsystems needs to be kinetically synchronized to ensure
an optimal induction of the whole cascade. An improper increase in the activation rate
of a single component may cause reduced responses of the others, thus favouring the
virus persistence. This observation corroborates results of the recent studies on age-related
differences in immune dynamics in SARS-CoV-2 infection of non-human primates [52] and
a delayed viral clearance in some asymptomatic human infections [53]. It was summarized
that the major difference between the young and old rhesus macaques is a much stronger
innate response and a delayed antigen-specific response in older animals [52]. The dysreg-
ulation of innate and adaptive immune responses was considered to result in a prolonged
SARS-CoV-2 persistence [53].

The above finding bears a direct implication for a mechanistic understanding of
prolonged viral persistence, i.e., beyond 30 days post infection. The problem of long
COVID-19 is emerging as a key pathological consequence of SARS-CoV-2 infection [54,55].
Although the set of etiological factors is very broad [56], the residual persistence of viral
RNA is considered among them [57]. We identified the thresholds in the increase of the
innate and adaptive responses parameters which lead to a prolonged persistence of SARS-
CoV-2 due to the loss of a kinetic synchrony/coordination of the responses, i.e., to the loss
of an optimal pattern of their cascade. We suggest that the parameters from Table 2 could
appear useful for clinical physicians in predicting the disease outcome. Finally, the model
can be used to predict the intensity of airborne infection spreading by infected individuals,
e.g., the amount of virus which is transmitted via droplets from a SARS-CoV-2 infected
person, depending on the time of infection and the immune response parameters. This
type of estimates provide a direct information that may be included in the epidemiological
models of virus spreading in the human population [58,59]. We note that a probabilistic
model was recently elaborated linking the viral load and the host infectiousness [21]. It
was used to evaluate the effectiveness of PCR and antigen-based testing.



Mathematics 2022, 10, 3154 24 of 27

Calibration of the developed model of SARS-CoV-2 infection is based on a limited
set of empirical data. However, for all processes considered in the model, various param-
eterizations could be used. To proceed with the identification of optimal descriptions of
the immune responses to SARS-CoV-2, quantitative definitions of COVID-19 dynamics-
and outcome phenotypes are needed. These should define the regulation levels, processes,
tissues and organs to be considered in the models and enable a rational implementation of
the reductionist approach to model refinement. A final objective would be the application
of the minimum description length-based methodology for a parsimonious mapping (using
the model equations) of the virus and immune system parameters to the observed spectrum
of COVID-19.

From an immunophysiological side, the future development of the model will be
related to a fine tuning of parameters and compartmental (multi-organ) extension of the
equations to deal with the systemic aspects of COVID-19 [27,60]. A fundamental issue
which remains to be explored is the incorporation of the regulatory feedbacks into the model,
e.g., taking into account the pleiotropic effects of type I IFN, cytokines and networking of
immune cells subsets. However, these refinements should go in coordination with clinical
and experimental studies so that the increase of the model complexity could be justified.

The calibration of the mathematical model of SARS-CoV-2 infection is based on combin-
ing the parameter guesses from our earlier study of influenza A virus infection, some recent
quantitative models of SARS-CoV-2 infection and clinical data-based parameter estimation
of a subset of the model parameters. Hence, the calibrated mathematical model represents
a theoretical exploration type of study, i.e., ‘in silico patient’ with mild-to-moderate severity
phenotype, rather than a completely validated quantitative model of COVID-19 regarding
all its state-space variables.

The local sensitivity analysis allowed us to evaluate the effects of small parameter
variations around the model parameters which were calibrated to describe the mild-to-
moderate disease phenotype. For parameter sets corresponding to another clinical outcome,
e.g., asymptomatic, severe or critical phenotype, the local sensitivity indices could change
significantly. Therefore, in future studies the local sensitivity analysis should be performed
and compared for various disease phenotypes. In addition, we performed the global
sensitivity analysis for our model by applying the eFAST method (a variation of Sobol
method utilizing the search in Fourier space). It is appropriate for general nonlinear models,
allowing the decomposition of the variance of the model solution uncertainty on the first
and total order components related to variations of individual parameters. Although the
estimates for the admissible ranges on model parameters are specified in Table 1, a direct
use of them as lower and upper bounds in sampling parameters might be inappropriate
as these ranges characterize the uncertainty for each individual parameter without taking
into account their possible interactions. To keep the parameter uncertainty within the
range consistent with the mild-to-moderate disease phenotype, the respective scale of the
parameter variance was identified to be around 20% of the basal values. The uniform
distribution on the ranges was assumed for all model parameters.

Mathematical models of infectious disease can be formulated as descriptive, explana-
tory or predictive ‘in silico’ tools. Although the SARS-CoV-2 infection of humans is a multi-
factorial systemic phenomenon and induces a broad spectrum of disease kinetics and sever-
ity, the mathematical models of COVID-19 do not need necessarily be high-dimensional
or notoriously complex. The available mathematical models serve as reductionist-type
representations of the real SARS-CoV-2—human organism interactions. The maturation of
the model functionality from a mere descriptive tool to a predictive exploratory method re-
quires a genuine collaboration of the modelers with clinical immunologists and virologists
in order to implement a question-driven data-based mechanistic approach. The availability
of mathematically well-posed and statistically calibrated models of specfic processes would
be a key step in developing the spectrum of toolkits for addressing practically relevant
issues of COVID-19 pathogenesis and treatment.



Mathematics 2022, 10, 3154 25 of 27

Overall, our study highlights the value of mathematical modelling in gaining a mech-
anistic view of the kinetic regulations of SARS-CoV-2 infections and antiviral immune
responses. It enables to draw novel hypotheses clarifying the concept of the ‘numbers
game’ [61] or race between viral replication and activation of immune system arms [51],
i.e., the kinetic coordination of multi-component immune reactions, on the course and
outcome of COVID-19.
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