Boundary Value Problem of Space-Time Fractional Advection Diffusion Equation
Abstract
:1. Introduction
2. Theoretical Preliminaries
- 1.
- 2.
3. Analytical Solution of STFADE
- 1.
- The corresponding eigenfunctions are given by , where the eigenvalues are zeros of the Mittage–Leffler function with .
- 2.
- The system of eigenfunctions is complete in
- 3.
- All eigenvalues are in the sector .
4. Numerical Solution of STFADE
5. Analysis of the Numerical Solution
6. Examples
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, A.T. Advances in Fractional Calculus. In Theoretical Developments and Applications in Physics and Engineering; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Aleroev, M.; Aleroev, H.; Aleroev, T. Proof of the completeness of the system of eigenfunctions for one boundary-value problem for the fractional differential equation. AIMS Math. 2019, 4, 714–720. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Random Walk Models for Space Fractional Diffusion Processes. Fract. Calc. Appl. Anal. 1998, 1, 167–191. [Google Scholar]
- Mainardi, F.; Luchko, Y.; Pagnini, G. The fundanental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 2001, 4, 153–192. [Google Scholar]
- Shymanskyi, V.; Sokolovskyy, Y. Variational Method for Solving the Viscoelastic Deformation Problem in Biomaterials with Fractal Structure. In Proceedings of the Information Technology and Implementation (IT&I-2021), CEUR Workshop Proceedings, online, 1–3 December 2021; pp. 125–134. [Google Scholar]
- Shymanskyi, V.; Sokolovskyy, Y.; Boretska, I.; Sokolovskyy, I.; Markelov, O.; Storozhuk, O.M. Application of FEM with Piecewise Mittag-Leffler Functions Basis for the Linear Elasticity Problem in Materials with Fractal Structure. In Proceedings of the 2021 IEEE XVIIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, Ukraine, 12–16 May 2021; pp. 16–19. [Google Scholar]
- Alidousti, J.; Ghafari, E. Dynamic behavior of a fractional order prey-predator model with group defense. Chaos Solitons Fractals 2020, 134, 109688. [Google Scholar] [CrossRef]
- Rihan, F.A.; Rajivganthi, C. Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators. Chaos Solitons Fractals 2020, 141, 110365. [Google Scholar] [CrossRef]
- Alidousti, J.; Ghahfarokhi, M.M. Stability and bifurcation for time delay fractional predator prey system by incorporating the dispersal of prey. Appl. Math. Model. 2019, 72, 385–402. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, W.; Aouiti, C.; Liu, Z.; Yao, L. Further analysis on dynamical properties of fractional-order bi-directional associative memory neural networks involving double delays. Math. Methods Appl. Sci. 2022, 1–19. [Google Scholar]
- Alidousti, J. Stability and bifurcation analysis for a fractional prey–predator scavenger model. Appl. Math. Model. 2020, 81, 342–355. [Google Scholar] [CrossRef]
- Aleroev, T. Solving the Boundary Value Problems for Differential Equations with Fractional Derivatives by the Method of Separation of Variables. Mathematics 2020, 8, 1877. [Google Scholar] [CrossRef]
- Mahmoud, E.; Orlov, V.N. Numerical Solution of Two Dimensional Time-Space Fractional Fokker Planck Equation with Variable Coefficients. Mathematics 2021, 9, 1260. [Google Scholar] [CrossRef]
- Sandev, T.; Zivorad, T. The general time fractional wave equation for a vibrating string. J. Phys. A Math. Theor. 2010, 43, 055204. [Google Scholar] [CrossRef]
- Aleroev, T.S.; Elsayed, A.M. Analytical and Approximate Solution for Solving the Vibration String Equation with a Fractional Derivative. Mathematics 2020, 8, 1154. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions Related Topics and Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Aleroev, T.S.; Elsayed, A.M.; Mahmoud, E.I. Solving one dimensional time-space fractional vibration string equation. IOP Mater. Sci. Eng. Conf. Ser. 2021, 1129, 012030. [Google Scholar] [CrossRef]
- Aleroev, T.S.; Kirane, M.; Tang, Y. The boundary-value problem for a differential operator of fractional order. J. Math. Sci. 2013, 194, 499–512. [Google Scholar] [CrossRef]
- Ali, M.; Aziz, S.; Malik, S. Inverse source problems for a space-time fractional differential equation. Inverse Probl. Sci. Eng. 2020, 28, 47–68. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. Maximum Principle for the Multi-Term Time-Fractional Diffusion Equations with the Riemann-Liouville Fractional Derivatives. Appl. Math. Comput. 2015, 257, 40–51. [Google Scholar] [CrossRef]
- Wang, P.D.; Huang, C.M. An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 2015, 293, 238–251. [Google Scholar] [CrossRef]
- Sousa, E.; Li, C. A weighted finite difference method for the fractional diffusion equation based on the riemann–liouville derivative. Appl. Numer. Math. 2015, 90, 22–379. [Google Scholar] [CrossRef]
- Lubich, C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17, 704–719. [Google Scholar] [CrossRef]
- Tang, T. A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 1993, 11, 309–319. [Google Scholar] [CrossRef]
1/20 | ||||||||
1/40 | ||||||||
1/80 | ||||||||
1/160 | ||||||||
1/320 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, E.I.; Aleroev, T.S. Boundary Value Problem of Space-Time Fractional Advection Diffusion Equation. Mathematics 2022, 10, 3160. https://doi.org/10.3390/math10173160
Mahmoud EI, Aleroev TS. Boundary Value Problem of Space-Time Fractional Advection Diffusion Equation. Mathematics. 2022; 10(17):3160. https://doi.org/10.3390/math10173160
Chicago/Turabian StyleMahmoud, Elsayed I., and Temirkhan S. Aleroev. 2022. "Boundary Value Problem of Space-Time Fractional Advection Diffusion Equation" Mathematics 10, no. 17: 3160. https://doi.org/10.3390/math10173160
APA StyleMahmoud, E. I., & Aleroev, T. S. (2022). Boundary Value Problem of Space-Time Fractional Advection Diffusion Equation. Mathematics, 10(17), 3160. https://doi.org/10.3390/math10173160