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Abstract: Artificial intelligence (AI) has made many breakthroughs in the perfect information game.
Nevertheless, Bridge, a multiplayer imperfect information game, is still quite challenging. Bridge
consists of two parts: bidding and playing. Bidding accounts for about 75% of the game and playing
for about 25%. Expert-level teams are generally indistinguishable at the playing level, so bidding is
the more decisive factor in winning or losing. The two teams can communicate using different systems
during the bidding phase. However, existing bridge bidding models focus on at most one bidding
system, which does not conform to the real game rules. This paper proposes a deep reinforcement
learning model that supports multiple bidding systems, which can compete with players using
different bidding systems and exchange hand information normally. The model mainly comprises
two deep neural networks: a bid selection network and a state evaluation network. The bid selection
network can predict the probabilities of all bids, and the state evaluation network can directly evaluate
the optional bids and make decisions based on the evaluation results. Experiments show that the
bidding model is not limited by a single bidding system and has superior bidding performance.

Keywords: bridge bidding; imperfect information; deep neural network; deep reinforcement learning

MSC: 68T20

1. Introduction

A computer game uses the advantages of fast and accurate calculations so that com-
puter can participate in games under some given rules instead of human beings. The com-
puter game is divided into a perfect or an imperfect information game according to whether
players have complete information about other participants during the game.

In the perfect information game, the game state of players is open to the others, who
also know the information of other players. Chess [1,2], international checkers, and Go [3,4]
belong to the perfect information game. However, in the imperfect information game,
players only have part of the information shown to other players and will not accurately
know all the information of other players. Fight the Landlords, Texas Hold’em [5,6],
and Bridge belong to the imperfect information game. Compared with a perfect information
game, the uncertainty of information in an imperfect game directly affects decision-making
accuracy. So far, AI in most chess and card games has reached top players and has even
defeated top human players in some games. At the same time, AI has a large number of
applications in many engineering fields [7–11]. However, there is little research on Bridge.

Bridge is a poker game that belongs to an imperfect information game. It is divided
into two stages: bidding and playing. Some software such as Bridge Baron, GIB [12,13],
Snyrey, and Wbridge5 have proven more effective in the playing stage. In the bidding stage,
the same bid has different meanings under different bidding systems, making bidding
more challenging. In the comparative research of bridge bidding, there are three main

Mathematics 2022, 10, 3187. https://doi.org/10.3390/math10173187 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10173187
https://doi.org/10.3390/math10173187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2222-8597
https://orcid.org/0000-0001-9562-7356
https://doi.org/10.3390/math10173187
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173187?type=check_update&version=1


Mathematics 2022, 10, 3187 2 of 17

implementation methods of bidding system, Monte Carlo sampling algorithm, Imitation
learning algorithm based on expert experience, and a Reinforcement learning algorithm
based on the self game.

We believe that there are two significant challenges. Firstly, the game state space is
enormous due to the uncertainty of unknown information. Exploring all possible unknown
states is a severe test for computer hardware performance and game algorithm design.
Secondly, the research route of these three bidding models has the same problem. That is,
they only support the use of a single bidding system. When opponents use the bidding
system consistent with AI in the game, they can get results. However, when opponents use
an inconsistent bidding system, their understanding of what opponents are bidding for
will cause the error, significantly affecting the results.

The current bidding research is based on the same system, violating the situation that
both sides can use different bidding systems in the real game. Therefore, in this paper, we
design an AI that can support multiple bidding systems. It can use a natural bidding system
to fight against players using any bidding system. It combines two deep neural networks
to process imperfect information. One selects the candidate bid, and the other takes the
first output as the input to evaluate the situation to choose an appropriate bid. At the same
time, due to the particularity of the rules of the bridge bidding system, combined with
expert experience, this paper translates the bidding sequence information into a variety of
practical knowledge. It solves the multi-systems confrontation of Bridge bidding for the
first time. The main contributions of our work are as follows:

• The extraction of useful information solves the inconsistent understanding of bidding
sequence under different bidding systems. Combined with expert experience, the bid-
ding sequence is transformed into general bridge characteristic data as the input of the
model, which solves the problem of understanding the historical bidding sequence of
the bidding model under the multi-bidding system for the first time.

• To ensure that the output candidate bidding products comply with the natural bidding
method, this paper uses a deep neural network to fit the natural bidding method so that
the output of the model complies with the bidding constraints and takes the output of
the network as one of the inputs of the evaluation network for situation evaluation.

• Using a deep neural network to fit the action search algorithm will speed up the
calculation and get the legal bidding in the current bidding state faster. The state
evaluation algorithm based on a neural network will directly give the value evaluation
after receiving the input of the current bidding state. The information completion
process of random sampling is no longer carried out, and the evaluation time is
considerably shortened.

2. Related Works

The general bridge bidding problem can be divided into two subproblems: bidding
without competition and bidding with the competition. The bidding without competition
assumes that the opponents always call PASS when bidding, so the information exchange
between teammates will not be blocked. The bidding with competition means that both
teams want to communicate through bidding. In this paper, as the existing works [14–16],
we focus on the subproblem of bidding with competition.

The existing works on bridge are mainly divided into two categories: human-based
and non-human-based bidding systems. The method not based on the human bidding
system allows the machine to learn the original bridge data directly and gradually form a
bidding system of the machine itself in the mutual self game. Chun yen Ho and Hsuan-
Tien Lin [17] proposed a learning framework based on UCB (Upper Confidence Bound)
algorithm so that the model did not rely on the bidding system with humans and learned
directly according to random bidding sequences so that AI could finally reach a better
contract with team friends with no competitions. Chin Kuan Yeh and Hsuan Tien Lin [18]
first proposed using DQN arithmetic to let machines learn their bidding system through
deep reinforcement learning. However, due to the rules of bridge competition, players
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need to be able to explain the system they use and can not hide information. Therefore,
the application of the model of the non-human bidding system is narrow, and more research
is still based on the human bidding system. The World Computer Bridge Championship
(Wbridge5) and the silver medal winner (Synrey) adopt the Monte Carlo search method
based on the human bidding system. Delooze and Downey [19] generated a large number
of training data with the human bidding model, clustered the hand cards and bidding
process using a self-organizing map (SOM) and learned the human bidding system using
unsupervised learning. Amit and Markovitch designed a decision tree model, which
uses the tree hierarchy to store the rules in the human bidding system [20]. The nodes of
each tree store a situation state and possible actions of the bidding system in the current
situation. The model’s performance and accuracy can be further improved through expert
data. Finally, through the information provided by the decision tree model, the Monte
Carlo method was used to complete the fuzzy information and reduce the search space
of decision-making. However, the above research focuses on bridge bidding with no
competition, which is inconsistent with the real game. Our previous research [14] used a
recurrent neural network to simulate the contention problem of bridge for the first time
and achieved good results under the natural bidding system. Rong. J and Qin. T used
two estimation and policy neural networks to simulate the bridge competing bidding
problem [16].

However, the above research based on the human bidding system was aimed at a
single bidding system; that is, players and opponents must use the same one. When
opponents in the game use the bidding system consistent with AI, they can get results.
However, when opponents use an inconsistent bidding system, their understanding of what
opponents are bidding for will cause errors, which greatly affects bidding decision-making.
Therefore, we designed a bridge bidding AI that supports multiple bidding systems. It can
use Chinese Bridge Association (CCBA) system against players using any bidding system.

3. Problem Setup

The subproblem of bidding with competition is defined as follows. Bridge is played
by four players. The set of four players is defined as X, X = {N, E, S, W}. N, E, S, and W
represent north, east, south, and west players, respectively. Each player holds 13 cards
out of the standard deck of 52 cards. We use hi to represent the cards of player i. Hence,
a standard deck of 52 cards is represented as

H =
⋃
i∈X

hi. (1)

In the bidding phase, the dealer decides on the bid first (referred to as the ‘opening
bid’) and then the others bid in clockwise order. Each player chooses a bid from 38 bids,
of which 35 ordered real bids (1♣, 1♦, 1♥, 1♠, 1NT, 2♣, . . . , 7NT) and 3 flexible bids (Pass
(P), Double (X), Double (XX)). B represents the set of all bids. During the bidding process,
it must be ensured that the real bid is higher than the last real bid. When three consecutive
‘Passes’ appear, the bidding process ends, and the last real bid is the final contract. We use
a length-t sequence L(t) to represent the bidding. Let

V = {v|None, NS, EW, ALL} (2)

be the set of vulnerability.

4. Model

The bridge bidding decision model based on double neural network synergy comprises
two core networks: bidding selection and evaluation. The decision model framework is
shown in Figure 1. The left side of the figure shows the process of multi-system bidding.
The upper right side is the training process of the bid selection network, and the bottom is
the reinforcement learning training process of the evaluation network. This decision model



Mathematics 2022, 10, 3187 4 of 17

uses expert experience to assist in learning historical bidding sequences and extracts effective
general feature information. According to the analysis of general feature information, all
optional bids are output through the bid selection model. Then the trained evaluation
model is used to evaluate all optional bids to make the final decision directly. Therefore, this
section first describes how to extract historical bidding sequences, encode them, and then
introduces the bid selection and evaluation models in detail.

Figure 1. An overview of the proposed framework. It includes two phases: bid selection model and
evaluation model.

4.1. Feature Extraction

The game information required for bidding decisions mainly includes three parts:
hand information, situation information, and historical bidding sequences. The situation
information includes the vulnerability, the opener, and which player’s turn it is to bid.
Among them, the most difficult to deal with is the bidding sequences. Many previous
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studies usually directly use deep neural networks to learn the meanings of the bidding
sequences. The same bidding sequence has different meanings under different bidding
systems, so previous studies can only make bidding decisions for a single system. Therefore,
we no longer use the deep neural networks to learn the bidding sequences directly but
convert them into general features that are not limited by bidding systems based on expert
experience, thereby reducing the direct impact of the bidding sequences on the bidding
decision model. No matter what bidding system is used, the model can give a general
interpretation from the same dimensions. It is possible to make effective bidding decisions
by learning these general features.

First, we selected 30 features that have received extensive attention in real-world
games through an analysis of 2.5 million instances of bidding, combined with input from
bridge experts. The bidding rules under any system can be converted into general features
through fixed logic. These general features can be divided into deterministic and range-
valued information. Candidate values for deterministic information are deterministic,
while candidates for range value information lie within a restricted range. The specific
meaning of the general features is shown in Table 1.

Table 1. Valid information and its meaning and candidate values.

Features Meaning Candidate Values

CUESUIT suit NT/S/H/D/C
BHCP High Card Point 0–40
BTP Total Point 0–40
BDP Abjusted Point 0–40

BSUIT[S/H/D/C] Number of each suit 0–13
STRENGTH[S/H/D/C] Strength of each suit 0–7
CUECTRL[S/H/D/C] Control of each suit unknow/1/2/3

KINGEXIST[S/H/D/C] Whether own K of each suit unknow /yes/no
ST Current bidding status Force, PASS etc.
NT Current bidding type Natural Bid, Double, etc.

SLAM Slam Slam
AGREEDSUIT Confirm trump unknow/S/H/D/C

BNACE/BNKING Number of Ace unknow /0/1/2/3/4
BNKING Number of King unknow /0/1/2/3/4

NKEYCRD Number of control unknow/0 or 3/1 or 4/2 or 5
KSUIT King’s suit unknow /S/H/D/C

QUEENFLG Whether own Queen unknow /yes/no
POWER Extra power unknow /yes/no

Although the selection of these 30 general features cannot fully cover the meaning of
the bidding sequences due to the complexity of the rules in the bidding systems, 30 general
features are still more accurate than the neural networks directly learning the bidding se-
quences. With the help of Beijing Synrey Bridge Technology Limited, we design two feature
extraction algorithms of the bidding sequence, F, which are suitable for extracting features
of the precision bidding system and CCBA bidding system, respectively. The useful features
of the bidding sequence L are represented by IL, that is, IL = F(L).

Subsequent training of the bid selection network and evaluation network will use
the extracted general features as one of the inputs. It is no longer necessary to input the
bidding sequences directly.

4.2. Bid Seletion Model (BM)

The bidding selection model based on deep neural networks learns the relevant infor-
mation of the bidding and makes decisions. Usually, there are three types of information
worth paying attention to in the bidding stage: the players’ hand cards, the bidding se-
quences, and other situational information. Hand cards are the most intuitive evaluation
index for players’ strength information, the basis for intra-team communication and inter-
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team competition. The bidding sequences are converted into general features through
the feature extraction algorithm F. The situation information mainly covers the vulner-
ability, the opener, and which player bid Therefore, by learning the above information,
the bidding selection model uses the Mini-batch Gradient Descent (MBGD) algorithm for
training, which the basic structure is shown in Figure 2. Take the three types of information
encoding as input, perform feature fusion through the feature layer concatenate to obtain
a 1 × 1284 feature vector, and then input the feature vector into the multi-layer fully con-
nected neural network. The output layer of the model is a fully connected neural network
composed of 38 neurons. After normalization, the probability distribution of 38 bids can be
obtained. The definition of the bidding selection model is shown in Equation (3), which
means that in the current bidding state, the probability of choosing bid b is p. When it is
player i’s turn to bid, the bidding selection model receives the vulnerability v, opener d,
player i, hand cards hi and the general features of the bidding sequence L, and outputs the
probability P of 38 bids.

P = bidselector(v, d, i, hi, IL) = {b→ p|b ∈ B and p = 1} (3)

Figure 2. The structure for bid selection model.
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Next, the encoding methods of several feature data are introduced in detail. Next,
we introduce the encoding methods of several feature data in detail. Combined with the
bidding rules of bridge and the training data features, the data needs to be preprocessed.
The number of small cards has a greater impact on the bidding decision than the value
of the small cards. In this paper, cards with values of 2 to 9 are classified as small cards,
and the rest are high cards. High cards are coded in placeholder mode; that is, the card’s
position is marked with 1; for small cards, the placeholder no longer indicates the position
of the small card but the number of small cards. For example, among the 13 cards in a
player’s hand, there are three small cards of the club suit, then the positions 1, 2, and 3 are
marked with one, respectively, which means that the player has three small cards. Figure 3
is an example of hand “K32.AK95.T874.A6” encoding. For the range value information in
the general features, we propose an averaging scheme in which the position of the data in
the range is marked with R. It follows that:

R =
1

Fmax − Fmin + 1
, (4)

where Fmax represents the maximum value in the range information, and Fmin represents
the minimum value. For example, a player’s high card point is 12∼15, then the value of the
four positions of 13, 14, 15, and 16 in the encoding vector is 0.25. Figure 4 is an example.

The bid selection model can predict available bids, which must be evaluated to make
optimal decisions. In the Section 4.3, we will show how to evaluate and select these output
bids reasonably.

Figure 3. An example of ‘K32.AK95.T874.A6’ encoding.

Figure 4. An example of ‘HCP = 12∼15’ encoding.

4.3. Evaluation Model (EM)

Bridge bidding requires the synergy of double neural networks, in which the bid
selection networks select the optional bids. The evaluation networks evaluate these bids
and select the one with the highest reward as the final decision. How to comprehensively
evaluate a bid is an important research content of the evaluation model. Unlike chess
games, a bid cannot get a real-time reward. The reward can be obtained after the bidding
and playing are over. Which team win is determined by the reward. However, using the
score as the reward is greatly affected by the randomness of the cards. For example, when
a team’s cards are super good, it is guaranteed to win. This situation is extremely unfair
to the other team. Therefore, in real bridge games, people often take duplicate bridge
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tournaments to avoid the effect of the randomness of cards, that is, two teams, each of
which has four players, and two tables use the same deck of cards. The scores of each
team at the table are added together to get the total score, which is then converted into
International Match Point (IMP). Therefore, the state evaluation model selects IMP as the
evaluation standard of bids for fairness, as defined in Equation (5).

IMP = situationevaluator(v, d, i, hi, IL), (5)

where v is the vulnerability; d is the opener; hi is hand cards; and IL is the features of
biddings sequences. It should be noted that the IL in the bid selection model is the features
generated by the bidding sequence Lt−1 in which the player does not select the bid, while
the IL in the evaluation model is the features generated by the bidding sequence Lt after
the player selects a bid.

The input and network structure of the evaluation model are the same as those of the
bid selection model and will not be repeated here. Figure 5 is the schematic representation
of the evaluation model.

Figure 5. Schematic representation of the evaluation model.

The range of IMP is (−24, + 24), so this paper uses a one-hot vector with a length of 49
to encode IMP. Figure 6 is a coding example when IMP is 2.

Figure 6. A coding example when IMP is 2.

Next, we introduce the calculation process of IMP in detail. Since there is no IMP in
the training data for the evaluation model, the IMP needs to be calculated before training
the model. The calculation of IMP requires two scores; one is the actual score after the
game is over, and the other that we choose is the score of the best contract. The score of
the best contract is not the highest, but the balance point where the winner cannot get a
higher score and the loser cannot get a lower score. This is fair to both teams. The Beijing
Synrey Bridge Technology Limited’s program can output 20 double-dummy results (ddr)
after inputting four hand cards. Different declarers have different best contracts. The best
contract is defined as

〈contract|declarer〉 = Bbest contract(ddr, v), (6)
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where ddr represents the double dummy result; v represents the vulnerability; and Bbest contract
represents the program that calculates the best contract by double dummy analysis.

Since this paper only focuses on bidding, it does not play cards but directly obtains
the score under the contract based on the double-dummy analysis in the playing stage. Let

score = Scalculate score
(
wr, c, v′, dw

)
(7)

be the function of the declarer’s score. The wr represents the number of tricks won by the
declarer according to analysis; c represents the contract; v′ represents the vulnerability
of the contracting party; and dw represents whether it is doubled or not. Scalculate score
represents the program that calculates the declarer’s score. Figure 7 shows the calculation
flow of IMP. The left side of the figure shows the score calculation after the actual bid.
The number of tricks won can be calculated from the double-dummy result. The right side
shows the score calculation for the best contract. The two scores are finally converted into
the IMP using the program–Score2IMP.

Figure 7. A flowchart to compute IMP.
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Finally, we introduce reinforcement learning for the evaluation model, which first uses
supervised learning for pre-training and then enhances the exploration ability through
reinforcement learning. Instead of initializing the value function, we assigned the pre-
trained parameters to the reinforcement learning model. Figure 8 shows the training process
of reinforcement learning. Reinforcement learning models are trained using a gradient
descent algorithm. First, it is necessary to output all bids with a probability distribution
greater than 1% as the optional bids in a certain state through the bid selection model. Then
use the greedy strategy to select the action a. If the random number is less than the set ε,
select one of the optional bids at random; otherwise, use the pre-training model to calculate
the IMP of the optional bids and select the bid with the highest IMP. Next, calculate the
reward R for the selected action. We set the reward for non-contract to 0 and calculated the
reward for the contract as shown in Figure 7. Store the previous state s, action a, and reward
R in replay memory D. Randomly sample several pieces of data from replay memory D,
and calculate the true value of the value network output according to the final state.

Figure 8. The training process of reinforcement learning.

5. Experiment

In this section, we conducted a set of experiments to evaluate our bidding decision
system based on the synergy of neural networks. We used Python to prepare and analyze
the data. We first introduced the dataset. Next, we presented the performance evaluation
of BM and EM. Finally, we tested the multi-system capabilities of the bidding system.
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5.1. Dataset

The dataset used in the experiments was provided by the Snyrey platform, which
has accumulated a historical record of nearly 500 million bidding sequences and doubles
results. We randomly selected nearly 8,000,000 real bidding instances as our dataset, 80% of
which weare used as training data and the rest as testing data. Tables 2 and 3 are examples
of the data formats used by the two models. Each training data consist of four parts:
vulnerability, opener, hand cards, and historical bidding sequence. However, the data used
by EM adds one more double-dummy result than the BM. Each player holds 13 cards of
four suits representing ♠,♥,♦,♣. The letter ‘T’ represents 10. The double-dummy result
is represented by a string of length 20, consisting of the tricks that North, South, East,
and West can win when NT,♠,♥,♦,♣ are the contracted suits. A maximum of 13 tricks
can be won in each round, so the numbers 10, 11, 12, and 13 are replaced by the letters a, b,
c, and d in the double-dummy result.

Table 2. An example of training data in BM.

Vulnerability None

Opener N

Cards

North Q94.KJ97.52.9763

East J732.2.AKQ43.AQJ

South K6.T53.J876.K542

West AT85.AQ864.T9.T8

Bid Sequence P 1D P 1H P 1S P 3S P 4S P P P

Table 3. An example of training data in EM.

Vulnerability None

Opener N

Cards

North Q94.KJ97.52.9763

East J732.2.AKQ43.AQJ

South K6.T53.J876.K542

West AT85.AQ864.T9.T8

Bid Sequence P 1D P 1H P 1S P 3S P 4S P P P

Double dummy analysis 42435424359b8a89b8a8

Next, we verified the rationality of the dataset from three aspects: opener, vulnerability,
and the length of the bidding sequence. Figure 9a,b shows that the distribution of opener
and vulnerability in the dataset was relatively balanced, which is in line with the real
situation of bridge games. Figure 9c shows that the length of the bidding sequence in
the dataset was approximately normally distributed. The bidding sequence length of the
10 had the most data, and the distribution on both sides of the 10 gradually decreases.
The shortest bidding sequence was 4, which was in line with the real situation; there will
not be a situation where the bidding sequence is less than 4 in the bidding stage. Overall,
the relevant information in the dataset conforms to the probability distribution in the
bidding, so the dataset is valid.
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Figure 9. Dataset Evaluation. (a) The distribution of opener in dataset. (b) The distribution of
vulnerability in dataset. (c) The distribution of lengths of bidding sequences in the dataset.

5.2. Evaluation of BM and EM

Next, we evaluated the performance of BM and EM separately.

5.2.1. Evaluation of BM

We first analyzed BM from the network structure, activation function, and optimizer,
and then we selected the optimal parameters to evaluate the performance. We first an-
alyzed BM from three aspects: network structure, activation function, and optimizer,
and then conducted subsequent experiments after selecting the optimal parameters. In the
experiment, an epoch was set to 30, and the batch size was set to 512. We selected three
metrics: Total-Precision (overall precision), Real-Precision (precision of the ordered bids),
and Unreal-Precision (precision of no-bid). Table 4 shows the effect of different network
structures on the results. When the model selects a 4-layer fully connected neural net-
work with 2048 neurons in each layer, the precision reaches 92%. After that, the effect of
increasing the number of neural network layers and neurons is weakened.

The activation functions after full connection layers also greatly influence the conver-
gence of the model. We selected three common activation functions in the training process,
Sigmoid, Tanh, ReLU, and Leaky ReLU. Figure 10 shows the effect of different activation
functions on model performance. It is easy to see that when the tanh was used, Total
Precision, Real Precision, and Unreal Precision were all lower; the Sigmoid and Relu had
similar effects, and the overall precision in the 1% fluctuated up and down; the effect of the
Leaky ReLU worked best. Meanwhile, we compared three common optimizers. Figure 11
shows that different optimizers had different effects on model performance. Adam had
improved performance over the other two.
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Table 4. Comparison of experiment results with different network structures.

Structures Total Precision Real Precision Unreal Precision

(512, 512, 512) 83.5% 72.3% 86.7%
(512, 1024, 512) 84.8% 72.3% 87.4%

(1024, 1024, 1024) 87.9% 72.6% 88.0%
(1024, 2048, 1024) 89.7% 73.5% 90.4%
(2048, 2048, 2048) 90.3% 73.7% 92.2%

(512, 512, 512, 512) 84.2% 72.6% 87.3%
(512, 1024, 1024, 512) 87.0% 72.7% 87.5%

(1024, 1024, 1024, 1024) 89.5% 73.0% 91.4%
(1024, 2048, 2048, 1024) 90.1% 72.6% 92.1%
(2048, 2048, 2048, 2048) 92.9% 75.3% 94.1%

(512, 512, 512, 512, 512) 85.1% 72.3% 87.3%
(512, 1024, 1024, 1024, 512) 88.6% 73.7% 88.3%

(1024, 1024, 1024, 1024, 1024) 89.6% 74.4% 92.0%
(1024, 2048, 2048, 2048, 1024) 92.1% 74.9% 93.3%
(2048, 2048, 2048, 2048, 2048) 92.6% 75.2% 94.0%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Sigmoid tanh ReLU Leaky ReLU

Total-Precision Real-Precision Unreal-Precision

Figure 10. Comparison of experimental results with different activation functions.

Therefore, we used Leaky ReLU and Adam for the training process. The bidding
performance of BM is shown in Figure 12. We divided the length of bidding sequences
into five types (4 steps, 5–9, 9–12, 13–16, >16) for analysis. It is not difficult to find that the
Unreal Precision in each type was higher than Real Precision because the training data of
non-bids were more than ordered bids. When the length of the bidding sequence was 4–8,
the overall precision can basically reach 95%. In general, the training effect of BM reached
the expectation, which assisted the reinforcement training of EM.
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Figure 11. Comparison of experimental results with different optimizers.
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Figure 12. The performance of BM.

5.2.2. Evaluation of EM

Before the EM reinforcement training, this paper useds 2,500,000 training data as the
pre-training initial parameters in the reinforcement learning stage. Figure 13 shows the
effect of the pre-trained model. Except for the high accuracy and precision within the error
range of 2, the other effects are not ideal. Therefore, it is necessary to continue intensive
training to improve the performance of the evaluation network. The model was obtained
after different reinforcement times, the pre-trained model was used for 10,000 rounds of
double bridge games, and the average IMP value was calculated. The results are shown in
Figure 14. The average IMP values are all greater than zero, indicating that the performance
of the enhanced model is improved compared to the pre-trained model. With the increase
in the number of iterations, the larger the average IMP, the better the effect, and an effect
in the early stage is better than one in the later stage. After 1,000,000 rounds of iterations,
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the average IMP of 10,000 decks of cards reached over 0.7, and the performance was greatly
improved after strengthening.

Figure 13. The performance of pre-trained EM.
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Figure 14. Average IMP in duplicate bridge tournaments.

5.3. Multi-System Bidding

The ultimate goal of the bidding system based on double neural network synergy
is to realize multi-system bidding. We used this system to play separately against nat-
ural and precise bidding system players. Figure 15 shows the bidding process and fi-
nally the complete normal bidding,which showed that our bidding system realized the
multi-system bidding.
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(a) (b)

Figure 15. Example of System Testing. (a) Bidding with Natural System. (b) Bidding with Preci-
sion System.

6. Conclusions

This paper designed a bidding model that supports multi-system bidding based on
the synergy of double neural networks. To reduce the influence of the historical bidding
sequence on the unity of the system, this paper used a logic algorithm to convert the
historical bidding sequences into 30 kinds of general feature information in advance. Then
directly learned these features to obtain a bidding model that was not constrained by a
single system. The model mainly consisted of two parts, the bid selection network and the
state evaluation network. The bid selection network can obtain the optional probabilities
of all bids in a certain state. On this basis, a state evaluation network was used to directly
evaluate the influence of these bids on the whole situation and make a final decision
according to the evaluation effect. In the end, our bidding model was able to play against
different players’ systems and worked as expected.

In future research, we will further consider the representation of historical bidding
sequences to improve the strength of our bidding model. The feature extraction algorithm
in this paper may not have been able to extract some bidding systems correctly. For this
problem, we will try to use the coding network for research. Besides, in the reinforcement
learning of EM, the learning rate of supervised learning had not been compared and
optimized in detail. We will optimize the neural network update algorithm in reinforcement
learning first to ensure enough update times.
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