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* Correspondence: kovacs.zoltan@gtk.uni-pannon.hu

Abstract: Risk-mitigation decisions in risk-management systems are usually based on complex risk
indicators. Therefore, aggregation is an important step during risk assessment. Aggregation is impor-
tant when determining the risk of components or the overall risk of different areas or organizational
levels. In this article, the authors identify different aggregation scenarios. They summarize the
requirements of aggregation functions and characterize different aggregations according to these
requirements. They critique the multiplication-based risk priority number (RPN) used in existing
applications and propose the use of other functions in different aggregation scenarios. The behavior of
certain aggregation functions in warning systems is also examined. The authors find that, depending
on the aggregation location within the organization and the purpose of the aggregation, considerably
more functions can be used to develop complex risk indicators. The authors use different aggregations
and seriation and biclustering to develop a method for generating corrective and preventive actions.
The paper provides contributions for individuals, organizations, and or policy makers to assess and
mitigate the risks at all levels of the enterprise.
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1. Introduction

Risk aggregation plays an important role in various risk-assessment processes [1,2].
Risks can be aggregated for several purposes. It can happen at the lowest level of the
systems (processes, products) during the calculation of a complex indicator from the factors.
The overall risk value of certain areas can be formed, but risk can also be aggregated
along the organizational hierarchy. In the following, we present a novel methodology
of aggregation that can be used for different purposes. Aggregation can be considered a
method for combining a list of numerical values into a single representative value [3,4].
Traditionally, the risk value is calculated based on a fixed number of risk components.
Failure mode and effect analysis (FMEA), which is a widely used risk-assessment method,
includes three risk components: the occurrence (O), detectability (D), and severity (S) [5–7].
Various methods that increase the number of risk components have been introduced
in the literature. The use of four risk components was proposed by Karasan et al. [8]
and Maheswaran and Loganathan [9], and Ouédraogo et al. [10] and Yousefi et al. [11]
used five risk components. In contrast to a fixed number of components, Bognár and
Hegedűs [12] developed the partial risk map (PRISM) method, which flexibly considers
only the FMEA components that are actually needed in the risk-assessment process. The
total risk evaluation framework (TREF) method generalizes this idea and can flexibly
handle an arbitrary number of risk components [13].
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In addition, various methods and analyses for aggregating risk components have
been proposed, such as the vIsekriterijumska optimizacija i kompromisno resenje (VIKOR)
method [14,15], the technique for order preference by similarity to the ideal solution
(TOPSIS) method [16,17], the elimination and choice expressing the reality (ELECTRE)
method [18,19], the evaluation based on the distance from the average solution (EDAS)
method [20,21], the preference ranking organization method for enrichment evaluations
(PROMETHEE) method [22,23], the Gray relational analysis (GRA) method [24,25],
the MULTIMOORA method [26,27], the TODIM (Portuguese acronym for interactive
multi-criteria decision making) method [28,29], and the sum of ranking differences (SRD)
method [30,31]. These methods use different perspectives and various procedures to
aggregate the values of distinct risk components into a single representative risk value.

Conventional risk management systems evaluate risk by calculating the risk priority
number (RPN) as an aggregated risk indicator.

Risk indicators can be aggregated further through additional steps. These aggregations
can be performed along the hierarchy of the organization, the hierarchy of the processes, or
other logical operations.

In terms of aggregation, a common feature of the methods is that these methods
provide aggregated values at only one level. The TREF method [13] and the new FMEA [32]
consider two levels: the risk-component level and the aggregated value level. No existing
methods can handle more than two levels; however, in practice, there are often more than
two aggregation levels, and different types of corrective/preventive actions may be needed
at the risk component level and the aggregated value level.

Moreover, one of the main constraints of existing methods is that these approaches do
not consider risks in different levels of the process hierarchy. However, corrective/preventive
actions can be prescribed at each hierarchy level, and different corrective/preventive actions
may be needed at various process hierarchy levels. In summary, because the relationships
between the process hierarchy levels (causes and effects across levels) are not addressed by
existing methods, flexible, total system-level risk assessments have not yet been addressed.
There is no work in the literature that deals with the multilevel case in general, as it is presented
in this paper. Filipović [33] dealt with the multilevel case, but the domain was limited to the
insurance area and the standard (Solvecy II) solution. Bjørnsen and Aven [2] provide a good
summary of the general issue of aggregation; however, they do not deal with corrective and
preventive actions [2]. They have presented different (oil and gas industry, stock investment,
national, societal) cases.

In general, it can be concluded that none of the publications in the literature deals
with the general approach as it is described in this paper. The most frequently missing
components are as follows.

• Risks are aggregated, however, only on two (error mode and functional error, effect)
or on three (cause, error mode, effect) levels. This is the general approach in risk-
management of production systems.

• Although there is a hierarchical (vertical) aggregation, the model is not suitable for
area-based (horizontal) aggregation and the opposite.

• The model is specific to a given area, for example insurance, bankruptcy risk, and
production.

• Model/framework does not establish a link between the aggregation of risks and
the generation of corrective, preventive measures. For this reason, the previous
aggregation methods (including FMEA) can be considered as a special case of the
aggregation model presented in this paper.

Motivated by the above analyses and literature reviews, we highlight the contributions
of this study to existing risk-assessment methods as follows:

C1 A multilevel framework known as the enterprise-level matrix (ELM), which consists
of three matrices, is proposed to evaluate risk at different enterprise levels. The three
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matrices are the risk-level matrix (RLM), the threshold-level matrix (TLM), and the
action-level matrix (ALM).

C2 The proposed framework aggregates not only the risk components but also the
overall risk indicators of the process components at all levels of the corporate process
hierarchy. Thus, appropriate corrective/preventive actions can be prescribed at each
process hierarchy level, as different types of corrective/preventive actions may be
needed at the process and corporate levels.

C3 We use data-mining methods such as seriation and biclustering techniques to simul-
taneously identify risk components/warnings and process components to select an
appropriate set of corrective/preventive actions.

The remainder of this paper is structured as follows. Section 2 introduces the pre-
liminary details and the requirements and characterizations of the aggregation functions.
Section 3 demonstrates a practical example of the proposed approach. Section 4 summarizes
the paper.

2. Preliminaries

We use the following terminology throughout this work.
Risk component: the input of the aggregation. The risk components can be primary data, such
as the occurrence, severity, and detection, which are often called factors. (The term “factor”
refers to the most commonly used aggregation method: multiplication.) The components
can also be aggregated values, such as vertical risk aggregation in an organization. This
case is the mean of the RPNs of a product, process, or organization.
Aggregated value: the result of the aggregation. The aggregated value is typically a scalar
value; however, it can also be a vector, such as when the risk cannot be characterized by
one number.

2.1. The Set of Enterprise-Level Matrices (ELM)

This study proposes three multilevel matrices: the risk-level matrix (RLM), threshold-
level matrix (TLM), and action-level matrix (ALM). These matrices are all multidimensional
matrices, with the columns representing the risk components and their aggregations at all
levels and the rows representing the process components and their aggregations at all levels.
The risk-level matrix (RLM) specifies the risk values of all risk and process components. For
all risk values (i.e., for each cell) in the RLM, a threshold value is specified in the threshold-
level matrix. The threshold-level matrix includes specific thresholds for all risk values;
however, a generic threshold can also be specified for all process and risk components. A
corrective/preventive action occurs if a risk value is greater than or equal to the specific
threshold value. The action-level matrix contains the specific corrective/preventive actions
for mitigating the risk values; these actions can be specific for the given process and risk
component or generic for each process and risk component.

The proposed set of multilevel matrices, denoted as the enterprise-level matrix (ELM),
helps decision-makers evaluate and assess risk at all levels of the enterprise. In addition,
data-mining methods, such as seriation and biclustering, are used to select the set of
corrective/preventive tasks.

2.1.1. Risk-Level Matrix

Table 1 specifies the structure of the hierarchical risk-evaluation matrix, hereafter
denoted as the risk-level matrix (RLM), where the columns specify the risk components
and the rows specify the process components. The rows and columns can both be aggre-
gated; therefore, the aggregation level can be specified for both the rows, such as process
component⇒ process⇒ process area⇒ . . .⇒ enterprise-level process, and the columns,
such as risk component⇒ aspect⇒ . . .⇒ enterprise-level risk component.
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Definition 1. Denote I (J) as the aggregation level of a row (column). Denote RI,J ∈ R(nI×mJ)
+ as

an nI x mj risk-level matrix, where nI (mJ) is the number of rows (columns) in aggregation level
I (J).

Definition 2. Let RI,J be a risk-level matrix and denote rI,J(i, j) as the risk value of risk component
j = 1, 2, . . . , mJ of process component i = 1, 2, . . . , nI in process level I and factor level J. Denote
rI,J(i, ·) as the set of risk components (in process level I and factor level J); rI,J(·, j) as the set of
processes in process level I and factor level J; rI,·(i, jI,·) as the set of factor levels; and r·,J(i, j) as the
set of process levels (I = 1, 2, . . . , N, J = 1, 2, . . . , M).

The elements of the next level of the RLM can be calculated as follows:

rI+1,J(i, j) = SI(rI,J(·, j), v) (1)

rI,J+1(i, j) = SJ(rI,J(i, ·), w) (2)

where SI and SJ are at least monotonous aggregation functions and v and w are weight vectors.

Table 1 shows a risk-level matrix with two risk components, two process components,
two factor levels, and two process levels.

Table 1. The structure of a risk-level matrix.

Risk-Level Matrix

Aspects

a1 = Quality a2 = Environment

Risk Components Aggr. Risk Components Aggr.
f1 f2 f3 f4

Pr
oc

es
s

p1

Process c1 r1,1(1, 1) r1,1(1, 2) r1,2(1, 1) r1,1(1, 3) r1,1(1, 4) r1,2(1, 2)

Components c2 r1,1(2, 1) r1,1(2, 2) r1,2(2, 1) r1,1(2, 3) r1,1(2, 4) r1,2(2, 2)

Aggregated values r2,1(1, 1) r2,1(1, 2) r2,2(1, 1) r2,1(1, 3) r2,1(1, 4) r2,2(1, 2)

p2

Process c3 r1,1(3, 1) r1,1(3, 2) r1,2(3, 1) r1,1(3, 3) r1,1(3, 4) r1,2(3, 2)

Components c4 r1,1(4, 1) r1,1(4, 2) r1,2(4, 1) r1,1(4, 3) r1,1(4, 4) r1,2(4, 2)

Aggregated values r2,1(2, 1) r2,1(2, 2) r2,2(2, 1) r2,1(2, 3) r2,1(2, 4) r2,2(2, 2)

Example 1. Following the structure of this multilevel matrix, arbitrary factor and process levels
and arbitrary numbers of risk and process components can be specified. For example, in the case of
the traditional FMEA method, let I be an arbitrary process level and J be an arbitrary factor level.
Suppose that the FMEA can be calculated at process level I and factor level J. In this case, we have
mJ = 3, namely, the severity (S), occurrence (O), and detection (D). Suppose ∀i ∈ {1, 2, . . . , nI}
and ∀j ∈ {1, 2, . . . , mJ}, vi = wj := 1, rI,J(i, j) ∈ {1, 2, . . . , 10}, i := 1, . . . , n; then,

rI,J+1(i, j) =
mJ

∏
j:=1

rI,J(i, j) (3)

rI+1,J(i, j) =
nI

∏
i:=1

rI,J(i, j), (4)

where rI,J+1(i, j) is the vertical aggregation of risk component i in process level I, and rI+1,J(i, j) is
the horizontal aggregation of risk component i in process level I. In this case, the traditional risk
priority number indicates the process risk in process level I + 1 for an arbitrary risk factor j.

It should be noted that the RLM extends traditional risk-evaluation techniques, such
as the FMEA method, to model all levels of process and risk components as one matrix.
The RLM allows different kinds of aggregation functions; however, to compare the risk
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values in different aggregation levels, aggregated values should be used to normalize the
values to the same scale as the risk values. The FMEA approach considers only two levels,
and only risk components can be aggregated (i.e., multiplied) into an RPN. Hierarchical
frameworks, such as the total risk evaluation framework (TREF), consider risk components
in multiple aggregation levels.

Example 2. The TREF approach considers mJ ∈ {2, 3, 4, 5, 6}, vi, wj ∈ R+, rI,J(i, j) ∈ {1, 2, . . . ,
10}, ∑n

i:=1 vi = 1, and i := 1, . . . , n and uses four types of functions:

• S(1)
I (RI,J, v) = ∏nI

i:=1 rI,J(i, j)vi is the weighted geometric mean of the process components.

• S(2)
I (RI,J, 1) = max({rI,J(1, j), . . . , rI,J(nI , j)}) is the maximum value of the process risks.

• S(3)
I (RI,J , v) = Median({RI,J , v}) is the weighted median of the process risks.

• S(4)
I (RI,J , v) =

√
∑nI

i:=1 virI,J(i, j)2 is the weighted radial distance of the process risks.

In the case of ∀i, j, vi = 1/nI , the aggregation functions S(1)
· , S(3)

· and S(4)
· produce the unweighted

geometric mean, unweighted median and unweighted radial distance of the risk components.

The TREF approach considers more than three risk components and multiple aggrega-
tion functions. However, the RLM can be applied to extend the TREF because the RLM
specifies aggregations for both risk components and process levels.

Definition 3. Let RI,J be a risk-level matrix. Denote TI,J ∈ R(nI×mJ)
+ as a threshold-level matrix.

A risk event occurs in process i of risk factor j if RI,J(i, j) ≥ TI,J(i, j). Formally, the risk event
matrix (REM) is EI,J ∈ {0, 1}(nI×mJ), with

eI,J(i, j) =

{
1, eI,J(i, j) ≥ tI,J(i, j)
0, eI,J(i, j) < tI,J(i, j)

. (5)

A corrective/preventive task should be prescribed if ∑i ∑j eI,J(i, j) ≥ µI,J , where µI,J ∈ Z,
with I = 1, 2, . . . , N and J = 1, 2, . . . , M.

Remark 1. Threshold values can be arbitrary positive values; however, they should be specified
within a specified quantile of risk values.

Definition 4. Denote aI,J(i, j) ∈ A as the i, j cell of the corrective/preventive task at process level
I and factor level J, where A is the set of corrective/preventive tasks. Each aI,J(i, j) ∈ A specifies
a quadruplet: aI,J(i, j) = (pI,J(i, j), tI,J(i, j), cI,J(i, j),RI,J(i, j)), where 0 ≤ pI,J(i, j) ≤ 1 is the
relative priority of the corrective/preventive task (e.g., if and only if the impacts of the risk events
should be mitigated: pI,J(i, j)← eI,J(i, j)), where t, c,R denote the time (t), cost (c), and resource
(R) demands, respectively.

Example 3.

1. In the case of the traditional FMEA approach, thresholds are specified only in the second level.
Furthermore, the same threshold is usually specified for all processes. If the risk values are
between [1, 10], the critical RPN is usually defined as the product of the average risk factors,
5× 5× 5 = 125 [34,35]. Formally, we have T1,2(., .) = 125. Different corrective/preventive
actions can be specified for each process component. However, in this case, the aim of these
corrective/preventive actions is to mitigate the RPN, and distinct corrective/preventive actions
are not specified for each risk component. Formally, we have aI,J+1(i, .) = aI,J(i, .).

2. The TREF method specifies the thresholds of the risk components in the first factor level
and their aggregations in the second level; however, these thresholds are the same for all
processes. This method proposes the use of six risk factors in the first level. Formally, we
have [T1,1(., 1), T1,1(., 2), . . . , T1,1(., 6)] = [t1, t2, . . . , t6]. This method proposes several
aggregation approaches, and, similar to the traditional FMEA technique, this method specifies
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the threshold of the next factor level. Formally, T1,2(., .) = t1,2. A warning is generated if
either a risk-component value or the aggregated value is greater than the threshold. In addition,
the TREF method allows warnings to be generated manually due to a seventh factor, namely,
the criticality factor, where a value of 1 indicates that the process is critical process that must
be corrected regardless of the risk value.
Due to the column-specific thresholds, different corrective/preventive actions can be specified
to mitigate each risk component and its aggregations. Nevertheless, in this case, common
corrective/preventive actions are specified to mitigate the risk components.

3. On the one hand, the new FMEA method considers three factors in the first factor level. On
the other hand, the new FMEA method specifies the threshold for the first factor level; however,
corrective preventive tasks are carried out if at least two factors are greater than a threshold
(based on the action priority logic [36]).

4. The ELM can be used to specify cell-specific corrective/preventive actions. In general, these
actions can be row-specific (process component-specific), such as in the FMEA method, or
column-specific, such as in the TREF method; importantly, different corrective/preventive
tasks can be specified for various cells.

Theoretically, the FMEA and TREF methods can both be used in different process levels;
however, neither of these methods aggregate the risk values of the processes. The vertical ag-
gregation, which is performed by all risk-assessment techniques, indicates which processes
must be corrected. In addition, if the TREF method is followed, corrective/preventive
tasks can be specified to decrease the risk-component value. In other words, different
corrective/preventive tasks can be specified to decrease the severity or occurrence of a
process risk. However, no existing methods provide the general severity or occurrence of
the processes performed by a company. The proposed RLM and REM allow us to specify:

• specific thresholds for all processes; and
• specific thresholds for all risk components simultaneously.

These thresholds can be specific for all factor and process levels. The vertical ag-
gregation result indicates the aggregated value of the risk component. The horizontal
aggregation result indicates the aggregated value of the process risks.

Traditional methods, the new FMEA approach, and the TREF method can all be mod-
eled by the ELM. In addition, the ELM allows a company to determine specific thresholds
and corrective/preventive actions for each risk value and risk event. Corrective/preventive
actions can be prioritized, allowing sets of different activities to be incorporated into ex-
isting processes. Another advantage of the ELM is that all risk levels are included in the
same matrix; therefore, complex improvement projects or processes can be specified to
simultaneously mitigate risks at all levels.

2.1.2. Specific Processes

An improvement process is a set of corrective/preventive tasks. This study focuses
on the first phase of developing an improvement process, namely, process screening. In
this phase, the set of tasks in the improvement process with the greatest impact on risk
mitigation is specified. In the proposed algorithm, we have the following steps.

step 1 The risk priorities of all corrective/preventive tasks are specified.

step 2 The seriation technique [37] is used to simultaneously reorder the rows (process
components) and columns (risk components), yielding a set of risk and process
components with high risk priorities.

step 3 The biclustering technique, which uses a bicluster to specify the mitigated risk and
process components, is proposed. This set of corrective/preventive actions specifies
the set of tasks included in the improvement process.

step 4 After screening, conventional process and project management methods are used to
schedule the correction tasks according to time, cost, and resource constraints.
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In our study, multilevel matrix representations and data-mining techniques, such as seri-
ation and biclustering, are integrated into screening and scheduling algorithms to determine
the set of corrective/preventive tasks that mitigate enterprise risks at all aggregation levels.
Although these algorithms performed well in general cases, this is the first study that attempts
to combine these techniques to improve the whole risk-assessment process.

Step 1—Specification of the task priority matrix

Definition 5. Let P = PI,J ∈ [0, 1]nI ,mI , I = 1, 2, . . . , N, J = 1, 2, . . . , M be a (task) priority
matrix. Depending on the decision, pI,J(i, j) is either pI,J(i, j) = eI,J(i, j), or

pI,J(i, j) =

{
1 , if rI,J(i, j) > tI,J(i, j)
(tI,J(i, j)− rI,J(i, j))/rmax

I,J , otherwise

where rmax
I,J is the maximal possible risk value at aggregation level (I, J).

The task priority matrix P is either binarized or 0–1 normalized, with greater numbers
indicating higher priority tasks at all aggregation levels. In step 2, seriation is applied,
which uses combinatorial data analysis to find a linear arrangement of the objects in a
set according to a loss function. The main goal of this process is to reveal the structural
information [37].

Step 2—Seriation of the task priority matrix

In general, the goal of a seriation problem is to find a permutation function Ψ∗ that
optimizes the value of a given loss function L in an n×m dissimilarity matrix D:

Ψ∗ = arg min
Ψ

L(Ψ(D)). (6)

In this study, the loss function is the Euclidean distance between neighboring cells.
Simultaneous row and column permutations to minimize a loss function is an NP-complete
problem, which is directly traceable to a traveling salesman problem [37]; therefore, hierar-
chical clustering [38], which is a fast approximation method, is used to specify blocks of
similar risky processes and risk components. Seriation identifies a set of risky processes
and risk components; however, it does not delimit these blocks.

Step 3—Specification of risky blocks in the task priority matrix

Definition 6. A block is a submatrix of the task priority matrix that specifies risky processes (as
rows) and risk components (as columns) simultaneously. A selected block in which the median of
the cell elements is significantly greater than both the nonselected processes and risk components
represents a risky block.

Risky blocks are identified with the iterative binary biclustering of gene sets (iB-
BiG) [39] algorithm. This algorithm assumes that the utilized dataset is a binary dataset; if
this assumption is not valid, the first step is to binarize the dataset based on a given thresh-
old (τ). Because E is a binary matrix, if P = E, then P is also a binary matrix; otherwise, the
threshold is based on the judgment of the decision makers.

The applied iBBiG algorithm balances the homogeneity (in this case, the entropy) of the
selected submatrix with the size of the risky block. Formally, the iBBiG algorithm maximizes
the following target function, with the binarized dataset of matrix P denoted as B,

max← score := (1− HB)α

{
∑i ∑j [B]i,j , if tr(B) > τ

0 , if Med(B) ≤ τ
, (7)

where score is the score value of the submatrix (bicluster, risky block) B ⊆ B. HB is the
entropy of submatrix B, tr = Med(B) is the median of bicluster B, α ∈ [0, 1] is the exponent,
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and τ is the threshold. If τ or α increases, we obtain a smaller but more homogeneous
submatrix. Previous studies [39] have suggested that the balance exponent (α) should be
set to 0.3.

Risky blocks may overlap. However, based on the score value of the risky blocks, they
must be ordered.

Step 4—Specification of corrective/preventive processes

The risky blocks specify the set of risky processes and risk components that must
be mitigated simultaneously across all aggregation levels, as well as the set of correc-
tive/preventive tasks in the activity-level matrix.

If there is more than one risky block, the scores of the risky blocks can be ranked. If
the set of corrective/preventive tasks and their demands are specified, the task order is a
scheduling problem that can be solved with the method described in [40].

Step 1 ensures that risks are addressed at all aggregation levels. Step 2 identifies risky
blocks, and step 3 specifies the set of risky processes and risk components in all aggregation
levels. Finally, step 4 specifies the set of processes, and the process proposed in [40] is used
to schedule these processes according to time, cost, and resource constraints.

2.2. Requirements of the Aggregation Functions

To evaluate and assess risks at all aggregation levels, appropriate aggregation functions
must be selected. We limit our analysis to scalar aggregation values. Several content and
mathematical requirements can be set for different aggregation functions.

1. Objectives: What are the objectives of risk management? The aggregated value is
an indicator that reflects the basis underlying managerial or engineering decisions.
Different aggregation functions have distinct component risk scales. As a result, a top-to-
bottom approach is proposed instead of the traditional bottom-to-top approach when
scale definition is an early step. This requirement can be used to classify aggregation
functions, such as summation type (total risk), average type (mean or median risk), or
distance (from a given value) type aggregated risk indicators. This expectation indicates
that there is usually no best or worst aggregation function, and the applied aggregation
function depends on the situation and the purpose of the aggregation.

2. Validity: The validity is determined according to the nature of the components
and processes via the aggregated risk of the components. For example, in the case
of extremely high severity, such as nuclear disasters, natural disasters, or war, the
severity is excluded, and the probability is used as the primary risk indicator. In
more frequent cases, the ‘severity × probability’ is calculated as the expected value.
In this case, the aggregation is either the most characteristic value (no aggregation)
or an estimation of the expected value. The ‘expected’ value can be interpreted in
broader terms that extend beyond probability theory approaches [41–45]. Another
scenario is when the risk in multiple areas is combined. In this case, the expected
total risk is the sum of the risks in the areas, as discussed above. The traditional
RPN calculation (occurrence × severity × detection) can be viewed as an expected
value if the occurrence and detection are independent. The introduction of additional
components (such as multiplication factors) might cause difficulties in interpreting
the aggregated value as an indicator. Smart weighting can be used to address this
problem.
Next, we formulate the mathematical requirements. The mathematical requirements
guarantee a lack of distortion.

3. Monotonicity: When one component has a higher risk value than the other compo-
nents, the aggregated risk value cannot be less than the largest risk value [41,44].

4. Symmetry: When the components’ risk values have symmetric distributions with the
same mean, the distribution of the aggregated values is also symmetric [41,44].

5. Uniformity, linearity: When the components have a uniform distribution, the distri-
bution of the aggregated values should also be uniform [41,44].
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The above requirements appear to be logical; however, the requirements are difficult
to satisfy, and it is not certain that these requirements are adequate, contrary to the
literature. For example, in the case of additive or multiplicative models, the values
near the mean appear more frequently because these values originate from not only
medium-medium risk value combinations but also small–large and large–small risk
value combinations.

6. Scale fit: Aggregation operations should be performed with the applied scale values [46].
7. Scale end point identity: The result should be in the same interval as the components

(if they are equal) or a common scale if the components have different scales. On
the one hand, this requirement helps in assessing the resulting risk, which is a psy-
chological advantage. On the other hand, successive aggregations between different
hierarchal levels may distort the result if the components have different scales [47].

2.3. Characterization of Potential Aggregation Functions

In practice, the characteristics of the applied aggregation function must be considered
when determining wi. For example, how the applied aggregation function handles distri-
bution asymmetry and component outliers must be considered. The properties of some
aggregation functions were described by [48].

A preliminary evaluation of various aggregation functions is included in Table 2. We
assume that the components have a scale of [1, 10] and that the number of components is n.

Table 2. Characterization of risk aggregation functions.

Aggregation Function Advantages Disadvantages

Sum Easy to calculate and relatively good
linearity.

Fits additive components only. The resulting scale is not identical
to the scale of the components ([1, 10]), which can be an advantage
in determining the total risk. The result is a sum rather than an
average, and the resulting value is greater than the components’
risks when there are more areas or processes. This characteris-
tic is critical for managing the risks of several or a few areas in
managerial work.

Arithmetic mean Easy to calculate and relatively good
linearity. The resulting scale is identi-
cal to the components’ scale ([1, 10]).

Fits additive components only. The components must be mea-
sured on the same interval scale. This function does not return
the full risk; for example, it does not take into account the need to
manage the risks of several or a few areas.

Product Fits with multiplicative models,
such as the expected values of the
probability (occurrence) and sever-
ity. This is the most commonly used
aggregation method

Poor linearity. Does not map to the original [1, 10] scale and
instead maps to the interval [1, 10n].

Product/10n−1 Correction to the product function.
The resulting scale ([1/10n−1, 10]) is
close to the original scale (e.g., [1,
10]).

Poor linearity; mapping to almost the same scale does not help.
This function tends to output extremely small values.

Geometric mean Normalizes values in different
ranges; thus, various scale intervals
can be applied. The resulting scale
is identical to the components’ scale
([1, 10]).

Not easy to calculate in practice. This function fits better with
multiplicative models than with other models.

Radial distance /
√

n Moderately good linearity when
compared to the linearity of other
functions.

The calculation is not easy in practice.

Median The resulting scale is the same as the
components’ scale, and this function
can also be used on ordinal scales.

The calculation is not easy in practice. The scale is relatively
rough and can be considered correct only for homogeneous risk
components.
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Table 2. Cont.

Aggregation Function Advantages Disadvantages

Maximum Easy to calculate. The large values
focus attention on critical areas.

Poor representation of the total risk population.

Minimum Easy to calculate. Poor representation of the total risk population.

Number of values
over threshold

Easy to calculate. This method fo-
cuses attention on critical areas.

Poor representation of the total risk population.

Range and standard
deviation

Easy to calculate. These approaches
show the range or dispersion of the
risk components.

Does not output the risk level.

Quantile Outputs the top occurrence values Does not output the risk level.

3. Practical Example

Our example shows the risk-management system used by a real company. At the
request of the company, we have changed some information.

3.1. Research Plan

The research objective was to test different aggregation functions in various aggre-
gation situations. We evaluated functions that approximately satisfied the requirements
discussed in Section 2.2. To select the aggregation functions, we considered the results of
a previous study [13]. The basis of the examination is shown in Table 1. Due to the large
number of possible cases, we analyzed only the cases shown in Table 3. The focus of each
risk component is referred to as its “component”; at the lowest aggregation level, these
components can be a part of a product or process.

At higher aggregation levels, the risk component is the result of lower-level aggrega-
tions, e.g., the RPN.

Table 3. Examination plan.

No. Aggregation Situation Number of Components Function Remark

1 Aggregation of different risk
components of the same en-
tity (process or product com-
ponent) at the lowest level.
(The horizontal aggregation
is shown in Table 2, 1a.).

Number of risk components:
6, namely, the occurrence,
severity, detection, control,
information, and range.

Arithmetic mean, corrected
product, geometric mean, ra-
dial distance, median, min-
imum, maximum, range,
number of values over warn-
ing threshold, and sum.

This is the most commonly
used aggregation method for
calculating the RPN of the
components of a product
or process. This approach
shows the overall risk of a
subprocess or product com-
ponent.

2 Aggregation of the same risk
components of different enti-
ties (process or product com-
ponent) at the lowest level.
(The vertical aggregation is
shown in Table 2, 2a.).

Number of entities (subpro-
cesses or product compo-
nents): 1–4.

Same as in 1. This method shows the over-
all risk in specific levels.

3 Further (vertical) aggrega-
tion of 1a (1b).

The aggregated values from
1, namely, the number of enti-
ties (subprocesses or product
components)

Sum, arithmetic mean, and
number of values over
threshold.

This method shows the total
risk in a certain level (within
the limitations of the applied
function).
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Table 3. Cont.

No. Aggregation Situation Number of Components Function Remark

4 Further (horizontal) aggrega-
tion of 2a (2b).

The aggregated values from
2; thus, there are 6 risk
components, namely, the oc-
currence, severity, detection,
control, information, and
range.

Sum, arithmetic mean, and
number of values over
threshold.

This method shows the total
risk in a certain level (within
the limitations of the applied
function).

5 Aggregation of all risk com-
ponents at higher levels
(Figures 1 and 2).

Number of risk components:
6; number of entities (sub-
processes or product compo-
nents): 1–4.:

Arithmetic mean, geometric
mean, radial distance, me-
dian, number of values over
warning threshold, and sum

This method shows the total
risk in a certain level (within
the limitations of the applied
function).

5 Aggregation of warnings
(Figure 3).

Number of entities. Sum and number of values
over threshold

This method shows the total
risk in a certain level (within
the limitations of the applied
function).

6 Generating preventive ac-
tions (Figure 4).

Number of entities. Arithmetic mean, geometric
mean, median, maximum,
and corr. product

This step selects the thresh-
old for the optimal preven-
tive action.

3.2. Process Hierarchy

To demonstrate the proposed matrix-based risk analysis, we use a three-level hierarchy.
The detailed hierarchy is described below:

4. Production

4.1. Customer orders - order processing

4.1.1. Start processing order
4.1.2. Entry production control form

4.5. Production preparation

4.5.1. Product engineering
4.5.2. Product planning

5. Logistics

5.1. Purchasing

5.1.1. Offer request
5.1.2. Demand form
5.1.3. Place order
5.1.4. Receive material on time

5.2. Warehouse management

5.2.1. Vehicle arrival
5.2.2. Unloading
5.2.3. Unwrapping, inspection.

In this example, each subprocess has 2–4 failure modes. At the lowest level, we used
six risk components (namely, the occurrence (O), severity (S), detection (D), control (C),
information (I), and range (R)) to describe the risk.

3.3. Results of the Matrix-Based Risk Assessment
3.3.1. Bidirectional Aggregation

The results obtained at the lowest level are shown in Figure 1.
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Figure 1. Results of bidirectional aggregation at the lowest level.

In Figure 1, the aggregation directions are indicated by the arrows. In one case, we first
performed horizontal aggregation (1a). This approach is consistent with common practice:
the RPN is typically calculated as a product function by using risk components such as the
occurrence and severity. These RPNs can be aggregated further (1b). The other case is the
opposite scenario. First, we aggregated the same risk components for different subprocesses
(2a); then, the resulting indicators were aggregated by using different functions (2b). There
are two interesting ways to view the results:
1. Determining which functions should be used in different aggregation situations; and
2. Comparing the results of the two aggregation directions.
Ad1. The aggregated values obtained from the same data by using different functions differ
significantly. Due to the limited extent of this paper, it is not possible to interpret all the
results. However, we discuss some important results. No linear results were obtained with
the product and corrected product (interval [1/10n−1, 10]) functions. Based on preliminary
theoretical considerations, it is still interesting to determine how the results deviate from
the aggregated values. In this respect, the arithmetic, geometric mean, and median methods
appear to perform better. However, because the risk components at this level differ, additive
models (such as the sum, mean, and median approaches) cannot be applied. Thus, our
recommendation is to use the geometric mean method. When aggregating values in the
next levels, we work with homogeneous data; thus, the indicators provided by aggregation
functions based on the additive model (such as the sum, mean, median, and frequency) can
be interpreted.
Ad2. The values of the two aggregation direction were compared.
In Figure 1, we connected the corresponding data obtained with different aggregation
directions. For example, the arithmetic mean is 1.96–1.96, the geometric mean is 1.86–1.8,
and the median is 1.77–1.97. Surprisingly, the two aggregation directions led to nearly
identical results. However, this finding cannot be generalized, as it depends on the data.
The next level of aggregation is combining production and logistics. The aggregation results
along the entire hierarchy are shown in Figure 2.
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Figure 2. Results of multilevel aggregation.

3.3.2. Aggregating Warnings

Warnings can also be aggregated. We aggregated the warnings along the hierarchy, as
shown in Figure 3.

Figure 3. Results of multilevel warning aggregation.

The function results can be summarized as follows:
One issue with the product function is apparent: strong bias. As a result, warnings may

result in Type I or Type II errors. Normalization of the product to the interval [1/10n−1, 10] is
not a good solution because this distortion remains. Although 10, as the largest scale value,
is psychologically advantageous for judging the risk, in practice, small aggregated risk
values are generated, even if there are only a few small values among the component risks.
This result can be observed in the prod/10n−1 lines in Figure 1. These low values lead to
cumulative bias during further aggregations. Thus, for expected value-type aggregated risk
values or heterogeneous components, we recommend the geometric mean or potentially
the radial distance as opposed to the product. As a result of the above findings, horizontal
aggregation is proposed for the lowest level, while vertical aggregation is proposed for
higher levels. As it can be seen in the Figures 2 and 3, the multi-level aggregation can be
implemented with risk values and warnings as well. Combining this with the two-way
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(horizontal and vertical) aggregation directions offers a versatile, multipurpose application
opportunity that cannot be found in the literature. A further option to use this hierarchical
structure is to generate risk mitigation countermeasures.

3.3.3. Generating Preventive Actions

Following the four steps of the proposed method (Section 2.1.2), first, the aggregated
risk values were calculated by using the six risk components and the failure modes in the
lowest evaluation level. Five aggregation methods, namely, (1) the (arithmetic) mean, (2)
geometric mean, (3) median, (4) maximum, (5) and product normalized to the interval
[1, 10] methods, were used to calculate the values of the rows (process components) and
columns (risk components). The processes, subprocesses, and failure modes are highlighted
in Figure 4. In addition, the background color of each cell indicates the risk level, with red
cells indicating higher risk values and green cells indicating lower risk values.

The aggregated values are calculated in two ways, as shown in Figure 4. The left side
of Figure 4 shows the first method, in which the risk values of the process components are
aggregated first, whereas the right side of Figure 4 shows the opposite calculation method.

Figure 4. Risk-level matrix for production processes.
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A comparison of the results shown in Figure 4 indicates that the different aggregation
methods result in the same trends in the aggregated risk values. This finding was confirmed
by the seriation results, in which the process and risk components were calculated at the
same level, and the biclustering results, in which the sets of risk and process components
were selected simultaneously. Therefore, only the first aggregation mode was considered.

To specify the set of risk/process components that must be mitigated, we use two
methods. In the first approach, which is an unsupervised method, a predefined threshold
matrix is not necessary. In this case, we want to identify the set of risk/process components
and their aggregations that are greater than a specified quantile. In contrast, a threshold
matrix is specified in the supervised risk evaluation method, with the risk event matrix
specifying the risk values of the risk and process components to be mitigated. However,
because the risk and process components have common corrective/preventive tasks, this
set should also be collected by seriation and biclustering methods.

Figure 5 shows the seriation (step 3) and biclustering (step 4) results for two thresholds
(τ = 0.5 (Med) and τ = 0.75 (Q1)).

Figure 5. The unsupervised risk evaluation results. The seriated and biclustered risk-level matrices
with τ = 0.5 (Med) and τ = 0.75 (Q1) are shown.
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Figure 5 identifies two overlapping τ = 0.5 (Med) biclusters and one overlapping
τ = 0.75 (Q1) bicluster. Increasing the value of τ leads to smaller, cleaner biclusters. Because
the risk/process components and their aggregations are both considered, the selected and
omitted rows and columns must discussed.

The seriation and biclustering results indicate the set of risk and process components
and their aggregations. The results show that the risk values in the production preparation
process (4.5) and the risk components during the product engineering (4.5.1) and production
engineering (4.5.2) processes should both be mitigated. However, the customer orders
(4.1) and their subprocesses were not selected. Although both biclusters identified risk
component information (I), neither specified the detection (D) value. The maximum
aggregation metric, which identifies the riskiest process and risk components, is always
applied to the bicluster; however, the production metric, which is used in the FMEA
approach, is never applied. The results also show that if there are several risky processes in
a higher aggregation level, the mean and median cannot be used to identify the risks to be
mitigated.

Figure 6 shows specific thresholds for the risk components and their aggregations. A
risk value should be mitigated (red background cells) if its value is greater than or equal to
the threshold value. In this example, thresholds are specified for the risk components and
their aggregations; however, thresholds are not specified for the process components and
their aggregations. Therefore, common thresholds are assumed for all kinds of processes.

Figure 6. The supervised risk evaluation results. The seriated and biclustered risk-level matrices for
different risk events are shown.
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Figure 6 shows the seriated and biclustered risk-level matrices for different risk events.
In this case, two overlapping biclusters can be specified for both the α = 0.3 and α = 1.0
parameters that indicate the sets of risk components and their aggregations, as well as
the sets of process components and their aggregations. If the risk-level matrix is seriated
and biclustered according to the binary values of the risk event matrix, the set of specified
risk/process components is similar to the set generated by the unsupervised risk evalua-
tion method (see Figure 5). Additionally, in this case, two overlapping biclusters can be
identified. However, the Q1 and Med biclusters are identical. In this case, the purity can be
increased by increasing the value of the α parameter. Regardless of whether the threshold
matrix is included or excluded, the identified risk values that should be mitigated specify
the set of corrective/preventive improvement tasks (see Figure 7). Figure 7 shows part of
the matrix of corrective/preventive actions. Five tasks, namely, (1) feedback on customer
communication, (2) feedback on internal communication, (3) meeting deadlines and faster
recognition, (4) more frequent updates, and (5) improving forecasts, are considered in
the failure mode level, whereas the maintaining requirements and increasing discipline,
training, and bonuses tasks are considered in the aggregated levels. It is important to
note that corrective/preventive actions do not need to be specified for all cells. Because
the maximal values are corrected if and only if one of the risk/process components must
be corrected, corrective/preventive actions should be specified only for the risk/process
components.

Figure 7 shows the selected cells for parameters α = 0.3 and α = 1.0.

Figure 7. The matrix of corrective/preventive actions for α = 0.3 and α = 1.0.

In this practical example, both selections required aggregated corrective/preventive
tasks, such as maintaining requirements and increasing discipline, training, and bonuses. This
result indicates that not only should failures be corrected or prevented but also that these
failures should be prevented at higher risk and process levels.

4. Summary and Conclusions

A real-world example is used to demonstrate the proposed novel multilevel matrix-
based risk assessment method for mitigating risk. The paper contributes three key findings
to the literature. (C1) The proposed set of multilevel matrices, known as the enterprise-
level matrix (ELM), supports the whole risk assessment process, including identifying
the risks (e.g., the RLM), evaluating the risks (e.g., the TLM), and determining the cor-
rective/preventive actions for risk mitigation (e.g., the ALM). (C2) The multilevel matrix
structure allows decision makers to address the process and risk components and their
multipurpose aggregations in the same matrix. As a result, the process components, all
levels of the process and risk components, the aggregated risk values and the risk areas in
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all levels of the enterprise can be evaluated simultaneously. The proposed matrix-based
method does not limit the number of risk components or the number of levels in the ag-
gregation hierarchy. In addition, to the best of our knowledge, this is the first method that
aggregates both the risk and process components to evaluate risks at different process levels.
(C3) By employing seriation and biclustering methods, the risk-level and threshold-level
matrices can both be reordered to identify warnings or risks for the process and risk com-
ponents simultaneously. If more than one aggregation method is employed to aggregate
the risk/process components, the employed data mining method, namely, the biclustering
and seriation method, selects the appropriate aggregation functions, which indicate the
risks in higher process and risk aggregation levels. The employed data-mining method
specifies multilevel submatrices that identify the process components, processes, process
areas, risk components and risk areas simultaneously. According to the proposed multilevel
submatrices, including the RLM and TLM, the appropriate corrective/preventive actions
can be proposed based on the ALM matrix to mitigate risks at different levels.

In this work, we ignored the case where there is a dependency between risk com-
ponents. This is a limitation compared to real cases and opens research opportunities in
the future. In the practical example, we omitted the weighting of the risks. However,
this limitation can be easily solved by using formulas containing weights. A practical
implementation limitation is that the choice between two types of aggregation direction
and several functions is a time-consuming process.
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Nomenclature
AHP Analytical Hierarchy Process
ALM Action-Level Matrix
ANP Analytical Network Process
Cr Criticality factor
CI Consistency Index
CR Consistency Ratio
f Vector of risk factors
EDAS Evaluation Based on the Distance from the Average Solution
ELECTRE Elimination and Choice Expressing the Reality
ELM Enterprise-Level Matrix
FMEA Failure Mode and Effects Analysis
Fuzzy FMEA Fuzzy Failure Mode and Effects Analysis
GRA Grey Relational Analysis
ISO International Standardization Organization
K Invention function
MULTIMOORA Multiplicative Form of the Multiobjective Optimization by Ratio Analysis
n Number of risk factors
PROMETHEE Preference Ranking Organization Method for Enrichment Evaluations
RAP Risk Aggregation Protocol
RI Random Consistency Index
RLM Risk-Level Matrix
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RPN Risk Priority Number
SRD Sum of Ranking Differences
T Threshold vector
TLM Threshold-Level Matrix
TODIM TOmada de Decisao Iterativa Multicriterio
TOPSIS Technique for Order Preference by Similarity to the Ideal Solution
TREF Total Risk Evaluation Framework
S( f , w) Risk aggregation function
VIKOR VIsekriterijumska optimizacija i KOmpromisno Resenje
w Vector of weights
(W1)− (W3) Warning rules
WS Warning System
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