Preliminary Results on the Preinduction Cervix Status by Shear Wave Elastography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Cervical Evaluation
2.3. Induction Procedures
2.4. Statistical Tools
2.5. Ethics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SWE | Shear Wave Elastography |
SWS | Shear Wave Speed |
IOL | Induction Of Labor |
CL | Cervical Length |
AUC | Area Under Curve |
BS | Bishop Score |
SE | Static Elastography |
ROI | Region Of Interest |
ICC | Intraclass Correlation Coefficient |
ROC | Receiver Operator Characteristics |
References
- Carlson, L.C.; Hall, T.J.; Rosado-Mendez, I.M.; Palmeri, M.L.; Feltovich, H. Detection of Changes in Cervical Softness Using Shear Wave Speed in Early versus Late Pregnancy: An in Vivo Cross-Sectional Study. Ultrasound Med. Biol. 2018, 44, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Aït-Belkacem, D.; Hessabi, M.; Gennisson, J.L.; Grangé, G.; Goffinet, F.; Lecarpentier, E.; Cabrol, D.; Tanter, M.; Tsatsaris, V. Assessment of the cervix in pregnant women using shear wave elastography: A feasibility study. Ultrasound Med. Biol. 2015, 41, 2789–2797. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.M.; Feltovich, H.; Mazza, E.; Vink, J.; Bajka, M.; Wapner, R.J.; Hall, T.J.; House, M. The mechanical role of the cervix in pregnancy. J. Biomech. 2015, 48, 1511–1523. [Google Scholar] [CrossRef]
- Timmons, B.; Akins, M.; Mahendroo, M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol. Metab. 2010, 21, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Vink, J.; Mourad, M. The pathophysiology of human premature cervical remodeling resulting in spontaneous preterm birth: Where are we now? Semin. Perinatol. 2017, 41, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Swiatkowska-Freund, M.; Preis, K. Cervical elastography during pregnancy: Clinical perspectives. Int. J. Womens Health 2017, 9, 245–254. [Google Scholar] [CrossRef]
- Carlson, L.C.; Romero, S.T.; Palmeri, M.L.; Muñoz del Rio, A.; Esplin, S.M.; Rotemberg, V.M.; Hall, T.J.; Feltovich, H. Changes in shear wave speed pre- and post-induction of labor: A feasibility study. Ultrasound Obstet. Gynecol. 2015, 46, 93–98. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, Y.K.Y.; Ho, S.Y.S.; Sahota, D.S.; Hui, L.L.; Poon, L.C.; Leung, T.Y. The predictive value of cervical shear wave elastography in the outcome of labor induction. Acta Obstet. Gynecol. Scand. 2020, 99, 59–68. [Google Scholar] [CrossRef]
- Marconi, A.M. Recent advances in the induction of labor [version 1; peer review: 2 approved]. F1000Research 2019. [Google Scholar] [CrossRef]
- Shields, L.E.; Goffman, D.; Caughey, A.B. ACOG practice bulletin: Clinical management guidelines for obstetrician-gynecologists. Obstet. Gynecol. 2017, 130, e168–e186. [Google Scholar] [CrossRef]
- Mozurkewich, E.L.; Chilimigras, J.L.; Berman, D.R.; Perni, U.C.; Romero, V.C.; King, V.J.; Keeton, K.L. Methods of induction of labour: A systematic review. BMC Pregnancy Childbirth 2011, 11, 84. [Google Scholar] [CrossRef]
- Chen, W.; Xue, J.; Peprah, M.K.; Wen, S.W.; Walker, M.; Gao, Y.; Tang, Y. A systematic review and network meta-analysis comparing the use of Foley catheters, misoprostol, and dinoprostone for cervical ripening in the induction of labour. J. Obstet. Gynaecol. 2016, 123, 346–354. [Google Scholar] [CrossRef]
- Migliorelli, F.; Rueda, C.; Angeles, M.A.; Baños, N.; Posadas, D.E.; Gratacós, E.; Palacio, M. Cervical consistency index and risk of Cesarean delivery after induction of labor at term. Ultrasound Obstet. Gynecol. 2019, 53, 798–803. [Google Scholar] [CrossRef]
- Ezebialu, I.U.; Eke, A.C.; Eleje, G.U.; Nwachukwu, C.E. Methods for assessing pre-induction cervical ripening. Cochrane Database Syst. Rev. 2015, 6, CD010762. [Google Scholar] [CrossRef]
- Kolkman, D.G.; Verhoeven, C.J.; Brinkhorst, S.J.; Van Der Post, J.A.; Pajkrt, E.; Opmeer, B.C.; Mol, B.J. The bishop score as a predictor of labor induction success: A systematic review. Am. J. Perinatol. 2013, 30, 625–630. [Google Scholar] [CrossRef]
- Londero, A.P.; Schmitz, R.; Bertozzi, S.; Driul, L.; Fruscalzo, A. Diagnostic accuracy of cervical elastography in predicting labor induction success: A systematic review and meta-analysis. J. Perinat. Med. 2016, 44, 167–178. [Google Scholar] [CrossRef]
- Fruscalzo, A.; Steinhard, J.; Londero, A.P.; Frohlich, C.; Bijnens, B.; Klockenbusch, W.; Schmitz, R. Reliability of quantitative elastography of the uterine cervix in at - Term pregnancies. J. Perinat. Med. 2013, 41, 421–427. [Google Scholar] [CrossRef]
- Molina, F.S.; Gómez, L.F.; Florido, J.; Padilla, M.C.; Nicolaides, K.H. Quantification of cervical elastography: A reproducibility study. Ultrasound Obstet. Gynecol. 2012, 39, 685–689. [Google Scholar] [CrossRef]
- Fruscalzo, A.; Londero, A.P.; Fröhlich, C.; Meyer-Wittkopf, M.; Schmitz, R. Quantitative Elastography of the Cervix for Predicting Labor Induction Success. Ultraschall Med. 2015, 36, 65–73. [Google Scholar] [CrossRef]
- Mazza, E.; Parra-Saavedra, M.; Bajka, M.; Gratacos, E.; Nicolaides, K.; Deprest, J. In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy. Prenat. Diagn. 2014, 34, 33–41. [Google Scholar] [CrossRef]
- Sigrist, R.M.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 2017, 7, 1303. [Google Scholar] [CrossRef] [PubMed]
- Sarvazyan, A.P.; Rudenko, O.V.; Swanson, S.D.; Fowlkes, J.B.; Emelianov, S.Y. Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol. 1998, 24, 1419–1435. [Google Scholar] [CrossRef]
- Barr, R.G.; Nakashima, K.; Amy, D.; Cosgrove, D.; Farrokh, A.; Schafer, F.; Bamber, J.C.; Castera, L.; Choi, B.I.; Chou, Y.H.; et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: Breast. Ultrasound Med. Biol. 2015, 41, 1148–1160. [Google Scholar] [CrossRef]
- Ferraioli, G.; Filice, C.; Castera, L.; Choi, B.I.; Sporea, I.; Wilson, S.R.; Cosgrove, D.; Dietrich, C.F.; Amy, D.; Bamber, J.C.; et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: Liver. Ultrasound Med. Biol. 2015, 41, 1161–1179. [Google Scholar] [CrossRef] [PubMed]
- Feltovich, H. Elastography applications in pregnancy. In Tissue Elasticity Imaging; Elsevier: Amsterdam, The Netherlands, 2020; pp. 181–196. [Google Scholar]
- Carlson, L.C.; Hall, T.J.; Rosado-Mendez, I.M.; Mao, L.; Feltovich, H. Quantitative assessment of cervical softening during pregnancy with shear wave elasticity imaging: An in vivo longitudinal study. Interface Focus 2019, 9, 20190030. [Google Scholar] [CrossRef] [PubMed]
- Cervical Assessment | FMF Certification | Welcome to the Fetal Medicine Foundation. Available online: https://fetalmedicine.org/fmf-certification-2/cervical-assessment-1 (accessed on 28 July 2022).
- Sugimoto, K.; Moriyasu, F.; Oshiro, H.; Takeuchi, H.; Yoshimasu, Y.; Kasai, Y.; Itoi, T. Clinical utilization of shear wave dispersion imaging in diffuse liver disease. Ultrasonography 2020, 39, 3. [Google Scholar] [CrossRef]
- Hernandez-Andrade, E.; Aurioles-Garibay, A.; Garcia, M.; Korzeniewski, S.J.; Schwartz, A.G.; Ahn, H.; Martinez-Varea, A.; Yeo, L.; Chaiworapongsa, T.; Hassan, S.S.; et al. Effect of depth on shear-wave elastography estimated in the internal and external cervical os during pregnancy. J. Perinat. Med. 2014, 42, 549–557. [Google Scholar] [CrossRef]
- Bishop, E. Pelvic scoring for elective induction. Obstet. Gynecol. 1964, 24, 266–2668. [Google Scholar]
- Guía de Práctica Clínica Sobre la Atención al Parto Normal. Plan de Calidad para el Sistema Nacional de Salud del Ministerio de Sanidad y Política Social; Technical Report; Agencia de Evaluación de Tecnologías Sanitarias del País Vasco (OSTEBA): Vitoria-Gasteiz, Spain, 2010. [Google Scholar]
- American College of Obstetricians and Gynecologists. Operative Vaginal Delivery; Technical Report; American College of Obstetricians and Gynecologists: Washington, DC, USA, 2000. [Google Scholar]
- Cohen, J. Statistical Power Analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M.; Siegert, S.; Doering, M.; Billings, Z.; et al. Package ‘pROC’. Technical Report. Available online: https://cran.r-project.org/web/packages/pROC/pROC.pdf (accessed on 28 July 2022).
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Melamed, N.; Hiersch, L.; Domniz, N.; Maresky, A.; Bardin, R.; Yogev, Y. Predictive value of cervical length in women with threatened preterm labor. Obstet. Gynecol. 2013, 122, 1279–1287. [Google Scholar] [CrossRef]
- Peralta, L.; Molina, F.S.; Melchor, J.; Gómez, L.F.; Massó, P.; Florido, J.; Rus, G. Transient elastography to assess the cervical ripening during pregnancy: A preliminary study. Ultraschall Medizin-Eur. J. Ultrasound 2017, 38, 395–402. [Google Scholar] [CrossRef]
- Wozniak, S.; Czuczwar, P.; Szkodziak, P.; Milart, P.; Wozniakowska, E.; Paszkowski, T. Elastography in predicting preterm delivery in asymptomatic, low-risk women: A prospective observational study. BMC Pregnancy Childbirth 2014, 14, 238. [Google Scholar] [CrossRef]
- House, M.; Kaplan, D.L.; Socrate, S. Relationships between mechanical properties and extracellular matrix constituents of the cervical stroma during pregnancy. Semin. Perinatol. 2009, 33, 300–307. [Google Scholar] [CrossRef]
- Pereira, S.; Frick, A.P.; Poon, L.C.; Zamprakou, A.; Nicolaides, K.H. Successful induction of labor: Prediction by preinduction cervical length, angle of progression and cervical elastography. Ultrasound Obstet. Gynecol. 2014, 44, 468–475. [Google Scholar] [CrossRef]
- Hwang, H.S.; Sohn, I.S.; Kwon, H.S. Imaging Analysis of Cervical Elastography for Prediction of Successful Induction of Labor at Term. J. Ultrasound Med. 2013, 32, 937–946. [Google Scholar] [CrossRef]
- Hee, L.; Rasmussen, C.K.; Schlütter, J.M.; Sandager, P.; Uldbjerg, N. Quantitative sonoelastography of the uterine cervix prior to induction of labor as a predictor of cervical dilation time. Acta Obstet. Gynecol. Scand. 2014, 93, 684–690. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, N.; Chen, Q.; Lv, M.; Jiang, Y.; Chen, Y.; Xi, F.; Yang, M.; Zhao, B.; Huang, H.; et al. Predictive value of cervical length by ultrasound and cervical strain elastography in labor induction at term. J. Int. Med. Res. 2021, 49. [Google Scholar] [CrossRef]
- Strobel, M.K.; Eveslage, M.; Köster, H.A.; Möllers, M.; Braun, J.; de Santis, C.; Oelmeier, K.; Klockenbusch, W.; Schmitz, R. Cervical elastography strain ratio and strain pattern for the prediction of a successful induction of labour. J. Perinat. Med. 2021, 49, 195–202. [Google Scholar] [CrossRef]
- Vink, J.Y.; Qin, S.; Brock, C.O.; Zork, N.M.; Feltovich, H.M.; Chen, X.; Urie, P.; Myers, K.M.; Hall, T.J.; Wapner, R.; et al. A new paradigm for the role of smooth muscle cells in the human cervix. Am. J. Obstet. Obstet. Gynecol. 2016, 215, 478.e1–478.e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swiatkowska-Freund, M.; Preis, K. Elastography of the uterine cervix: Implications for success of induction of labor. Ultrasound Obstet. Gynecol. 2011, 38, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.M.; Socrate, S.; Paskaleva, A.; House, M. A study of the anisotropy and tension/compression behavior of human cervical tissue. J. Biomech. Eng. 2010, 132, 21003. [Google Scholar] [CrossRef] [PubMed]
- Bernal, M.; Chamming’s, F.; Couade, M.; Bercoff, J.; Tanter, M.; Gennisson, J.L. In vivo quantification of the nonlinear shear modulus in breast lesions: Feasibility study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 63, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Alavifard, S.; Meier, K.; Shulman, Y.; Tomlinson, G.; D’Souza, R. Derivation and validation of a model predicting the likelihood of vaginal birth following labour induction. BMC Pregnancy Childbirth 2019, 19, 130. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, A.S.; Sanchez-Ramos, L.; Kaunitz, A.M. Sonographic cervical assessment to predict the success of labor induction: A systematic review with metaanalysis. Am. J. Obstet. Gynecol. 2007, 197, 186–192. [Google Scholar] [CrossRef] [PubMed]
Characteristics (n = 54) | Values |
---|---|
Maternal age (y) | 34 (22–46) |
Gestational age (wk) | 40.4 (34.6–41.9) |
BMI before pregnancy (kg/m2) | 25.6 (19.5–37.2) |
BMI at delivery (kg/m2) | 29.4 (23–39.7) |
Newborn weight (g) | 3222 (1800–4280) |
Nulliparous | 26 (48.1%) |
Parous | 28 (51.9%) |
Cesarean delivery | 26 (48.1%) |
Vaginal delivery | 28 (51.9%) |
Previous Cesarean delivery | 10 (18.5%) |
Examinations | Vaginal Delivery (n = 28) | Cesarean Delivery Indications | |||
---|---|---|---|---|---|
Failure to Enter Active Phase (n = 10) | p-Value | Failure to Progress in Labor (n = 12) | p-Value | ||
Maternal age (y) | 34.5 (31.5–39) | 34.5 (32.0–39.5) | 0.920 | 33.0 (32.0–38.2) | 0.835 |
Gestational age (wk) | 40.1 (39.5–41.5) | 39.8 (38.4–41.3) | 0.301 | 41.1 (40.2–41.7) | 0.378 |
BMI before pregnancy (kg/m2) | 24.6 (21.8–28.3) | 25.7 (22.8–28.2) | 0.612 | 26.3 (23.1–28.2) | 0.202 |
BMI at delivery (kg/m2) | 27.8 (26.7–31.5) | 30.8 (26.5–33.0) | 0.401 | 30.9 (27.4–32.9) | 0.161 |
Newborn weight (g) | 3115 (2980–3412) | 3274 (2885–3300) | 0.907 | 3608.5 (3205.0–3940.0) | <0.01 * |
Nulliparous | 11 (39.3%) | 3 (30.0%) | 0.888 | 9 (75.0%) | 0.084 |
Previous Cesarean delivery | 1 (3.5%) | 7 (70.0%) | <0.01 * | 1 (8.3%) | 0.874 |
SWS External os (m/s) | 2.15 (1.97–2.30) | 1.89 (1.77–2.05) | <0.01 * | 1.94 (1.74–2.06) | 0.092 |
SWS Internal os (m/s) | 1.97 (1.68–2.19) | 1.78 (1.70–1.84)) | 0.484 | 2.13 (1.84–2.42) | 0.123 |
SWS Cervical box (m/s) | 2.25 (1.9–2.46) | 2.00 (1.96–2.04) | <0.05 * | 2.19 (1.97–2.36) | 0.647 |
CL (mm) | 23.9 (19.0–29.3) | 30.5 (25.9–32.4) | <0.05 * | 26.9 (14.1–35.4) | 0.690 |
BS | 4 (3–4) | 3 (1.25–4) | 0.170 | 4 (1.5–4) | 0.361 |
Operator ID | External os | Internal os | Cervix Box |
---|---|---|---|
1 | 0.81 (0.54–0.92) | 0.76 (0.42–0.90) | 0.78 (0.45–0.91) |
2 | 0.65 (0.14–0.86) | 0.18 (−1.03–0.67) | 0.92 (0.80–0.97) |
3 | 0.81 (0.62–0.91) | 0.68 (0.35–0.84) | 0.73 (0.46–0.87) |
USG | OR (Confident Interval) | p-Value |
---|---|---|
External os | 9.50 (1.01–137.48) | 0.06 |
Internal os | 6.20 ( 0.80–76.77) | 0.11 |
Cervix box | 18.36 (1.09–735.02) | 0.07 |
Bishop score | 1.36 (0.88–2.17) | 0.17 |
Cervical length | 0.94 (0.86–1.01) | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, J.; Muñoz, M.; Porcel, M.D.C.; Contreras, S.; Molina, F.S.; Rus, G.; Ocón-Hernández, O.; Melchor, J. Preliminary Results on the Preinduction Cervix Status by Shear Wave Elastography. Mathematics 2022, 10, 3164. https://doi.org/10.3390/math10173164
Torres J, Muñoz M, Porcel MDC, Contreras S, Molina FS, Rus G, Ocón-Hernández O, Melchor J. Preliminary Results on the Preinduction Cervix Status by Shear Wave Elastography. Mathematics. 2022; 10(17):3164. https://doi.org/10.3390/math10173164
Chicago/Turabian StyleTorres, Jorge, María Muñoz, María Del Carmen Porcel, Sofía Contreras, Francisca Sonia Molina, Guillermo Rus, Olga Ocón-Hernández, and Juan Melchor. 2022. "Preliminary Results on the Preinduction Cervix Status by Shear Wave Elastography" Mathematics 10, no. 17: 3164. https://doi.org/10.3390/math10173164
APA StyleTorres, J., Muñoz, M., Porcel, M. D. C., Contreras, S., Molina, F. S., Rus, G., Ocón-Hernández, O., & Melchor, J. (2022). Preliminary Results on the Preinduction Cervix Status by Shear Wave Elastography. Mathematics, 10(17), 3164. https://doi.org/10.3390/math10173164