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Abstract: Population dynamics is affected by environmental fluctuations (such as climate variations),
which have a characteristic correlation time. Strikingly, the time scale of predictability can be larger
for the population dynamics than for the underlying environmental fluctuations. Here, we present a
general mechanism leading to this increase in predictability. We considered colored environmental
fluctuation acting on a population close to equilibrium. In this framework, we derived the temporal
auto and cross-correlation functions for the environmental and population fluctuations. We found
a general correlation time hierarchy led by the environmental-population correlation time, closely
followed by the population autocorrelation time. The increased predictability of the population
fluctuations arises as an increase in its autocorrelation and cross-correlation times. These increases
are enhanced by the slow damping of the population fluctuations, which has an integrative effect on
the impact of correlated environmental fluctuations. Therefore, population fluctuation predictability
is enhanced when the damping time of the population fluctuation is larger than the environmental
fluctuations. This general mechanism can be quite frequent in nature, and it largely increases the
perspectives of making reliable predictions of population fluctuations.

Keywords: population dynamics; predictability; anomalies; environmental fluctuations; population
fluctuations; correlation times; temporal correlation; colored noise; colored environmental fluctuations
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1. Introduction

Population dynamics is frequently affected by the randomness of the environmental
fluctuations requiring the use of stochastic dynamics equations [1,2]. Environmental fluc-
tuations have different sources including variability in resources needed by a population
(e.g., food) [3]; unpredictability in weather or climate [4,5]; and natural disasters [6], which
are usually considered extreme cases of environmental fluctuations [7]. Environmental
fluctuations can alter the dynamics of a population, significantly impacting population
fluctuations and their predictability [8], and even causing the extinction of otherwise stable
populations [6,9,10]. Random environmental fluctuations can have an appreciable time
correlation, requiring models with colored (temporally correlated) noise instead of white
noise. Accurate prediction of the population dynamics requires using appropriate colored
noise (i.e., with the correct correlation time function) to simulate the environmental fluctua-
tions [11,12]. The color (or temporal correlation) of the environmental fluctuations has been
shown to have relevant consequences for population dynamics and the population extinc-
tion risk [13–17]. The impact of colored noise on the dynamics has also been experimentally
observed [11,18,19].

The environmental variability is especially critical in some species. For example,
ectotherms are particularly sensitive to changes in temperature [20,21]. Ectotherms suffer
important changes in growth [22] and development [23] depending on the circumstances
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given by the environment, and a study of the underlying mechanism describing the general
effect of environmental variability can help to understand ectotherms’ dynamics.

Here we are interested in using stochastic population dynamics models to obtain
further insight into the predictability of the population fluctuations. It has been reported
that the predictability of the population fluctuations can be larger than the underlying
environmental fluctuations [11,24]. In particular, primary production fluctuations have
been found to be predictable at larger time scales than the underlying sea surface tem-
perature anomalies (environmental fluctuations) [25]. In the context of the study of the
impact of El Niño teleconnections on the European climate variability, it was found that
the predictability of the crop yield was higher than that of the underlying atmospheric
variables affecting crop yield [26]. Analogous results have been found for the predictability
of Malaria in Africa [27]. Similarly, higher predictability has been found for the Pacific
fisheries anomalies than for the underlying Pacific sea surface temperatures (SSTs) when
exploiting the Atlantic-Pacific teleconnection [28].

Here, we aim to apply stochastic population dynamics with colored environmental
noise to understand population fluctuation predictability and its relations with environ-
mental fluctuation predictability. In terms of temporal correlations, we aim to understand
how the dynamics transform the temporal correlations of the environmental fluctuations
into temporal correlations of the population fluctuations.

In Section 2, we present the population dynamics model (for small fluctuations around
equilibrium) driven by colored environmental noise. In Section 3, we compute and compare
the auto and cross-correlation functions between the environmental fluctuations and the
population fluctuations. We compute their maxima and characteristic times, establishing
their hierarchies, which provide insight into the propagation of the amplitude and temporal
correlation of the fluctuations. Finally, the results are discussed in Section 4.

2. The Model: One Species with Temporally Correlated Noise

To study how temporal autocorrelated noise affects a single species, we begin by
defining the differential equation that rules the evolution of fluctuations of a species
around the equilibrium. For a population with size N(t) (dimensionless) at a certain time t,
evolving close to the equilibrium value Neq of the population dynamics, we define the

population fluctuations as ε(t) = N(t)−Neq
Neq

, which are dimensionless. (When we assume
small fluctuations, the effective equilibrium population size can be estimated with the
average of the population size measured in a long enough time series). Close to equilibrium,
this leads to the linear evolution equation

dε = − ε

T
dt + λ Adt (1)

where T is the characteristic time of return to equilibrium (units of time), and γ = 1/T is
the rate of return to equilibrium (units of time−1). λ is a coupling constant with units of
([A]·time)−1. The population is affected by environmental fluctuations A. Environmental
fluctuations are random variations or anomalies in an environmental variable (such as
temperature, humidity, or a resource needed by the population, and the units of A depend
on the kind of environmental fluctuations considered) which influence the evolution of
the population. Here, we consider environmental fluctuations A described by a positively-
autocorrelated (red) noise defined as an Ornstein-Uhlenbeck process [29] such as

dA = −A
τ

dt +
σ

τ
dW, (2)

where τ is the characteristic correlation time of the noise (units of time), σ its amplitude
(Units of [A]·time1/2), and dW the differential increment of a normalized Wiener pro-
cess (i.e., ξ = dW/dt is a normalized Gaussian white noise). < dW(t)dW(t + t′) > =
cdWdW(t′) = 0 for t′ 6=0 and cdWdW(t′) = dt for t′ = 0, with <> the expectation value. All
the variables used in this model are described in Table 1, as well as their units.
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Table 1. Variables used with its description and units.

Variables Description

N(t) Population size at a given time t. Dimensionless.

ε(t) Population density fluctuations around equilibrium ε(t) = N(t)
N(eq)
− 1.

Dimensionless.

A(t)
Temporally autocorrelated environmental fluctuations at a given time t.
Units [A] depend on the kind of environmental fluctuations considered

(e.g., temperature or humidity)

τ
Characteristic correlation time of the environmental fluctuations.

Units of time.

T Characteristic time of return to equilibrium of the population.
Units of time.

γ = 1/T Rate of returntoequilibrium. For the logistic equation and small fluctuations,
it is equal to thegrowth rater. Units of time−1.

α = T/τ = 1/(γτ)
Ratio between the characteristic damping time of the population fluctuations

T and the correlation time of the environmental fluctuations τ.
Dimensionless.

σ Amplitude of the noise. Units of [A]·time1/2.

λ
The coupling constant giving the impact of the environmental fluctuations A

on the population dynamics ε.
Units of ([A] ·time)−1.

Figure 1 shows a typical evolution for the environmental noise A and for the popu-
lation fluctuation ε. Population fluctuations are compared for a lower (red) and a higher
(green) damped population dynamics. The plot illustrates that higher damped population
fluctuations present a smaller amplitude of population fluctuations. It also shows that
peaks in environmental fluctuations A appear delayed and smoothed in the population
fluctuations. This pattern anticipates the relevant and delayed temporal cross-correlations
between the environmental and population fluctuations that we find in the next section.
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Figure 1. Evolution for the environmental fluctuations A (solid black line); and the population fluctua-
tions for T = 2 τ (⇒ γ = 0.5/τ ) (red dashed line), and T = 0.5 τ (⇒ γ = 2/τ ) (green pointed line)
for σ = 0.1, λ = 1 and τ = 1. Population fluctuations peak a short time after environmental fluctuations
peak, indicating a delayed correlation between environmental and population fluctuations.

3. Temporal Autocorrelations and Cross-Correlations

Once we have seen the behavior of the evolution before, our target is to calculate
temporal correlations for a single species in the presence of temporally autocorrelated noise.
We want to calculate environmental (noise) autocorrelation, species autocorrelation, and
environmental-species correlation, as well as a correlation time.
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The correlation between two magnitudes X and Y in two instants separated by a delay
t′ is given by the correlation function

cXY
(
t′
)
= < X(t)Y

(
t + t′

)
>, (3)

where <> means expected value. This correlation indicates how good is X(t) as a predictor
of Y(t + t′). Therefore, to understand the predictability of the population fluctuations,
we have computed the correlations functions of the environmental fluctuations A and
of the population fluctuations ε. See Appendix A for the detail of the computations.
The correlation functions are

cAA
(
t′
)
=

σ2

2τ
e−|t

′ |/τ (4)

cεε

(
t′
)
=

{
λ2σ2τ

2
α2

1−α2

(
e−|t

′ |/τ − α e−|t
′ |/T
)

, T 6= τ

λ2σ2τ
4 (1 + |t′|/τ)e−|t

′ |/τ , T = τ
(5)

cAε

(
t′
)
=


λσ2

2
α

1+α et′/τ , t′ ≤ 0
λσ2

2
α

1−α2

(
(1 + α)e−t′/τ − 2α e−t′/T

)
, t′ > 0 and T 6= τ

λσ2

4 (1 + 2t′/τ)e−t′/τ , t′ > 0 and T = τ

(6)

cεA
(
t′
)
= cAε

(
−t′
)

(7)

where α = T/τ = 1/(γτ) is the dimensionless ratio between the characteristic damp-
ing time of the population fluctuations T and the correlation time of the environmental
fluctuations τ. We have represented these correlation functions in Figure 2A.Mathematics 2022, 10, 3176 5 of 14 
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(A) represents the adimensionalized correlation functions cεε(t′) (green), cAA(t′) (red) and cAε(t′)
(blue) adimensionalized for the case α = T/τ = 1. (B) compares the adimensionalized maxima
of the autocorrelations function MAA and Mεε (which coincide with the value at t′ = 0 of the
respective autocorrelation) with the maxima of the adimensionalized crosscorrelation function MAε

and its value at zero delay cAε(0). Their normalized values, MN
Aε = MAε/

√
cAA(0)cεε(0) and

cN
Aε(0) = cAε(0)/

√
cAA(0)cεε(0) are shown in (C), with the delay of the cross-correlation maximum

lAε. (D) compares the correlations times TAε, Tεε and TAA. These plots illustrate the hierarchies for
temporal correlations and for the maxima of the correlations discussed in the main text. In particular,
it shows that for low damping (large α = T/τ) the crosscorrelation time TAε increases, allowing
longer-term predictions, despite the decrease in accuracy that can be seen from the decay of the
normalized maximum of the crosscorrelation MN

Aε.

3.1. Maxima of the Correlation Functions

The autocorrelation function of the environmental fluctuations cAA(t′) and the auto-
correlation function of the species cεε(t′), which are symmetric, have their maximum at the
origin, t′ = 0,

MAA = cAA(0) =
σ2

2τ
(8)

Mεε = cεε(0) =
λ2σ2τ

2
α2

1 + α
(9)

The cross-correlation cAε(t′), has a value at the origin of

cAε(0) =
λ σ2

2
α

1 + α
. (10)

But the cross-correlation cAε(t′) has a lagged maximum (a minimum for negative
coupling λ), see Figure 2A, situated at a time displacement (t′ = lAε)

lAε =

{
τ α

1−α ln
( 2

1+α

)
, T 6= τ

τ
2 , T = τ

(11)

This lag means that the population is more affected by the fluctuation after a certain
time instead of instantly. Because of the basic property of correlations cXY(t′) = cYX(−t′),
the correlation function cAε(t′) has the maximum in t′ = −lAε. This maximum is at t′ > 0
for any α = T/τ > 0, and approaches the origin (smaller lag) as T/τ decreases. This
dependence on T/τ causes the lag to tend to zero if the characteristic time of return to
equilibrium of the population T is very short.

The cross-correlation cAε(t′) at this maximum located at t′ = lAε has a value

MAε =

{
λ σ2

2 α
( 2

1+α

) α
α−1 , T 6= τ

λ σ2

2 e−1/2, T = τ
(12)

It can be shown that the maximum correlation MAε at most doubles the correlation at
the origin cAε(0), i.e., 1 ≤ MAε

cAε(0)
≤ 2.

The maxima values can be adimensionalized and compared as in Figure 2B. This
shows the following hierarchy

Mεε
σ2τ

< MAε
λ σ2 < MAAτ

λ2σ2 for T < τ

Mεε
σ2τ

& MAε
λ σ2 & MAAτ

λ2σ2 for T & τ
(13)

This hierarchy means that when the characteristic time scale of population fluctuations
damping T is greater than the environmental fluctuations correlation time τ, the magnitude
of the adimensionalized maxima increases as the fluctuation propagates (from the envi-
ronment to the population). Conversely, when the population fluctuations dampen faster
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than the environmental fluctuations correlations time (T < τ), the maxima decrease as the
fluctuation propagates. Only in this later regime and when T � τ (i.e., on the constant
environmental fluctuation limit) the normalized environment-population cross-correlation
maximum reaches full correlation MN

Aε = 1 (but at zero delay, lAε = 0). See Figure 2C. The
normalized environment-population cross-correlation maximum and value at the origin
are given by

MN
Aε =

MAε√
cAA(0)cεε(0)

=

{
sign(λ)

√
2
( 2

1+α

) 1+α
2 (α−1) , T 6= τ

sign(λ)
√

2 e−1/2, T = τ
(14)

cN
Aε(0) =

cAε(0)√
cAA(0)cεε(0)

=
sign(λ)√

1 + α
. (15)

3.2. Temporal Correlations

The characteristic time of temporal correlations gives the time extension of the pre-
dictability. For simple exponential decays of the correlation, the correlation time is just
given by the characteristic decay factor in the exponential. For more general cases, we
define the correlation time as

TXY =

∫ ∞
0 t′|cXY(t′)|dt′∫ ∞

0 |cXY(t′)|dt′
. (16)

The absolute value allows incorporating the effects of negative correlations as predic-
tors. For the autocorrelations and cross-correlations, we get

TAA = TεA = τ (17)

Tεε = τ

[
1 +

α2

1 + α

]
= τ + T

1
1 + 1/α

(18)

TAε = τ

[
1 +

2α2

1 + 2α

]
= τ + T

1
1 + 1/(2α)

(19)

In Figure 2D, these correlation times are plotted as functions of α = T/τ, the ratio
between the damping time of the population fluctuations T and the correlation time of the
environmental fluctuations τ. Figure 2D suggests a hierarchy of correlation times that can
be proven from the previous expressions, i.e., Equations (17)–(19).

TAA = TεA = τ < Tεε < TAε < τ + T (20)

The difference between the last two is bounded by 0 < (TAε − Tεε) <
τ
2 .

This hierarchy of correlation times implies a longer correlation time, and therefore a
larger scale of predictability, for population fluctuations than for environmental fluctuations.

4. Discussion

We aimed to understand the predictability of population fluctuations compared to
environmental fluctuation predictability. To obtain an insight into the question, we com-
puted the correlation functions of a population close to an equilibrium state in the presence
of environmental colored noise. This computation allowed us to compute the correlation
times and the maxima of the correlation functions, finding hierarchies for them, which
gives general relations.

We found that the predictability of the population fluctuations is always higher than
for the environmental fluctuations. Because of this, we have determined that the correla-
tion time of the population fluctuations is always greater than the correlation time of the
environmental fluctuations. The difference in correlation time increases with increased
characteristic damping time of population fluctuations T. For example, for T = 10 τ we
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have Tεε = 10.1 τ and TAε = 10.5 τ; we also have that the maximum of the population-
environment cross-correlation is at lAε = 1.9 τ with a normalized correlation MN

Aε = 0.5,
showing a clear increase with respect to the correlation time for the environmental fluctua-
tions TAA. The underlying mechanism is analogous to the one described by Hasselmann for
the integration of the fast weather components leading to the slow climate dynamics [30].
Our model stresses that the mechanism is general and time-scale independent. In practical
cases times scales can range from days (for prey populations in agriculture) to years (for
large species or ecosystems).

This study was inspired by our previous results on spatial population synchrony [31–34]
and motivated by the findings that population fluctuations showed larger predictability than
the underlying environmental variables. This was shown to happen for a wide range of
systems: primary production in oceans [25], crop yield [26], malaria [27] and fisheries [28].
This higher predictability increases the prospects of predicting climatic variability effects on
populations [26–28,35–37].

The determination of the effective equilibrium can be challenging in practical cases [24].
In general, the effective equilibrium is obtained from the time-average of the data in long-
enough time series. However, sometimes the equilibrium can have seasonal oscillations
or long-term trends. In this case, these variations in the equilibrium have to be taken into
account, substracting them to obtain the correct fluctuations around equilibrium. Several
model extensions are possible to obtain an insight into the scope of the results. The results
have been obtained for a single-environmental variable acting on a single-species in the
small fluctuation regime, which allows the linearization of the dynamical equations around
the equilibrium. This model can be extended, including several interacting species and
several environmental variables (which may also interact as wind stress and sea surface
temperature). Another extension is including the division of species populations into dis-
tinct life stages, with some of them particularly affected by environmental fluctuations [38].
Our model considers small enough environmental fluctuations (which implies the pop-
ulation is close to equilibrium). This can be extended by studying larger environmental
fluctuations in particularly relevant ecological models, which would clarify how the results
in the present work are affected by the presence of nonlinearities.

The present study raises the question of how the propagation of fluctuations through
the food webs impacts the predictability of the different species’ population fluctuations.
This more profound understanding of the population predictability will help to design
improved conservation policies, particularly useful for species especially sensitive to envi-
ronmental variability (represented in our model with great couplings λ), such as ectotherms.
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Appendix A. Computation of Temporal Correlation Functions and Times

As the dynamics are time invariant, the asymptotic time correlations are stationary.
The stationarity condition is

< X(t)Y
(
t + t′

)
> = < X(t + dt)Y

(
t + t′ + dt

)
>

where X(t + dt) = X(t) + dX(t) and Y(t + t′ + dt) = Y(t + t′) + dY(t + t′). The applica-
tion of this stationary condition provides relationships between time correlation, which
allow computing them.

Appendix A.1. Wiener Process Temporal Autocorrelation

The temporal autocorrelation of the Wiener process (whose derivative gives the white
noise) is known to be

cdWdW
(
t′
)
=

{
dt, for t′ = 0,
0, for t′ 6= 0.

(A1)

Appendix A.2. Wiener—Colored-Noise Temporal Cross-Correlation

We now that cdWA(t′) = < dW(t)A(t + t′) > is zero for t′ ≤ 0, as there is no fluctua-
tion propagation to the past. Therefore, we just have to make the computation for positive
time displacement.

We compute cdWA(t′) = < dW(t)A(t + t′) > for t′ = dt, t′ = 2dt, t′ = 3dt, . . .

< dW(t)A(t + dt) > = < dW(t)
(

A(t)− A(t)
τ

dt +
σ

τ
dW(t)

)
> =

σ

τ
dt

< dW(t)A(t + 2dt) > = < dW(t)
(

A(t + dt)− A(t + dt)
τ

dt +
σ

τ
dW(t + dt)

)
> =

σ

τ

(
1− dt

τ

)
dt

< dW(t)A(t + 3dt) > = < dW(t)
(

A(t + 2dt)− A(t + 2dt)
τ

dt +
σ

τ
dW(t + 2dt)

)
> =

σ

τ

(
1− dt

τ

)2
dt

These results allow us to get the general expression

cdWA(ndt) = < dW(t)A(t + ndt) > =
σ

τ

(
1− dt

τ

)n−1
dt

In the large n limit, we get the exponential expression

cdWA
(
t′
)
=

σ

τ
e−t′/τdt if t′ > 0

Therefore, we have

cdWA
(
t′
)
=

{
0 if t′ ≤ 0

σ
τ e−t′/τ dt if t′ > 0

(A2)

Appendix A.3. Wiener—Population Temporal Cross-Correlation

There is no propagation of the fluctuations to the past. Thus, cdWε(t′) = < dW(t)ε(t + t′) >
is zero for t′ ≤ 0, and we only have to compute the correlation for positive time displacement.

The same procedure used for cdWA(t′) allows obtaining cdWε(t′)

< dW(t)ε(t + dt) > = < dW(t)·(ε(t)− γε(t)dt + λA(t)dt) > = 0

< dW(t)ε(t + 2dt) > = < dW(t)·(ε(t + dt)− γε(t + dt)dt + λA(t + dt)dt) > =
λσ

τ
dt2
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< dW(t)ε(t + 3dt) > = < dW(t)·(ε(t + 2dt)− γε(t + 2dt)dt + λA(t + 2dt)dt) > =
λσ

τ
(1− γdt)dt2 +

λσ

τ

(
1− dt

τ

)
dt2

< dW(t)ε(t + 4dt) > = < dW(t)·(ε(t + 3dt)− γε(t + 3dt)dt + λA(t + 3dt)dt) >

= λσ
τ (1− γdt)2dt2 + λσ

τ (1− γdt)
(

1− dt
τ

)
dt2 + λσ

τ

(
1− dt

τ

)2
dt2

< dW(t)ε(t + ndt) > =
dt2

τ
λσ

n−2

∑
i=0

(1− γdt)n−2−i
(

1− dt
τ

)i
=

λσ

τ
dt2(1− γdt)n−2

n−1

∑
i=1

(
1− dt

τ

1− γdt

)i−1

The later expression gives, when γτ = 1

λσ

τ
dt2(1− γdt)n−2

n−1

∑
i=1

1 =
λσ

τ
dt2(1− γdt)n−2·(n− 1) ≈ λσ

τ
t′e−γt′dt =

λσ

τ
t′e−t′/τdt,

while for γτ 6= 1

λσ
τ dt2(1− γdt)n−2 n−1

∑
i=1

(
1− dt

τ
1−γdt

)i−1
= λσ

τ dt2(1− γdt)n−2·
1−
(

1− dt
τ

1−γdt

)n−1

1− 1− dt
τ

1−γdt

= λσdt
1−γτ

(
(1− γdt)n−1 −

(
1− dt

τ

)n−1
)

≈ λσ
1−γτ

(
e−γt′ − e−t′/τ

)
dt.

(Note that in the limit γτ → 1, the results for γτ = 1 are recovered, indicating the
continuity of the solution on γτ.)

Therefore, we have the temporal correlation

cdWε

(
t′
)
=


0 if t′ < 0

λσ
1−γτ

(
e−γt′ − e−t′/τ

)
dt if t′ > 0 and γτ 6= 1

λσ
τ t′e−t′/τdt if t′ > 0 and γτ = 1

(A3)

Appendix A.4. Colored-Noise Autocorrelations

The computation of this (and the following) temporal correlations relies on the time
invariance of the dynamics, which leads to the stationarity of the asymptotic temporal
correlations.

We begin calculating the temporal autocorrelation for the environmental autocorrela-
tions, cAA(t′) = < A(t)A(t + t′) >, whose stationary condition implies

< A(t)A(t + t′) > = < (A(t) + dA(t))·(A(t + t′) + dA(t + t′)) > =
< (A(t)− A(t)/τ dt + σ/τ dW(t))·(A(t + t′)− A(t + t′)/τ dt + σ/τ dW(t + t′)) >

Expanding up to the first order in dt we get

< A(t)A(t + t′) > = < A(t)A(t + t′) >− 2
τ< A(t)A(t + t′) >dt

+ σ
τ

(
1− dt

τ

)
< A(t)dW(t + t′) >+ σ

τ

(
1− dt

τ

)
< dW(t)A(t + t′) >

+ σ2

τ2 < dW(t)dW(t + t′) >,

which gives the equation

2
τ

cAA
(
t′
)
dt =

σ

τ

(
1− dt

τ

)
cAdW

(
t′
)
+

σ

τ

(
1− dt

τ

)
cdWA

(
t′
)
+

σ2

τ2 cdWdW
(
t′
)
.
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As we have shown that cdWA ∼ dt and cdWε ∼ dt [Equations (A2) and (A3)], which
indicates that there are still terms of second order in the previous equation. Keeping only
the first order terms in dt and using cAdW(t′) = cdWA(−t′), the equation becomes

cAA
(
t′
)
=

σ

2 dt
(
cdWA

(
t′
)
+ cdWA

(
−t′
))

+
σ2

2τ

cdWdW(t′)
dt

This later equation gives cAA(t′), in terms of the cross-correlations of the white noise
with the colored noise and with the population fluctuations.

Substituting Equation (A2), we get environmental autocorrelation

cAA
(
t′
)
=

σ2

2τ
e−|t

′ |/τ (A4)

Appendix A.5. Colored-Noise—Population Cross-Correlation

We continue with the environment-species temporal cross-correlation
cAε(t′) = < A(t)ε(t + t′) >, whose stationary condition gives

< A(t)ε(t + t′) > = < (A(t) + dA(t))·(ε(t + t′) + dε(t + t′)) > =
< (A(t)− A(t)/τ dt + σ/τ dW(t))·(ε(t + t′)− γε(t + t′)dt + λA(t + t′) dt) >

Again, up to the first order in dt, we get

< A(t)ε(t + t′) > = < A(t)ε(t + t′) >−
(

γ + 1
τ

)
< A(t)ε(t + t′) >dt

+ σ
τ (1− γdt)< dW(t)ε(t + t′) >+ λ< A(t)A(t + t′) >dt + λσ

τ < dW(t)A(t + t′) >dt,

resulting in the second relation,

−
(

γ +
1
τ

)
cAε

(
t′
)
dt +

σ

τ
(1− γdt)cdWε

(
t′
)
+ λcAA

(
t′
)
dt +

λσ

τ
cdWA

(
t′
)
dt = 0.

Recalling again that cdWA ∼ dt and cdWε ∼ dt, fewer terms are of the first order in dt,
leading to

cAε

(
t′
)
=

1
γ + 1/τ

(
σ

τ

cdWε(t′)
dt

+ λcAA
(
t′
))

Substituting Equations (A3) and (A4), we can calculate the environmental-population
fluctuations cross-correlation

cAε

(
t′
)
=


λσ2

2(1+γτ)
et′/τ , t′ ≤ 0

λσ2

2((γτ)2−1)

(
(1 + γτ)e−t′/τ − 2e−γt′

)
, t′ > 0 and γτ 6= 1

λσ2

4τ (τ + 2t′)e−t′/τ , t′ > 0 and γτ = 1

(A5)

while cεA(t′) = cAε(−t′).

Appendix A.6. Autocorrelations of the Population Fluctuations

We finally compute the temporal autocorrelation for the population fluctuations of the
species cεε(t′) = < ε(t)ε(t + t′) >, whose stationary condition implies

< ε(t)ε(t + t′) > = < (ε(t) + dε(t))·(ε(t + t′) + dε(t + t′)) > =
< (ε(t)− γε(t)dt + λA(t) dt)·(ε(t + t′)− γε(t + t′)dt + λA(t + t′) dt) >.

Keeping terms up to first order in dt, we obtain the following expression:

< ε(t)ε(t + t′) > = < ε(t)ε(t + t′) >− 2γ< ε(t)ε(t + t′) >dt
+λ< ε(t)A(t + t′) >dt + λ< A(t)ε(t + t′) >dt
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In terms of correlations and using the relation cXY(t′) = cYX(−t′), we have

cεε

(
t′
)
=

λ

2γ

(
cAε

(
t′
)
+ cAε

(
−t′
))

.

Substituting Equation (A5), we get for the population fluctuations autocorrelation

cεε

(
t′
)
=

 λ2σ2τ

2γτ((γτ)2−1)

(
γτe−

|t′ |
τ − e−γ|t′ |

)
, γτ 6= 1

λ2σ2

4 (τ + |t′|)e−|t′ |/τ , γτ = 1
(A6)

Appendix A.7. Maxima

The environmental noise autocorrelation cAA(t′) and of the population fluctuations au-
tocorrelation cεε(t′) have their maximum at the origin t′ = 0. The environment-population
cross-correlation has a lagged maximum at a time t′ = lAε with

lAε =

 ln
(

2γτ
γτ+1

)
γτ−1 τ, γτ 6= 1

τ
2 , γτ = 1

(A7)

with a magnitude MAε = cAε(lAε) given by

MAε =


λσ2

(
2γτ

1+γτ

) 1
1−γτ

2γτ , γτ 6= 1
λ σ2

2 e−
1
2 , γτ = 1.

(A8)

These expressions are also given in the main text in terms of α = T
τ = 1

γτ , the ratio of
the population relaxation time T and the correlation time of environmental fluctuations τ.

Appendix A.8. Correlation Times

The previous explicit expression for the time correlation function allows computing
their respective correlation times

TAA =

∫ ∞
0 t′cAA(t′)dt′∫ ∞
0 cAA(t′)dt′

=

∫ ∞
0 t′ σ

2

2τ e−t′/τdt′∫ ∞
0

σ2

2τ e−t′/τdt′
=

∫ ∞
0 t′e−t′/τdt′∫ ∞
0 e−t′/τdt′

= τ, (A9)

TεA = τ, (A10)

Tεε = τ
(γτ)2 + γτ + 1

γτ(γτ + 1)
= τ

[
1 +

1
γτ(γτ + 1)

]
= τ

[
1 +

α2

1 + α

]
= τ + T

α

1 + α
, (A11)

TAε = τ
(γτ)2 + 2γτ + 2

γτ(γτ + 2)
= τ

[
1 +

2
γτ(γτ + 2)

]
= τ

[
1 +

2α2

1 + 2α

]
= τ + T

2α

1 + 2α
, (A12)

where α = T
τ = 1

γτ is the ratio of the population relaxation time T and the correlation time
of environmental fluctuations τ.
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