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Abstract: An efficient method such as ranked set sampling is used for estimating the population
parameters when the actual observation measurement is expensive and complicated. In this paper,
we consider the problem of estimating the two-parameter xgamma (TPXG) distribution parameters
under the ranked set sampling as well as the simple random sampling design. Various estimation
methods, including the weighted least-square estimator, maximum likelihood estimators, least-square
estimator, Cramer—von Mises, the maximum product of spacings estimators, and Anderson-Darling
estimators, are considered. A comparison between the ranked set sampling and simple random
sampling estimators, with the same number of measurement units, is conducted using a simulation
study in terms of the bias, mean squared errors, and efficiency of estimators. The merit of the
ranked set sampling estimators is examined using real data of bank customers. The results indicate
that estimations using the ranked set sampling method are more efficient than the simple random
sampling competitor considered in this study.

Keywords: simple random sampling; xgamma distribution; weighted least squares; method of
maximum product of spacings; ranked set sampling

MSC: 62F10; 62G30; 62G20

1. Introduction

A random variable X follows the xgamma distribution if its probability density func-
tion (pdf) is given by

AZ(Ax?242)
=505

and its cumulative distribution function (CDF) is

e ™M x>0,A>0, 1)

X XA+ A+
A+l

F(x,A)=1— e x> 0,A>0. 2)

Plots of the pdf of the xgamma distribution are presented in Figure 1 for some values
of A.

As an extension to the xgamma distribution, the two-parameter xgamma distribution
is proposed as a new distribution by [1] by using an additional parameter to the xgamma
distribution to obtain a more flexible distribution in modeling real data sets due to the
wide use of the xgamma distribution in several survival analyses. When a random variable,
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X, follows the TPXG distribution, the probability density function and the cumulative
distribution function are, respectively, given by

AZ(BAx? +2)e M

f(x/ﬁrA): 2(/\+ﬁ)

;x>0,A>0,8>0, 3)

B pxd + A+ et
A+ B

For 8 = 1in (3), we obtain the xgamma distribution with parameter A as a special case
of the TPXG distribution.
The rth moment for the distribution is obtained by

F(x,ﬁ,A):l—( ;x>0,A>0,6>0. 4)

r!
E(X") = ———2A 1 2 ;r=1,2...
The characteristic function (CF) and hazard function H(x, B, A) of the model are,
respectively, given by

px(t) = E[e"] = [sz [(A —it) "+ BA(A — z't)—ﬂ; tER,i=+/—1. ©)
H(x, p,A) = A%(BAx? +2) )

20+ B(Ax(Ax +2) +2)

Y 1 2 Loy
4 1 2 3 4 5

Figure 1. The pdfs plots of the xgamma distribution for different values of the A.

Figure 2 represents some possible pdf shapes of the TPXG distribution for selected
values of § and A, which reveals the flexibility of the distribution in modeling right-skewed
observations. Further, Figure 3 indicates the possible shapes of the function H(x, 8, A).
They are bathtub, increasing, decreasing, and decreasing-increasing shapes. For more
explanations regarding the TPXG distribution, see [1].

fTPXG (X)

— B=5,A=3
— B=7,A=4
B=6,A=2
— B=7,A=5
— B=5A=4

X
) 05 1.0 15 20 25 3.0

Figure 2. The pdfs plots of the TPXG distribution for different values of the parameters.
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Figure 3. Plots of H(x, 3, A) of the TPXG distribution for (a) p = 2.1, A = 3, (b) = 2.2, A = 4,
(©)p=03,1=25(d)p=10,A=03,(e) =99, A=5,(f) =09, A =16.

When the variable of interest is expensive to measure or difficult to obtain, but cheap

and simple to rank, ranked set sampling is recognized as an effective sampling strategy for
enhancing the accuracy and efficiency of parameters estimation. McIntyre [2] proposed the
ranked set sampling scheme for estimating the pasture and forage yields.

Let X ~TPXG distribution, with the pdfs f(x) and CDF F(x), where u and 0 represent,

respectively, the population mean and variance. Let the random sample Xj, Xp, - - -, Xi
(i=1,2,--- k) with the same pdf f(x). The method of the ranked set sampling (RSS) can
be described as follows:

1.

Choose k simple random sampling (SRS) each of size k (set size) from the underlying
population as

Xk, X1k oo Xik)-
Xoaky Xo@ky oo Xogk)-
Xeaky  Xe@eyr - Xk(kk)-

Rank the units in each set of size k from lowest to the largest visually or based on any
cost-free method as

X1y X1k oo X1k
Xoaky X2k oo Xokk)

Xe(kyr Xikyr -
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3. Select the ith order statistic (in bold) from the ithset (i =1, 2, ..., k) as

X1y, Xk oo Xiek)-
Xo0k)y  Xo@kyr oo Xo(kk)-

Xeaky  Xeky oo Xi(eek)-

4. Repeat the Steps (1)—(3), n times (cycles) to obtain an RSS of size N = kn.

The selected RSS units are denoted by X (1.4), Xa(2:4), - - - » X (k:k), Where Xy is the ith
largest unit in a set of size k in the jth cycle. Notice that even we selected k> units, we only
measured k of them; these units are not identically distributed, but they are independent
because they are selected from different sets.

Takahasi and Wakimoto [3] delivered the mathematical theory of the RSS, and showed
that the RSS estimator of mean with the perfect ranking is unbiased and better than the
SRS estimator due to its smaller variance. The SRS mean estimator is given by

_ 1 k B 2
Xsgrs = 3 Z X;, with variance Var(Xsgs) = %.
i=1

The RSS estimator of the population mean with its variance are given by

Note that since k% vk, (H(ix) — #)? > 0, we have
Var(Xgss) < Var(Xsgs).

They also showed that

where
© o )
W(ik) = / Xf (i) (x)dx, and o7,y = '/_oo (x - V(i:k)) fik) (x)dx.

Under perfect rankings, this relation emphasizes the efficiency of the Xgss mean
estimator due to its variance compared to Xsgs for the SRS estimator for the same number
of quantified observations regardless of the distribution of nature. Even with a ranking error,
Dell and Clutter [4] demonstrated that RSS is more effective than simple random sampling.

Some further modifications of RSS are suggested in the literature, such as extreme RSS
by Samawi et al. [5], Mutllak [6] introduced a modification of RSS called median ranked
set sampling; another scheme of RSS is proposed by Al-Saleh and Al-Kadiri [7] which is the
double RSS, percentile RSS by Mutllak [8], L RSS by Al-Nasser [9], Haq et al. [10] suggested
partial RSS design, and neoteric RSS by Zamanzade and Al-Omari [11]. In addition to these
modifications, many authors investigated the parameter estimation of some distributions
using RSS or its modifications. For example, the logistic model parameters are estimated
based on SRS and RSS by Abu-Dayyeh et al. [12]. The generalized quasi-Lindley distribu-
tion parameter estimation is considered by Al-Omari et al. [13]. Yousef and Al-Subh [14]
used maximum likelihood methods to estimate Gumbel parameters under RSS. Akgul and
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Senoglu [15] investigated some modifications of the RSS in estimating the Weibull distribution
parameters. The Bayesian and maximum likelihood estimation approaches are considered
by Hussian [16] to determine parameter estimates for the Kumaraswamy distribution under
RSS. Chen et al. [17] used moving extremes RSS to estimate the scale parameter for the scale
distribution. Al-Omari and Bouza [18] considered ratio estimators of the population mean
with missing values using RSS. Later, Al-Omari [19] considered the varied L RSS and used
the MLE in location-scale families. Hassan et al. [20] used median RSS and estimated the
stress—strength reliability for the generalized inverted exponential distribution.

Due to the importance of the TPXG distribution in lifetime distributions and to our
knowledge, this is the first study to consider the RSS design for parameter estimations
of the TPXG distribution. Hence, the main focus of this paper is to use RSS design for
estimating the TPXG distribution parameters and then use some well-known methods of
estimation, including the method of maximum product of spacings, maximum likelihood
method, ordinary least square method, method of Cramer and von Mises, weight least square
method, and the Anderson-Darling method. Then, the suggested estimators based on the
RSS design are compared with their competitors in SRS for the same number of measured
observations. A real data set is analyzed to explain the usefulness of the offered estimators.
Based on the gained results, the RSS estimators are found to be better than the SRS counterparts
in terms of the MSE, bias, and efficiency values for all methods of estimation considered in
the study.

The layout of this paper is as follows. The estimation methods of the TPXG distribution
parameters are presented in Section 2. A simulation study is conducted to show the
superiority of the RSS relative to the SRS estimators in Section 3. In Section 4, the suggested
estimators’ usefulness is examined using a real data set fitted to the TPXG distribution. The
last section will present the conclusion and remarks.

2. Method of Estimation

Here, based on RSS design, six estimation methods are considered to estimate the A and
B parameters of the TPXG distribution, which are: the maximum likelihood (MLE) method,
the maximum product of spacings (MPS) method, ordinary least square (OLS) method,
weight least square (WLS) method, Cramer-von Mises (CV) method, and Anderson-
Darling (AD) method. In all methods, we denote by {X(i:k)j,i =12...,kj=12,...,n}
the ith order statistics from the ith set of size k of the jth cycle and take them to be the RSS
data for X with sample size N = kn.

2.1. MLE Method
Considering an RSS sample of size N = kn, the likelihood function is obtained by

MRSS ﬁ )\ HHfzk) (ik)jr ,3,/\), (8)
j=1li=
with y |
f(i:k)(x(i:k)j’.Br A = m[}f( ()] )}z 1[1 ~F(x (tk)]')}k*’f(x(i:k)j) o
—AX (k) Azx%i:k);‘ﬁ i—1
K ¢ "\ T A B+ B A
= G-ok= |t —

—AX (i) A2x (xk :B k=
e +Ax1k}ﬁ+.ﬁ+)\

B+ A

(ﬁ)\x +2) i
) ( <A+ﬁ> )
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Let the log-likelihood function ¥Yrss = log Mrss(B, A) be
r k
Yrss = ), Zlog{f( k) (X(ixk) s )\,,3)} (10)
j=1li=1
r k k! r k
;; g (l—l)!(k—l)! ];11:21( ) g( ( (z.k)]))
r k r k
+ )Y (k—i)log(l = F(x(ip;)) + Y Y log f(x(iw);)-
j=li=1 j=1li=1

The algiﬁss =0and '311;7%55 = 0 cannot be obtained explicitly and they are not in closed

form. Hence, they should be solved numerically to find the MLEs, /\RMSLSE and [S%SLSE of A
and B, respectively.

2.2. Method of MPS

Cheng and Amin [21,22] introduced this method, which depends on maximizing the
geometric mean of data spacings. Consider X(1.x), X(2:n), - - -, X(n:n) to be an ordered
sample forming a RSS of size N = nk from the TPXG distribution. The uniform spacings
are given by

vi(B,A) = F(x(in)| B A) — F(x(i—1n|B M), i=1,2,...,N.
N+1
Note that F(xg.n|B,A) = 0and F(xn41:n]B,A) = 1. Itis clear that ) | v;(B,A) = 1.
i=1
Let the geometric mean of the spacing be

1
N+1 ‘| N+T

QB AlX) [HW:BA

(11)

The natural logarithm of (11) is

N+1
Y(B,Alx) = Z logvi(B, A).
The estimators, ﬁ?{lspss and )\RMSI;S, are the values of f and A, which maximize the
geometric mean of spacings. The determination of these estimators can be achieved by
determining the solution of the following nonlinear equations:

1 N+1 1

5 YA = 557 L gy [21amlB ) = @i 1B M) =0

) N+1
VBN = 57 L 5y (P2 (amlBA) = @alira B.4)] = 0

where

25 X(i:N)
9 A x(l:N) ()&x(l N) + 2)
Dy (x.|BA) = =5 F(xiny 1B A) = — , 12

and



Mathematics 2022, 10, 3170

7 of 18

Da(x(in) B, A) =

J xinA - (B A2+ (B + (i) +2) A+ 4B e Xm?

ﬁF(x(i:N) B A) = : , (13)

(A+ﬁ)

that can be solved numerically.

2.3. Methods of LS

Well-known results in probability theory indicate that F(x;.yy) ~ Beta(i, N —i+1),
where F is a distribution function, and X;. N) are the ith-order statistic of the sample
i i((N—i+1)
N+1 (N+1)2(N+2)

Using the expectation and variance, two variants of the least squares methods can be
obtained. Swain et al. [23] were the first to use the method of LS for parameter estimations
of the beta distribution.

(X1, X2, ..., XN)- Therefore, E[F(x(;.n))] = and Var([F(x(;.n))| =

2.3.1. OLS Method

The OLS estimators :315555 and /\R o1 of B and A, respectively, can be found by minimiz-
ing the following function, with respect to g and A:

- . 2
QBAX) = F&@mwﬂ)—Nil}

M=

I
—
r

(ﬁ“N +ﬁx,NArFA+ﬁ>x’NA i

1— _
A+B N+1|’

|
™=

Il
—

Alternatively, we can obtain the estimators by solving simultaneously the nonlinear

equations:
N

Z[F(x(i:N)LBf/\) N—'kl]qjl( xiny|BA) =0,

i=1
N

| Flrn 1) = 5| @200 16,:2) =0,

i=1
where @1 (x(;.n)|B,A) and @a(x(;.n)| B, A) are defined as in (12) and (13), respectively.

2.3.2. WLS Method

The WLS estimators of p and A, say, ,BII}\;LSS and /\RWSL s, respectively, can be determined
by minimizing the following function, with respect to g and A:

Mz

N+1 (N +2) i 72
W(BAK) = F(x; -
Bk = 32 P B.0) — 1
Y N+1 )2(N +2)
= i(N—-i+1)
2
G“N +ﬁmNA+A+ﬁ> who
1—

A+B CN+1|
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Note that these estimators are also the solution to the following nonlinear equations:

N 2 .
L Sy [Pl )~ g | a8, =0,

N+1)2(N+2 i
( z(—']—\]zl(_FB >|:F(x(i:1\])|.BlA) N+1}®2( 1N)|,3,)L):O,

M=

Il
MR

1

where @1 (x(;ny|B, A) and @a(x(;.n)| B, A) are specified as in (12) and (13), respectively.

2.4. Methods of Minimum Distances

Several methods of estimation can be proposed based on the minimization of test statis-
tics between the empirical cumulative distribution and theoretical functions. The Cramer—
von Mises and Anderson-Darling methods are considered here. (See D’Agostino and
Stephens [24]).

2.4.1. CV Method

The CV RSS and XE%S of B and A, respectively, can be found by minimizing the
following functlon with respect to § and A:

1 N (N+1)2(N+2 2i — 112
VBN = g L S B ) - T

1 N (N +1)%(N+2)
N 12N+Z{ i((N—i+1)

2 /\2
Pl 4 prmA+ A+ B e Tt
1 _ 2i—1

A+ B 2N |’

Consequently, these estimators are also the solution to the nonlinear equations:

N (N+1)*(N +2 '
y N [p p.0) = 2t | l) =0,

[Pl 18:0) — 2t | @2t B0 =

N N+1 )2(N +2)
; N—-i+1)

where @1 (x(;ny[B,A) and @a(x(;.n)| B, A) are given in (12) and (13), respectively.

2.4.2. AD Method
The AD estimates of the TPXG distribution parameters,  and A, denoted by 7 RSS and

}Liss , can be gained by minimizing the following function with respect to § and A.
1y =
ABA) = —N- Y (2i = 1){log F(x(in|B, A) +10g F(x(n—ip1:n)|B, M)},
i=1
LN (ﬁ"“m +/3x,NA+A+[3) i
= —N-—— 2i—1)¢1 1—-
Ny L e

2 /\2
(ﬁx(fm +Bx(inA A+ ﬁ) e e

+ log gy ,
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or by simultaneously solving the two equations:

9A(B,A) 2 1){<I>1 (x@ny 1B A)  Pr(x(N—izrn B A) } _o,

B

[
ks

F(xin)B:A)  Flxnoivtny|BA)

Il
—

and

F(xin)B:A)  Flxn—ivtnylBA)
where @1 (x ;.\ |B,A) and Pa(x(;.n)|B, A) are specified in (12) and (13), respectively.

DA( /3 A) ZX\’: 2% 1) {CDZ(x(i:N)lﬁ//\) q)2(x(Ni+1:N)|,8f/\)} _o,

3. Simulation and Discussion

In this section, a simulation study is supplemented using R software. Based on
different parameters and sample sizes for both designs RSS and SRS, 1000 samples from the
TPXG distribution are generated. The simulation is performed assuming that the ranking
in RSS design is perfect, i.e., there is no error in ranking. The number of cycles is nominated
to be n = 10, 15, and 20, while the set size k is designated as 4, 5, and 6. The SRS size is
N = nk, which must have the same size in the RSS design. For the purpose of comparison
between SRS and RSS methods, the estimated mean squared error (MSE) and efficiency are
deliberated for each estimator as:

1000 1 1000

MSE(B) = 101% ; (B; — B)* and MSE(A) = 00 (Aﬂ ~2)?

where f8; and A; denote the estimate of 8 and A, respectively, for the ith simulated sample.
The efficiency (Eff) values of the RSS estimators with respect to the SRS estimators based
on the same sample size are defined by

MSE (Bsgs)
MSE (Brss)

MSE (Asgs)

and Ef f(ArssAsgs) = —— 4
MSE (Axss)

Eff(Brss, Bsrs) =

For various selections of the parameters, sample sizes and number of cycles, the esti-
mates (ES), estimated MSE, and the Eff values are displayed in Tables 1-4. The results in
Tables 14 indicate that:

*  Most of the efficiency values are larger than 1 for all cases considered in this study, in-
dicating that the RSS estimators perform better than the SRS estimators in all methods
based on the same number of measured units;

e Using the RSS design with an increasing number of cycles, the MSE values decrease.
As an example, when k = 5, the MSEs of the MLE estimators of A are 0.0501, 0.0346,
and 0.0270 for n = 10, 15, and 20, respectively;

*  Based on the RSS method, the MSE value decreases as k value increases. For example,
when n = 15, the MSEs of estimators of B, using the AD method, are 0.4206, 0.2248,
and 0.1693 for k = 4, 5, and 6, respectively;

*  Under the SRS technique, the MSE value decreases when N = nk increases;

*  The SRS estimators of A perform better than the RSS estimators using the MPS method
in some cases, otherwise, the RSS estimators are better;

*  The MLE estimators accomplish superior performance compared to the other estima-
tion methods under both RSS and SRS schemes for all results in the tables.
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Table 1. The ESs, MSEs, and Effs values, using the MLE, MPS, and OLS methods for the TPXG model
parameters with p =1, A = 1.

WLS cv AD
" Sampling Es  MSE  Eff Es  MSE  Eff Es  MSE  Eff
K p SRe a8 251 259 toas 100 1705 1303 sisp 30978
A SRe looes 0ow7 17 0o 0om0 097 gogn  oosas 1157
p SRe 1407 2se BHM 1oe gope 195 1l00  1asp 17602
A SRs 10w 0006 1795 0o 0oses L5 oees  oomo 12049
p SRe 1308 o117 2535 qoge ey 1693 q1sg  gory 19028
A SRe toms 001 11 0oles goas 060 goco  oosss 12111
B p SRS 1ms 11693 2203 (03 gy 13882 g Gogn 1712
A SRe 1o 0037 157 gows  oomr 1995 Goen ooy L0294
p SRe 12 08196 29 oo 0mmd 462 100 oeose 1263
A sks oeo o L gopor oows O9M3  gocas ooas 11134
p SRe 118 0cs 2T 0o 0ser 19160 1osey  oaseo 19564
A SRe 0o 00er 2260 goma ooome V12 goms oo 1982
? p SRe 1205 0792 19P 0o 0mos 1419 1730 gegss 1505
A s lom 0017 1P goms oome L9 gomi om0 12817
p SRe 11t oasss 2981 qogs  0ar 1526 1gnog oamg 1571
A SRe 1004 00205 104 godo oops 1005 Gores oopmy 12573
p SRS 1awe 0% 2086 o ooz 13866 i ooy LS4
A SRe 099 00177 199 0oxy oomsa 0970 Gopm  ooior 13105
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Table 2. The ESs, MSEs, and Effs values, using the WLS, CV, and AD methods for the TPXG model
parameters with p =1, A = 1.

WLS cv AD
" Sampling Es  MSE  Eff Es  MSE  Eff Es  MSE  Eff
K p SRe 133 2307 21 130 cos S8 g qorm 2188
A SRe ooma oowmd MU Tomn 0osy 1295 Gopn oo LU
p SRe 1210 a0 20920 Jan 2aee 2187 o0 1o 20650
A SRs oomr oowd M0 o0 ooan 192 ooy oons 12161
p SRe 1om3 toos 20 iy vaes 2100 o fgoo 2055
A SRe oomr oome 1% oo gams 194 goor  ooss 12891
B p SRs 129 1000 M7 i 1ews L6418 1oml joige  L61sS
A SRe 006 005 1010 037 goms LOMMO  gooct ooy 1090
p SRe 1190 ostae 1418 hm gopp 1403 a5 g 15054
Vo ske 0w ooms M5 1o goms 1B60 00gl gpg 1229
p SRS s osm 280 yyno gong 21910 Jhae (TR 2a7
A SRe 0os 002 1SMS o oo 1B goom ooy 1509
? p SRe 1ss oms 170 s voor 1781 1100 o 15615
A SRs 09 008 1 Tome oo L4710 oo gooay 13114
p SRS 11088 0apo 1665 12mp oz L2 hjon  oagny 16672
A SRe oos oo 125 1000 goso 1242 goom  ooe 12
p SRS 11008 0317 M6 1315 oams 1712 i o7y 17156
A SRe 0001 00130 190 010 goss 1453 Goose  oou 14428
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Table 3. The ESs, MSEs, and Effs values, using the MLE, MPS, and OLS methods for the TPXG model
parameters with p = 0.5, A = 1.

WLS cv AD
" Sampling Es  MSE  Eff Es  MSE  Eff Es  MSE  Eff
K p SRs 090t 1o 2% g2 s LSO g ioggs 26050
A SRe 10w7 oomd 1HB 0o 0w 1092 Tous oo 1001
p SRe ompi oo 247 0sier oamr S (oo ooy 15033
A SRs 10 oo 19100 goiso  ooms 095 1oy gog L1423
p SRe 07 06y 20 030 0ame 2168 (o gap 29905
A SRe 1o oo M7 0o oomm 1025 yoren  ooss 139
B p ks oms 0soe 2PV osn oame L2 goan oy L9
A SRe towd ooen 19 0owp 0omr 0% 101 ooser L1248
p SRe omos 0as 2MO0 0soe 0agst LSS5 (qan  gags 18184
A ke 1019 oom0 MM oo oosr 1926 1000 oses 11677
p SRs oeo 026 ISl gugs g1 100 e oagy 1577
A SRe 099 00501 100 00133 oomo 10519 Toiss  ooms L1660
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Table 4. The ESs, MSEs, and Effs values, using the WLS, CV, and AD methods for the TPXG model
parameters with p = 0.5, A = 1.

nk Sampling WLS cv AD
Es  MSE  Eff Es  MSE  Eff Es  MSE  Eff
T h G oy towr M Yo smer 2310 gpos g 229
U ss dww oo 7 oy oows M s goe 10
TB s omes tow M Tup toma 275 g oses 185
L s toms oo M o ooms M Tows oo 10
TF s umm ome 2P oo ree 2 o o 2608
U ss ot oo 79 o oosr M towes aosr 125
P b G ot ome M1 ooms 1o T2 onass ozms 18509
UG tows oot M i oo WP 1o oo 07
T B s oawe o4 M5 0hn ocs S nem o 109
LG toms oows MU o oo M Yo gosy M
©B s e omm M0 g o 9P gy ome 172
U s dome omwe "7 ioe ooss M8 tows aowe P
TN b s dew osm U omw oms R gams aas 190
LG oms oot M oo oosae 2 o oo 1O
DB s s oamo 2 grme oasn 22 ggms osnp 20M
U s towe oowe U ioss ooms M7 igin goso 100
TB s omw o BB gem ams M g oaw 1592
U G ooms oot M iiisi omm W70 gons ooms 099

4. Application to Read Data

The usefulness of the proposed RSS estimators is examined in this section using a
well-known real data set, which embodies the waiting times (in minutes) before service of
100 bank customers. These data were studied by Ghitany et al. [25]. The data observations
are: 2.6,2.7,2.9,3.1,32,3.3,3.5,3.6,4.0,4.1,42,42,43,4.3,44,44,4.6,47,47,4.8,4.9,49,
5.0,08,08,13,15,18,19,19,21,53,55,57,57,6.1,71,7.1,7.4,7.6,7.7,8.0, 8.2, 8.6, 8.6,
8.6,8.8,8.8,11.0,11.1,11.2,6.2,6.2,6.2,8.9,89,9.5,9.6,9.7,9.8,10.7, 109, 11.0, 6.3, 6.7, 6.9,
71,71,11.2,11.5,11.9,12.4,12.5,12.9,13.0,13.1, 13.3, 17.3, 17.3, 18.1, 18.2, 18 .4, 18.9, 19.0,
19.9,20.6,21.3,21.4,21.9, 23.0, 27.0, 31.6, 33.1, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 38.5.
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The TPXGD distribution is fitted to this data. We considered different criteria in this
study, such as the Akaike information criterion (AIC), Bayesian information criterion (BIC),
Hannan Quinn Information Criterion (HQIC), Consistent Akaike Information Criterion
(CAIC). Details of these criteria can be found in Akaike [26], and Schwarz [27], Hannan
and Quinn [28] and Bozdogan [29]. Additionally, Kolmogorov-Smirnov (KS) is obtained
for each model.

The formulae for these criteria are: AIC=—2L + 2h, CAIC=—2L + 2%, HQIC =

2loglog(n)[h — 2L], BIC=—2L + hlog(n), and KS=sup |F,(x) — F(x)|, F.(x) = % Y t<w

where /1 is the number of parameters and # is the sample size and L is the value of the
maximum log-likelihood function.

Since the distribution under study has two parameters, for fitting the data, we consid-
ered two distributions of two parameters—Darna distribution and Marshall-Olkin Esscher
transformed Laplace distribution—and one distribution of one parameter, the inverse
length-biased Maxwell distribution. The pdfs of these distributions are mentioned below.

e Darna distribution with pdf:

642
203

fop(x;6,a) = 2“22_92 (th—i- )egfir; x>0, a>0 0>0.

e Marshall-Olkin Esscher transformed Laplace distribution (MOETL) with pdf:

Ak et* x <0
AK) =05 A
flxiA k) 1—|—k2{ek/\x,x20

e Inverse length-biased Maxwell distribution (ILBMD) with pdf:

1
frieemp (x5 0) = e 222, 0< x <oo, a>0.

204x5

The results are reported in Table 5. They show that the TPXG distribution provides a
superior fit over other competing continuous models, since it has the smallest values for all
measures with smallest values of the Kolmogorov-Smirnov distance; Figure 4 supports
this claim.

Total Time on the Test (TTT) plot plays a vital role in selecting the proper model for
fitting the underlying data regarding the failure rates. This informs us of the altered forms
of the model failure rate. If the plot has a straight line, then the given data have a constant
failure rate. The failure rates will be decreased if it is convex and increased if this plot is
concave. For the bathtub shape, the TTT plot decreases first and then increases. Whereas, if
the TTT plot is concave first and then convex, the failure rates will have an inverted bathtub
shape. The TTT and density plots for TPXG distribution for the bank customers’ data are
given in Figure 5. The probability—probability (P-P) and quantile-quantile (Q-Q) plots for
the TPXG model based on the real data are given in Figure 6. Figure 7 presents the box and
Bee Swarm plots for these data.

Table 5. The goodness-of-fit tests for data sets.

Density AIC CAIC BIC HQIC KS
TXPG 644.6638 644.7875 649.8741 646.7725 0.4893
DD 662.2815 662.4053 667.4919 664.3903 0.5924
MOETL 662.1237 662.2474 667.334 664.2324 0.6170

ILBMD 978.2727 978.3135 980.8779 979.3271 0.4961
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Figure 4. Plots of estimated pdf and CDF for the bank customers data.
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Figure 5. TTT and density plots for TPXG distribution for bank customer data.
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Based on these data, we take an SRS of size 20, while for the ranked set sampling, a
small sample size of k = 5 is considered with number of cycles as n = 4. Tables 6 and 7
include the RSS (n = 4 and k = 5) and SRS (N = 20) samples taken from the bank customers
data. It is of interest to note here that the SRS and RSS methods are compared based on the
same number of measured units. Using the previous methods, we calculate the estimates
of f and A in each design. Here, we assumed that the ranking is perfect. To compare
estimators, we considered the previous criteria measures, AIC, BIC, CAIC HQC, and KS.
The results are summarized in Table 8.

Table 6. RSS sample taken from the bank customers data for n =4 and k = 5.

1st-Cycle: 19 8.9 74 154 38.5
2nd-Cycle: 2.1 1.9 8.6 7.4 13.3
3rd-Cycle: 4.8 6.3 8.9 17.3 18.2
4th-Cycle: 0.8 8.6 154 18.9 11.0

Table 7. SRS sample taken form the data set of size 20.

21.9 29 43 71 21.3 6.2 42 2.7 12.5 17.3
18.4 6.1 38.5 11.1 31.6 154 33.1 7.6 1.5 13.9

Table 8. Estimates, AIC, BIC, CAIC HQC, and KS in SRS and RSS design using MLE, MPS, OLS,
WLS, CV, and AD.

Method Design AIC BIC AICS HQC KS
MLE SRS 673.043 678.253 673.167 675.152 0.223
RSS 648.315 653.526 648.439 650.424 0.102
MPS SRS 680.050 685.261 680.174 682.159 0.228
RSS 656.563 661.773 656.686 658.671 0.125
OLS SRS 678.286 683.496 678.409 680.394 0.226
RSS 650.269 655.479 650.393 652.378 0.098
WLS SRS 678.174 683.384 678.298 680.283 0.235
RSS 649.969 655.179 650.092 652.077 0.095
v SRS 672.151 677.362 672.275 674.260 0.226
RSS 647.083 652.293 647.207 649.192 0.096
AD SRS 674.156 679.366 674.280 676.265 0.228
RSS 648.987 654.198 649.111 651.096 0.097

The findings in Table 8 illustrate that the TPXG parameter estimates, based on the
RSS method, are improved compared to their counterparts in SRS in terms of the smallest
values of AIC, BIC, CAIC HQC, and KS, using the MLE, MPS, OLS, WLS, CV, and AD.

5. Conclusions

This paper discusses several estimation methods for the TPXG distribution parameters
based on RSS and SRS designs. A simulation study is performed to compare the perfor-
mance of these various estimators, considering the same number of measuring units. A real
data set is analyzed to illustrate the usefulness of the suggested estimators. Based on the
obtained results, the RSS estimators are better than the SRS estimators in terms of MSE,
bias, and efficiency values for all estimation methods considered in the paper. For future
work, the topics discussed in this paper can be considered under imperfect ranking (Dell
and Clutter [4]) based on RSS or using some of its modifications. For some modifications of
the RSS, see the balanced groups RSS by Jemain et al. [30], percentile DRSS by Al-Omari
and Jaber [31], and new mixed RSS by Hanandeh et al. [32]. Furthermore, one can use
other real data sets for additional investigation of the suggested estimators of the TPXG
distribution.
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