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Abstract: In the current account, we present an analysis of a non-discriminating criterion under
simple additive weighting synthesis, considering a deep decision hierarchy. A non-discriminating
criterion describes a criterion where all decision alternatives under consideration perform equally.
We question eliminating such a criterion from the decision hierarchy in search of simpler problem
representation and computational efficiency. Yet, we prove such an approach may result in order
misrepresentations between decision alternatives. This analysis is performed in the form of four
research questions that relate to the detection of certain conditions under which such distortions in the
order integrity of decision alternatives will occur, calculating the change in their final performances,
distinguishing the alternatives whose performances are consistent, and examining the role of the
normalization procedure adopted in averting such distortions when the non-discriminating criterion
is ignored. Along these lines, this study provides clear inferences which are of interest to researchers
and decision makers, using simple additive weighting and similar methods that rely on additive
synthesis.

Keywords: multiple-criteria decision making; simple additive weighting; non-discriminating
criterion; normalization; rank-order; rank reversal; independence axiom; decision hierarchy
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1. Introduction

In the current study, we analyzed an incident we stumbled upon a while ago through
initially evaluating a multiple-criteria decision situation within the simple additive weight-
ing (SAW) synthesis. This case relates to the status of a non-discriminating criterion residing
in a deep SAW decision hierarchy. In this context, we called a criterion non-discriminating if
the performances of decision alternatives according to this criterion are identical. In our im-
plementation, a criterion of lower-level hierarchy turned out to be non-discriminating after
the collection of empirical data, though that was found to be relevant to the situation of an
ex-ante assessment of the decision-making problem. Whilst we considered removing this
criterion from decision hierarchy, due to exploration of a minimal problem representation,
subsequent calculations showed that such an approach results in distortion in the order
integrity of choice set under evaluation. In fact, the weights for the remaining criteria at that
locality were equal to each other, and hence this was not an expected outcome throughout
the synthesis. In our view, if a decision alternative x is selected by the implementation of a
particular decision-making algorithm, such as the SAW synthesis, and the performance
of x is not any better than other alternatives under a criterion c, then x should again be
selected by the same algorithm when criterion c is removed from the criteria set. According
to this perspective, the incident on hand presents an opportunity that may suggest valuable
inferences for decision makers with SAW method. For that reason, it is our aim in this
account to track the roots of such a decision anomaly in the SAW synthesis and gather our
findings from this analysis.
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In the vast literature of multiple-criteria decision making, similar analyses of deci-
sion anomalies and inconsistencies are not rare. One immediate example corresponds to
the well-known case of the rank reversal phenomenon. In that background, the enquiry
into rank reversal and preservation is mainly concerned with behavior of the rank-order
when new components are added to, or deleted from, the choice set of a decision-making
problem. There exists significant early discussion, in particular, concerning the renowned
analytic hierarchy process-AHP [1] considering the consequences under such inclusion–
exclusion practices on the choice set and underlying decision hierarchy, e.g., [2,3]. Other
relevant works investigated the meaning of “relative importance” [4], the essence of the
“value function” [5] that assigns a real number to each alternative in the choice set, and
implications of the independence axiom [6]. Consequently, Saaty’s priority approach has
been criticized due to its potential weakness towards rank reversals. In rejoinders [7,8],
Saaty and colleagues aimed to point out that rank reversal is a natural outcome both with
noxious and desirable influences; thus, preserving rank-order in all decision situations is
not true in terms of both technical and cognitive frames. On the other hand, he extends the
conventional method to a more general approach, namely the analytic network process [9],
which accounts for inner- and inter-dependencies of the criteria and choice sets.

Similar to the line of research devoted to rank reversal, there exist plentiful papers that
investigate decision-making anomalies and inconsistencies from the viewpoints of method
validation, hierarchical decomposition, measurement scales, aggregation rules, criteria
structuring and their importance, number comparison principles, and so on. As we did
not aim to survey this body of work in an all-embracing manner in the current manuscript,
we summarize our review of relevant literature in Table 1 for interested readers. In this
itemized format, the discussions, critiques, and investigations column notes the aspect of a
particular method or approach that is explored in the source paper; the theories, methods, and
illustrations column displays which theory or method is utilized in such critical analysis, or
indicates the choice for the illustration of main arguments of the source.

Table 1. Summary of enquiries into decision-making anomalies and inconsistencies.

Source Discussions, Critiques, and Investigations Theories, Methods, and Illustrations

[2] Shows the case of rank reversal in the AHP method Contrary example
[10] Questions weak justification of the Eigenvector method Geometric mean method

[11] States that criteria importance is not independent of alternative
performances Correspondence condition

[12] Criticizes validation of the AHP scale Analysis of published examples

[6] Notes that procedure of hierarchical decomposition leads to
arbitrary rankings Absolute measurement, rescaling

[13] Shows that cost/benefit analysis with AHP method yields
non-optimal solutions Incremental analysis

[14] Investigates anomalies in methods to calculate random indices Experimental results
[3] Illustrates rank reversal in the AHP method Geometric mean method
[15] Analyses the inverse inconsistency in the AHP method Statistically significant random indices

[16] Argues that an ordering is not actually existent in the
Eigenvector method Geometric estimation, linking pins, supermatrix

[17] Proves rank reversal in the supermatrix approach Multi-attribute value theory
[18] Questions weak justification of the Eigenvector method Left-right eigenvector asymmetry
[19] Challenges the calculation of relative importance of criteria Nomology, criteria structuring

[20] Investigates top-down hierarchical process and aggregation
rules Proofs, illustrative examples

[21] Questions main axioms of the AHP Discussions

[22] Suggests that Eigenvector method is not suitable to reconcile
inconsistent input Discussions

[23] Discusses unsuitable cost/benefit priorities and ratios Magnitude adjustment
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Table 1. Cont.

Source Discussions, Critiques, and Investigations Theories, Methods, and Illustrations

[24] Investigates violation of independence axiom Analysis of published examples
[25] Shows the case of rank reversal in the AHP method Illustrative example

[26] Discusses corncerns about scale misinterpretation and
eigenvalue evaluation Discussions, systematic literature review

[27] Studies failure of consistency index in case of contradictory
judgments Illustrative examples

[28] Analyses a non-discriminating criterion in the context of AHP
method Numerical example

[29] Criticizes non-existence of an absolute zero in ratio scales Preference function modelling

[30] Discusses conditions for mathematical operations on
measurement scales Principle of reflection, homogenity

[31] Experiments addition/deletion of a non-discriminating
criterion in a hierarchy Numerical examples

[32] Challenges the additive synthesis Commensurate priorities

[33] Shows order violations of preference intensities under the fuzzy
system Proofs, fuzzy preference programming

[34] Studies unjustified rank reversal between dis-preferred
alternatives Illustrative examples

[35] Substitutes a polynomial-time procedure for analysis of extent
in grey system Probability theory, proofs

[36] Exposes different rankings in upper- and lower-triangular
interval judgments Post-optimality analysis

[37] Studies complexity reduction in the presence of ordinal data Linear transformation
[38] Notes the Simpson paradox in aggregation of ranked data Non-parametric pair-wise procedures

[39] Shows need for new measures of inconsistency in stochastic
decision making Kullback-Leibner divergence

[40] Investigates non-discriminating criteria in the context of AHP
method Weight adjustment, dependence

[41] Discusses the implication of an attractive but unattainable
alternative Experimental studies

[42] Proves failure of a proposed alternative inconsistency index Illustrations, contrary example
[43] Treats the problem of incomplete information Compensatory programming
[44] Demonstrates rank reversal in TOPSIS method Analysis of PIS and NIS, algorithm modification
[45] Suggests alternative visual method to number comparison Probability theory, visualization

[46] Shows that there is a limit to increasing homogeneity by
replicating preferences Distance metrics, consensus measures

[47] Studies rank reversal in the ANP method Economic experiments

[48] Argues that eigenvector priority function cause strong rank
reversal Numerical example

[49] Provides a critical analysis of the Eigenvector method in group
decision making Proofs

[50] Investigates rank reversal in VIKOR method empirically Empirical evaluation
[51] Comparative analysis of rank reversal in three methods Case study in sustainable material selection
[52] Investigates both the ordinal and multiplicative consistencies Ordinal consistency index
[53] Studies inferring strength-of-preference across individuals Experiments with participants
[54] Analyses rank reversal in data envelopment analysis Empirical study
[55] Investigates rank reversal Method development-RAFSI
[56] Investigates rank reversal Method development-NRTOPSIS
[57] Studies invariant reference points and scales Theoretical analysis, computational examples

[58] Explores robust rank preservation based on Gaussian
distribution Sensitivity analysis

[59] Questions the scale constraints in distance-based decision
making Theoretical analysis, case studies

[60] Studies correlations of violations in pre-defined conditions for
final decisions Laboratory experiment

[61] Shows amplification of greyness degree in decision-making
algorithms Proofs, Monte-Carlo simulation
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Not only related to the status of weakly-dominated decision alternatives, distortions in
the order integrity may occur when other acts of a decision-making problem change. Finan
and Hurley [25] named what we call a non-discriminating criterion the “wash” criterion,
and similarly noted that the decision maker cannot differentiate the alternatives on that
criterion; more simply, the linked decision alternatives have equal performances. On this
basis, they questioned the deletion of a wash criterion from the criteria set of the AHP
method in particular. In their implementation, they assumed a consistent decision matrix
and investigated whether the conventional AHP synthesis conforms to elimination of wash
criterion from hierarchies of single and multiple levels. They proved that elimination of
the wash criterion does not affect the order integrity of decision alternatives in single-level
hierarchies. Nevertheless, they also proved that this result does not extend to multiple-
level hierarchies.

In a similar approach, Pérez et al. [31] discussed embedding a non-discriminating
criterion into a multiple-level hierarchy to obtain the same result. They criticized the AHP
method from the viewpoint that the rank-order does not respond to the introduction and
deletion of the non-discriminating criterion in a coherent way, considering that in some
situations the criteria set of a decision-making problem may not be defined beforehand, and
analysis may be restricted to relevant criteria for which the performances of alternatives
show meaningful disagreement through the implementation steps of the decision process.

Wijnmalen and Wedley [40] extended the previous result by Finan and Hurley [25] by
relaxing the assumption of a consistent decision matrix. Their analysis of multiple-level
hierarchies provided outcomes that are congruous to both Finan and Hurley [25] and
Pérez et al. [31].

Turning to the case of our experience with the non-discriminating criterion in SAW
synthesis, from a practical point of view, one may ponder that such criterion may be
singled out from decision hierarchy due to incidences in simpler problem representation
and computational efficiency. Nevertheless, as we prove in this work, SAW synthesis is
exposed to possible distortions in the order integrity when such a criterion, in a lower
level hierarchy, is instinctively removed from the criteria set. Therefore, our first research
question in this analysis is structured as follows.

RQ1. In which circumstances is the SAW synthesis open to distortions in the order integrity
when a non-discriminating criterion is ignored?

In our view, the arguments instituted through such an analysis should include conve-
nient inferences for decision makers with the SAW method. On that account, we derive a
condition to check the alleged order misrepresentation between any decision-alternative
pair based on our findings. On the other hand, when such a misrepresentation is known
to occur, the decision makers shall wonder by how much the final performance of each
decision alternative will alter when ignoring the non-discriminating criterion. This leads to
the formulation of a second research question.

RQ2. By how much will the final performance of each decision alternative change when a
non-discriminating criterion is ignored?

Hence, based on this enquiry, we derive necessary arguments to measure change in
the final performances of decision alternatives, with the exclusion of the non-discriminating
criterion. In this situation, it is also a point of concern whether there will be any decision
alternatives whose final performances are not mutable. This issue additionally leads to the
following research question.

RQ3. Are there any decision alternatives whose final performances remain unchanged when a
non-discriminating criterion is ignored?

Then, we show that when the non-discriminating criterion is removed, some alterna-
tive(s) may become anchor(s) whose performance does not alter overall results. We also
analyze the role of normalization procedure by reflecting upon a substitute normalization
scheme, based on the following premise.

RQ4. Will substitution in the normalization procedure guarantee conservation of the order
integrity when a non-discriminating criterion is ignored?
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We believe that our investigation into the above four research questions will yield a
four-fold contribution to the narrow literature on the non-discriminating criterion, which
we think has not yet been discussed with all practicalities as well as perils, especially given
the fact that it has not yet been studied in the context of SAW synthesis.

To this end, this paper is organized as follows. In Section 2 we detail an analysis of
the non-discriminating criterion considering a deep SAW hierarchy to generate arguments
for the existence and detection of distortions in the order integrity. Section 3 is devoted to
illustrating the properties implied by this analysis, as answers to the first three research
questions, which may appeal to decision makers using the SAW method. In Section 4
we illustrate how to work with these constructs in an example multiple-criteria decision-
making problem. Some remarks concerning our analysis and an exploration to the fourth
research question are presented in Section 5. We finally summarize our conclusions from
this study in Section 6.

2. Analysis

The SAW method is one of the earliest procedures used to assign values to elements of
a choice set that is processed with regards to a criteria set. Its origin can be traced as far
back as the foremost work of Churchman and Ackoff [62]. Since then, it has been practiced
in numerous applications, both in technical and social contexts. A detailed account of the
applications of the SAW method in a variety of decision-making situations can be found in
a review by Abdullah and Adawiyah [63].

Briefly, the SAW method works as follows. Let xi be n decision alternatives, indexed
by i, that constitute the choice set, and cj be m criteria, indexed by j that make up the criteria
set. Denote the performances of alternatives over the criteria set by aij ≥ 0 and associate a
weight wj ≥ 0 with each criterion, such that:

m

∑
j=1

wj = 1. (1)

The criteria set is apportioned to two disjoint sets B and C, denoting the sets of
benefit criteria (i.e., more denotes a better type) and cost criteria (i.e., less denotes a better
type), respectively. Under this representation, the SAW method assumes a decision matrix
A =

(
aij
)

n×m to work through its normalized counterpart Â =
(
âij
)

n×m where

âij =


aij
a∗j

if j ∈ B
a∗j
aij

if j ∈ C,
(2)

such that a∗j = maxi
{

aij
}

for j ∈ B, and a∗j = mini
{

aij
}

for j ∈ C. Then, the overall
performance ai of alternative xi is computed by using

ai =
m

∑
j=1

wj·âij. (3)

The greater the value of ai the better the alternative xi; hence, the rank-order is attained
accordingly.

In the sequel, we analyze the status of a non-discriminating criterion, assuming the
above SAW procedure and a deep hierarchy. For our purposes, consider the hierarchy
illustrated in Figure 1. There exists a goal g at the first level, and a set of m criteria cj
for which weights wj ≥ 0 are assigned at the second level. Each criterion cj is composed
of k(j) sub-criteria cjk, with the exception of c1, which, in addition, accommodates the
non-discriminating criterion c0 as a sub-criterion at the third level, as shown in this figure.
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Figure 1. Deep SAW hierarchy.

Without loss of generality, any criterion that accommodates the non-discriminating
criterion, and hence the sub-criteria of that criterion, can be re-indexed to conform to this
setting. Moreover, there may be numerous other elements residing at lower levels of the
hierarchy, which are not illustrated here; their existence is marked by three dots expanding
below. The weights assigned to sub-criteria are then given by wjk ≥ 0, with the exception
of the non-discriminating criterion, which assumes w0 ≥ 0. The weights attached to each
criteria and sub-criteria satisfy normalization constraints; therefore, at the second level
we have:

m

∑
j=1

wj = 1, (4)

and at the third level we have:

w0 +
k(1)

∑
k=1

w1k = 1, j = 1, (5)

and
k(j)

∑
k=1

wjk = 1, ∀j, j 6= 1, (6)

where similar construction is true for all levels below. We consider a choice set of n
alternatives xi and let ai1k be the cumulative performances accumulated bottom-up by
devouring the hierarchy under SAW synthesis up to the third level, and aij be those
accumulated up to the second level. The extent of this operation is delimited with dashed
contours in Figure 1. As the local calculations of performances below c1k are not relevant
to our analysis until the third level, and similarly those below c2 to cm are not relevant
until the second level, we directly use cumulative performance results given by ai1k and
aij, respectively. The equal performances a0 below the non-discriminating criterion, may
occur in two cases. Either the non-discriminating criterion has no sub-criteria at the fourth
level and the performances are simply a0, or, in a less likely case, cumulative performances
computed bottom-up for each alternative turn out to be equal at the third level, with the
value a0. We now present our result under this convention, where, for illustration purposes,
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the non-discriminating criterion is embedded in the third level. Yet, we note that similar
arguments for any case where the non-discriminating criterion is embedded in a deeper
level may be developed by following the same approach.

Theorem 1. SAW synthesis is open to distortions in the order integrity upon removal of a non-
discriminating criterion embedded in a deep hierarchy.

Proof of Theorem 1. Suppose two cases where, for the first one, the non-discriminating
criterion c0 is present, and for the latter one it is removed from the criteria set. We introduce
a superscript 0 to denote the former case and break down the hierarchy, starting from c1.
The decision matrices at this locality are in the form:

A0
1 =


a0 a111 · · · a11k(1)
a0 a211 · · · a21k(1)
...

... ai1k · · ·
a0 an11 · · · an1k(1)

, A1 =


a111 · · · a11k(1)
a211 · · · a21k(1)

... ai1k · · ·
an11 · · · an1k(1)

 (7)

Suppose, without loss of generality, that all criteria in the hierarchy are benefit criteria
and define a∗1k = maxi {ai1k}, k = 1, . . . , k(1). Then, normalized decision matrices are
given by:

Â0
1 =


1 a111

a∗11
. . .

a11k(1)
a∗1k(1)

1 a211
a∗11

· · · a21k(1)
a∗1k(1)

...
... ai1k

a∗1k

...

1 an11
a∗11

. . .
an1k(1)
a∗1k(1)

, Â1 =



a111
a∗11

. . .
a11k(1)
a∗1k(1)

a211
a∗11

· · · a21k(1)
a∗1k(1)

... ai1k
a∗1k

...
an11
a∗11

· · · an1k(1)
a∗1k(1)

 (8)

Let
âi1k =

ai1k
a∗1k

, i = 1, . . . n; k = 1, . . . , k(1), (9)

then, performances of each alternative under weights w0, w11, . . . , w1k(1) for the case when
non-discriminating criterion is included are given by:

a0
11
...

a0
n1

=

=

w0
...

w0

+w11·â111
...

+w11·ân11

+ . . .+
...

+ . . .+

w1k(1)·â11k(1),
...

w1k(1)·ân1k(1).

(10)

On the other hand, when the non-discriminating criterion is removed, notice that
normalization constraint for weights is distorted. However, we retrieve the totality:

k(1)

∑
k=1

w1k = 1− w0 (11)

to satisfy the normalization constraint with

w′1k =
w1k

1− w0
, k = 1, . . . , k(1) (12)

such that
k(1)

∑
k=1

w′1k = 1. (13)
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Thus, the performance of each alternative under weights w′11, . . . , w′1k(1) for the case
when the non-discriminating criterion is removed is given by:

a11
...

an1

=

=

w11
1−w0

...
wn11

1−w0

·â11

·ân11

+ . . .+
...

+ . . .+

w1k(1)
1−w0

...
w1k(1)
1−w0

·ân1k(1)

·ân1k(1)

(14)

In general, we obtain:

a0
i1 = w0 + bi , i = 1, . . . , n, (15)

ai1 =
1

1− w0
·bi, i = 1, . . . , n, (16)

where

bi =
k(1)

∑
k=1

w1k·âi1k , i = 1, . . . , n. (17)

When it comes to processing the goal, decision matrices and their normalized counter-
parts are in the form:

A0 =


w0 + b1 a12 · · · a1m
w0 + b2 a22 · · · a2m

...
... aij

...
w0 + bn an2 · · · anm

, A =


1

1−w0
b1 a12 · · · a1m

1
1−w0

b2 a22 · · · a2m
...

... aij
...

1
1−w0

bn an2 · · · anm

 (18)

Â0 =


w0+b1
w0+b∗

a12
a∗2

. . . a1m
a∗m

w0+b2
w0+b∗

a22
a∗2

· · · a2m
a∗m

...
...

aij
a∗j

...
w0+bn
w0+b∗

an2
a∗2

· · · anm
a∗m

, Â =


b1
b∗

a12
a∗2

. . . a1m
a∗m

b2
b∗

a22
a∗2

· · · a2m
a∗m

...
...

aij
a∗j

...
bn
b∗

an2
a∗2

· · · anm
a∗m

 (19)

where b∗ = maxi {bi} and a∗j = maxi
{

aij
}

, j = 2, . . . , m. Letting

âij =
aij

a∗j
, i = 1, . . . , n; j = 2, . . . , m, (20)

and the performances of each alternative under weights w1, . . . , wm are derived as:

a0
i = w1·

w0 + bi
w0 + b∗

+ ui , i = 1, . . . , n, (21)

ai = w1·
bi
b∗

+ ui , i = 1, . . . , n, (22)

where

ui =
m

∑
j=2

wj·âij, i = 1, . . . , n. (23)

To conclude this argument, consider two alternatives xi and xl . Let the difference
between performances of xi and xl be dil with dil = ai − al . When the non-discriminating
criterion is included or excluded from the choice set, this difference is equal to:

d0
il =

w1

w0 + b∗
·(bi − bl) + (ui − ul), (24)

dil =
w1

b∗
·(bi − bl) + (ui − ul), (25)
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respectively. In order to preserve the order integrity between xi and xl , it is required that the
sign of this difference does not alter between two cases. Note that a change of sign is possible
when the value of (ui − ul), the second term of the function, ceases to compensate for the
value of the first term due to re-scaling by erosion of w0 at the denominator. As such, SAW
synthesis is open to distortions in order integrity upon removal of a non-discriminating
criterion. �

In the above, we have proved that SAW synthesis may suffer from inconsistencies
in the final order, similar to the widely-known case with weakly-dominated alternatives
added to and deleted from the choice set, but this time using a case in relation to a non-
discriminating criterion which is included in, and excluded from, the criteria set. We
stress that our aim was not to propose arguments that may be used to compute SAW
output alternatively, nor do we claim that those are computationally efficient. Nonetheless,
the above construction has immediate consequences in the form of some properties that
may be resorted to by decision makers using the SAW method while working with such
criteria sets.

3. Implications

In this section, we use arguments of the previous section in response to our first three
research questions and generate properties that are of particular interest to decision makers
using the SAW method.

One immediate result that does not require further clarification relates to circumstances
in which the order integrity is distorted. Based on Theorem 1, the answer to RQ1 is that
such inconsistency occurs when the sign of differences between performances of two
alternatives change. Consequently, we propose a condition of order preservation between
two alternatives, as follows.

Theorem 2 (Condition of order preservation). Order between two alternatives xi and xl will be
preserved upon removal of the non-discriminating criterion from a deep SAW hierarchy if

sign
(

d0
il

)
= sign(dil). (26)

Decision makers may be interested in finding the cardinality of change in the per-
formance of any alternative when the non-discriminating criterion is removed from the
criteria set. It may be useful to have such information beforehand, especially to promote
fairness in delicate decision-making problems, such as budget allocation, academic ranking,
distributing ancillary benefits, and those of similar nature. To that aim, the answer to RQ2
is staged by the following theorem.

Theorem 3 (Cardinality of change at the performance of an alternative). The performance of
an alternative xi will alter by ∆i when the non-discriminating criterion is removed from the criteria
set where:

∆i = w1·
(

bi
b∗
− w0 + bi

w0 + b∗

)
. (27)

Proof of Theorem 3. If an existing non-discriminating criterion is removed, the perfor-
mance of an alter native xi will change by ∆i = ai − a0

i . Then, by (21)–(22), we have:

∆i = ai − a0
i = w1·

bi
b∗

+ ui −
(

w1·
w0 + bi
w0 + b∗

+ ui

)
= w1·

(
bi
b∗
− w0 + bi

w0 + b∗

)
. (28)

�
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Decision makers may also want to know whether there will be any alternatives whose
final performances will not change upon removal of the non-discriminating criterion.
Such alternatives, based on their performance, are essential pivots that form the basis of
redistribution of performances of other alternatives when the non-discriminating criterion
is removed. We shall name such alternatives the anchors. Accordingly, the answer to RQ3 is
presented by the following theorem.

Theorem 4 (Existence and performances of anchors). There exists at least one anchor whose
performance does not alter with removal of the non-discriminating criterion from the criteria set.

Proof of Theorem 4. Consider the set X∗ = {xi∗ : bi∗ = b∗}. It is easy to see that X∗ 6= ∅,
moreover, for an xi∗ ∈ X∗ we have:

∆i∗ = w1·
(

b∗
b∗
− w0 + b∗

w0 + b∗

)
= 0 (29)

which shows ai∗ = a0
i∗, then xi∗ ∈ X∗ are called the anchors. �

4. Illustration of Theorems

In this section, we show how to practice with the theorems introduced in previous
sections in an example where the arguments will be applied to analyze points raised by
RQ1–RQ3 under a criteria set including a non-discriminating criterion. For our purposes
we introduce an example inspired by an original instance by Finan and Hurley [25] (p.
1029), illustrated in Figure 2 under a three-level hierarchy where the numbers below level
three sub-criteria denote the performance of each alternative.

Figure 2. Illustration of Example 1.

Example 1. Consider the choice set X = {x1, . . . , x5} and two main criteria c1 and c2 at the
second level with weights w1 and w2. For c1 there exist two sub-criteria, c0, c11, c12, and c13, with
respective weights w0, w11, w12, and w13; for c2 there are two sub-criteria, c21 and c22, with weights
w21 and w22, respectively.

Before solving the decision-making problem, suppose the decision maker is interested in:

(1) investigating whether the order between x3 and x4 will be misrepresented upon the removal of
c0,
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(2) finding out whether the performance of x2 will increase or decrease, and to what extent, in the
final results,

(3) detecting the alternative(s) whose performance will not be affected by such an exclusion.

Based on our arguments, the application of Theorems 1–4 for completing tasks (1)–(3)
is carried out as follows.

(1) To investigate an alleged order misrepresentation between x3 and x4, according
to Theorem 1, we need b3 = 0.2·

( 50
50 + 30

40 + 35
50
)
= 0.49, and, using similar calculation for

b4, we have b4 = 0.535. On the other hand, below c2 we obtain a32 = 0.5·
(

40
55 + 55

55

)
=

0.8636; again, using similar calculation for a42 gives a42 = 0.8181. Just for normalization
purposes, we compute a12 = 0.7272, a22 = 0.7727, and a52 = 0.8181. Then, we obtain
â32 = 0.8636

0.8636 = 1 and â42 = 0.8181
0.8636 = 0.9473, which help to compute u3 = 0.55·1 = 0.55 and

u4 = 0.55·0.9473 = 0.5210. To use this information we also need b∗, which, upon resorting
to the same procedure used to compute b3 and b4, and considering b1 = 0.48, b2 = 0.455,
and b5 = 0.425, we selected as b∗ = 0.535. Therefore, we arrive at:

d0
34 =

0.45
0.4 + 0.535

·(0.49− 0.535) + (0.55− 0.521) = 0.0074

d34 =
0.45

0.535
·(0.49− 0.535) + (0.55− 0.521) = −0.0088.

Using Theorem 2, we conclude that sign
(
d0

34
)
6= sign(d34); hence, the order between

x3 and x4 will be misrepresented if the non-discriminating criterion is excluded from the
criteria set.

(2) For this particular purpose, we utilize Theorem 3 and obtain:

∆2 = 0.45·
(

0.455
0.535

− 0.4 + 0.455
0.4 + 0.535

)
= 0.0288,

Which shows that the performance of x2 will be reduced by 0.0288, subject to removal of
the non-discriminating criterion.

(3) As we have b4 = b∗ = 0.535, according to Theorem 4, x4 is the anchor alternative
and its performance will not be affected by excluding the non-discriminating criterion.

For the purpose of assessing the above theorem results, we solved the decision-making
problem given by this example with the SAW method when a non-discriminating criterion
is included in the criteria set, and when it is removed from the criteria set. Related results
are summarized in Appendix A. To check the above arguments, recall from Appendix A
the overall rank-order x3 � x4 � x5 � x2 � x1 when the non-discriminating criterion is
included; however, when it is removed, we recall x4 � x3 � x5 � x2 � x1, showing clearly
the order misrepresentation between alternatives x3 and x4, as we have located using
Theorem 2. Moreover, we also recall that the performance of x2 reduces from a0

2 = 0.9036
to a2 = 0.8748, a difference of 0.0288, when the non-discriminating criterion is ignored, as
we obtained by utilizing Theorem 3. Finally, the overall performance a0

4 = a4 = 0.9710 for
x4 shows that it is the anchor, whose performance is stable when the non-discriminating
criterion is removed, as we located using Theorem 4.

5. Remarks

In this section we present three further remarks regarding our analysis in previous
sections.

5.1. Non-Discriminating Criterion at Deeper Levels

Our analysis is irrespective of the level of a deep hierarchy in which the non-
discriminating criterion is embedded. With the view that a single case is sufficient to
prove probable non-integrity in the order under criteria sets with a non-discriminating
criterion, and drawing on the SAW synthesis, as well as for a clear presentation of ideas, we
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considered a non-discriminating criterion embedded at the third level of a deep hierarchy.
However, the procedure we detailed is adaptable, in the sense that one can generate similar
arguments for cases where the non-discriminating criterion is embedded in deeper levels,
if such analysis is anticipated.

To follow a process that is consistent with our steps one needs to ensure, if necessary
with a re-indexing of the relevant criteria, that the upper level criteria for which the non-
discriminating criterion is a sub-criterion all reside in the first branch of the hierarchy on
the left-hand side that backtracks from the non-discriminating criterion to the goal, as
shown in Figure 1. This establishes that all such criteria will be indexed by using ones only,
where the necessary number of indices for each criteria is one less than its level. Then,
keeping the deeper level overall performances, that are relevant to non-discriminating
criterion, in the first column of the upper level decision matrix, and those that are irrelevant
to non-discriminating criterion in other columns of this matrix, and continuing with this
routine, one can simply generate the necessary arguments bottom-up. One also needs
to note that they can be quite cumbersome, because, as the non-discriminating criterion
is placed at deeper levels, additional parameters, similar to bi and ui, that keep track of
the calculations both relevant and not relevant to the non-discriminating criterion need to
be utilized.

5.2. Local Weights and Independence

When a non-discriminating criterion is removed, sub-criteria weights at its locality no
longer add up to one to ensure unity. The new totality under effect is 1− w0; the scale is
once distorted and needs normalization. Local weights are normalized by adhering to this
totality so that unity is restored, but, as we have reduced the process to the evaporation
of w0 at the denominator of d0

il in Theorem 1, the integrity of the order is put at risk this
time. Moreover, that is still the case even though all sub-criteria at that locality assume
the same weights. We tried to illustrate this latter argument with equal prior weights
w11 = w12 = w13 = 0.2 in Example 1, presented in the previous section.

The notion of independence in a decision hierarchy indicates that criteria weights, at
some level, shall be determined independent of their association with lower-level con-
stituents. It is a valuable construct that helps model a structured hierarchy and allow a
step-by-step implementation of the tabbed method, by steering its comprehension. If this
consideration is abandoned, one may tune-up local weights upon removal of the non-
discriminating criterion by taking associations between hierarchy constituents into account,
and then imposing preservation of the order integrity. However, such a “supermatrix”
mode is not the case for SAW synthesis.

5.3. Choice of Normalization

SAW synthesis requires the utilization of linear normalization to ensure unity in
calculations. In its original form, which is of particular interest to the analysis in previ-
ous sections, and without loss of generality under benefit criteria, SAW calls for linear
normalizations of type:

(L1) ôij =
oij

o∗j
, j = 1, . . . , m, (30)

where oij are objects under normalization process and o∗j = maxi
{

oij
}

, j = 1, . . . , m.
There exists two other linear normalization methods whose cases may be examined

in terms of whether a substitution in the normalization method contorts the main-order
misrepresentation result in general. These normalization methods work as follows for
benefit criteria:

(L2) ô′ij =
oij

∑n
i=1 oij

, j = 1, . . . , m, (31)

and

(L3) ô′′ij =
oij − o−j
o∗j − o−j

, j = 1, . . . , m, (32)
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where o−j = mini
{

oij
}

, j = 1, . . . , m.
Normalization with L3 is seldom preferred in SAW applications, and known to pro-

duce highly biased overall performances due to disfigurements in two aspects. First, it
sets up the bottom-line at the minimal performance, resulting in unfair assessments with
increasing severity as the range of performances (i.e., the denominator) gets smaller. Sec-
ond, it assigns a normalized value of zero to the minimal performance under each criterion,
which discredits the minimal performing alternative. We find it particularly unsuitable
for our analysis, as L3 does not assume a non-discriminating criterion and would result in
assignment of indefinite terms to its column in the normalized decision matrix immediate
level above. For this reason, we single out L3 from further discussion.

On the other hand, when L2 is substituted for L1 in Example 1, in a surprising
result, such substitution averted the order misrepresentation. We summarized the related
calculations in Appendix B. Nevertheless, this instance does not contort our results in
general, as it is a special case where the sum of elements in the c1 column of the decision
matrix utilized for the goal add up to 1; hence, its normalized counterpart is directly
supplied with performances of the level below, with no denominators attached, and this,
by chance, numerically helps to avoid order misrepresentation between x3 and x4. To see
this, let us modify bi parameters as follows:

b′i =
k(1)

∑
k=1

w1k·
ai1k

∑n
i=1 ai1k

, i = 1, . . . , n, (33)

where we append a prime to differentiate it from bi utilized under L1 normalization. Then,
the first column of the decision matrix A0 for g is composed of the terms

w0

n
+ b′i , i = 1, . . . , n, (34)

whose sum is

w0 +
n

∑
i=1

b′i . (35)

Observe that, according to the above definition of b′i , for their sum we obtain

n

∑
i=1

b′i =
k(1)

∑
k=1

w1k = 1− w0, (36)

and that the totality (35) therefore adds up to 1. A similar case is also true when the
non-discriminating criterion is removed; hence, the first column of the decision matrix A
for g is composed this time of the terms:

1
1− w0

·b′i , i = 1, . . . , n, (37)

whose sum is
1

1− w0
·

n

∑
i=1

b′i , (38)

which again adds up to 1.
As we have noted, this interesting instance does not extend to conclude that substi-

tuting L2 for L1 averts distortions in the order integrity in general. To illustrate this, and
to answer our fourth research question, we now analyze another example illustrated in
Figure 3, in which a non-discriminating criterion is embedded in the fourth level, and the
substitution of L2 fails to avert the observed distortion in the order integrity.
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Figure 3. Illustration of Example 2.

Example 2. Consider the choice set X = {x1, . . . , x4} and two main criteria c1 and c2 at the
second level with weights w1 and w2. For c1 there exists two sub-criteria, c11 and c12, with weights
w11 and w12; for c2 there are two sub-criteria, c21 and c22, with weights w21 and w22 at the third
level, respectively. At the fourth level, for c11, there are three sub-criteria c111, c112, and the non-
discriminating criterion c0, with weights w111, w112, and w0, respectively. Similarly, for c12 there
are two sub-criteria, c121 and c122, with weights w121 and w122 at the same level, respectively.

A solution to the underlying decision-making problem with SAW synthesis is summa-
rized in Appendix C. According to this solution, we obtain the rank-order x1 � x3 � x4 �
x2 when the non-discriminating criterion is included. Nevertheless, when it is ignored we
obtain the rank-order x3 � x1 � x4 � x2, showing a clear order misrepresentation between
decision alternatives x1 and x3.

On the other hand, we substituted L2 as the normalization procedure and reiterated
the SAW synthesis. This implementation is summarized in Appendix D. Note that the
numerical values of final performances in this case come out closer than those obtained
using L1, owing to repetitive normalizations over the sums of associated constituents.
Nevertheless, we observe that substituting L2 did not help in averting the order misrepre-
sentation between decision alternatives x1 and x3. Unfortunately, the answer to our fourth
research question is not positive; hence, using a substitute normalization procedure do
not guarantee conservation of the order integrity in a decision-making problem when the
non-discriminating criterion is ignored.

6. Conclusions

In the current note we presented an analysis of the non-discriminating criterion under
SAW synthesis and a deep decision hierarchy. Our analysis is transmuted in the form of
four research questions that are of interest to researchers, decision makers, and practitioners
using the SAW method.

We particularly questioned consequences with ignoring such a criterion, and found that
doing so results in noxious distortions in the order integrity of the decision-making problem
on hand. Based on this finding, we derived a condition to check order preservation—and
naturally probable order misrepresentations as well—between decision alternatives when
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the non-discriminating criterion is ignored. We also provide arguments to compute the
cardinality of change in the final performances of each decision alternative, in such a case.
Moreover, we proved the existence of performances which do not alter in the final results,
and named the associated decision alternatives as anchors. As a last resort, we explored
the role of a normalization procedure adopted through SAW implementation in preventing
order misrepresentations caused by ignoring the non-discriminating criterion. However,
we found that substituting the normalization procedure does not help to overcome such
misrepresentations,4 in general.

Finally, there is an important question in front of researchers, decision makers, and
practitioners using the SAW method:

Should a non-discriminating criterion be excluded from the criteria set through SAW imple-
mentation?

In the domain of AHP, Liberatore and Nydick [28] noted that eliminating an essential
sub-criterion affects the importance of the criterion of which the sub-criterion was a part.
Thus, recognizing the essence of independence, they concluded that the criteria must
be re-assessed when a non-discriminating criterion is excluded from the analysis; other-
wise, when the re-assessment is not implemented, they stress that the non-discriminating
criterion should not be eliminated. Similarly, Wijnmalen and Wedley’s [40] analysis sug-
gests including all criteria that are relevant to a decision-making situation, including
non-discriminating criteria. Congruent results may be found in studies by Finan and
Hurley [25] and Pérez et al. [31].

Our analysis using the SAW method produced implications that are in line with the
above studies. When a non-discriminating criterion is excluded, it was evident that SAW
potentially produces an altered rank-order and odd adjustments in overall performances,
with some being constant. Apparently, it is not proper practice of the SAW method when
one singles out a non-discriminating criterion from the analysis inattentively, given that it
was found to be relevant to an ex-ante assessment of the decision situation and included in
the criteria set beforehand.
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Appendix A

Table A1. Summary of Example 1 solution with SAW synthesis.

Criteria

Matrices A0
1 A1 A2

20 45 40 25 45 40 25 35 45
20 45 35 25 45 35 25 35 50
20 50 30 35 50 30 35 40 55
20 40 35 50 40 35 50 50 40
20 35 25 40 35 25 40 55 35

max 20 50 40 50 50 40 50 55 55

Normalized
matrices Â0

1 Â1 Â2

1 0.9 1 0.5 0.9 1 0.5 0.6363 0.8181
1 0.9 0.875 0.5 0.9 0.875 0.5 0.6363 0.9090
1 1 0.75 0.7 1 0.75 0.7 0.7272 1
1 0.8 0.875 1 0.8 0.875 1 0.9090 0.7272
1 0.7 0.625 0.8 0.7 0.625 0.8 1 0.6363

weights 0.4 0.2 0.2 0.2 0.3333 0.3333 0.3333 0.5 0.5

performances a0
11 = 0.88 a11 = 0.7992 a12 = 0.7272

a0
21 = 0.855 a21 = 0.7575 a22 = 0.7727

a0
31 = 0.89 a31 = 0.8158 a32 = 0.8636

a0
41 = 0.935 a41 = 0.8907 a42 = 0.8181

a0
51 = 0.825 a51 = 0.7076 a52 = 0.8181

goal

matrices A0 A

0.88 0.7272 0.7992 0.7272
0.855 0.7727 0.7575 0.7727
0.89 0.8636 0.8158 0.8636
0.935 0.8181 0.8907 0.8181
0.825 0.8181 0.7076 0.8181

max 0.935 0.8636 0.8907 0.8636

Normalized
matrices Â0 Â

0.9411 0.8421 0.8971 0.8421
0.9144 0.8947 0.8504 0.8947
0.9518 1 0.9158 1

1 0.9473 1 0.9473
0.8823 0.9473 0.7943 0.9473

weights 0.45 0.55 0.45 0.55

performances a0
1 = 0.8866 a1 = 0.8668

a0
2 = 0.9036 a2 = 0.8748

a0
3 = 0.9783 a3 = 0.9621

a0
4 = 0.9710 a4 = 0.9710

a0
5 = 0.9181 a5 = 0.8785
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Appendix B

Table A2. Summary of Example 1 solution under L2 normalization.

Criteria

Matrices A0
1 A1 A2

20 45 40 25 45 40 25 35 45
20 45 35 25 45 35 25 35 50
20 50 30 35 50 30 35 40 55
20 40 35 50 40 35 50 50 40
20 35 25 40 35 25 40 55 35

sum 100 215 165 180 215 165 180 215 225

Normalized
matrices Â0

1 Â1 Â2

0.2 0.2093 0.2424 0.1428 0.2093 0.2424 0.1428 0.1627 0.2
0.2 0.2093 0.2121 0.1428 0.2093 0.2121 0.1428 0.1627 0.2222
0.2 0.2325 0.1818 0.2 0.2325 0.1818 0.2 0.1860 0.2444
0.2 0.1860 0.2121 0.2857 0.1860 0.2121 0.2857 0.2325 0.1777
0.2 0.1627 0.1515 0.2285 0.1627 0.1515 0.2285 0.2558 0.1555

weights 0.4 0.2 0.2 0.2 0.3333 0.3333 0.3333 0.5 0.5

performances a0
11 = 0.1989 a11 = 0.1981 a12 = 0.1813

a0
21 = 0.1928 a21 = 0.1880 a22 = 0.1925

a0
31 = 0.2028 a31 = 0.2047 a32 = 0.2152

a0
41 = 0.2167 a41 = 0.2279 a42 = 0.2051

a0
51 = 0.1885 a51 = 0.1809 a52 = 0.2056

goal

matrices A0 A

0.1989 0.1813 0.1981 0.1813
0.1928 0.1925 0.1880 0.1925
0.2028 0.2152 0.2047 0.2152
0.2167 0.2051 0.2279 0.2051
0.1885 0.2056 0.1809 0.2056

sum 1 1 1 1

Normalized
matrices Â0 Â

0.1989 0.1813 0.1981 0.1813
0.1928 0.1925 0.1880 0.1925
0.2028 0.2152 0.2047 0.2152
0.2167 0.2051 0.2279 0.2051
0.1885 0.2056 0.1809 0.2056

weights 0.45 0.55 0.45 0.55

performances a0
1 = 0.1892 a1 = 0.1889

a0
2 = 0.1926 a2 = 0.1905

a0
3 = 0.2096 a3 = 0.2105

a0
4 = 0.2103 a4 = 0.2154

a0
5 = 0.1979 a5 = 0.1945
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Appendix C

Table A3. Summary of Example 2 solution with SAW synthesis.

Criteria

Matrices A0
11 A11 A12

100 70 65 70 65 100 140
100 65 80 65 80 110 160
100 70 90 70 90 130 120
100 55 85 55 85 150 130

max 100 70 90 70 90 150 160

normalized matrices Â0
11 Â11 Â12

1 1 0.7222 1 0.7222 0.6666 0.875
1 0.9285 0.8888 0.9285 0.8888 0.7333 1
1 1 1 1 1 0.8666 0.75
1 0.7857 0.9444 0.7857 0.9444 1 0.8125

weights 0.4 0.3 0.3 0.5 0.5 0.55 0.45

performances a0
111 = 0.9166 a111 = 0.8611 a112 = 0.7604

a0
211 = 0.9452 a211 = 0.9087 a212 = 0.8533

a0
311 = 1 a311 = 1 a312 = 0.8141

a0
411 = 0.9190 a411 = 0.8650 a412 = 0.9156

matrices A0
1 A1 A2

0.9166 0.7604 0.8611 0.7604 140 140
0.9452 0.8533 0.9087 0.8533 130 110

1 0.8141 1 0.8141 120 150
0.9190 0.9156 0.8650 0.9156 130 120

max 1 0.9156 1 0.9156 140 150

normalized matrices Â0
1 Â1 Â2

0.9166 0.8304 0.8611 0.8304 1 0.9333
0.9452 0.9319 0.9087 0.9319 0.9285 0.7333

1 0.8891 1 0.8891 0.8571 1
0.9190 1 0.8650 1 0.9285 0.8

weights 0.5 0.5 0.5 0.5 0.6 0.4

performances a0
11 = 0.8735 a11 = 0.8458 a12 = 0.9733

a0
21 = 0.9386 a21 = 0.9203 a22 = 0.8504

a0
31 = 0.9445 a31 = 0.9445 a32 = 0.9142

a0
41 = 0.9595 a41 = 0.9325 a42 = 0.8771

goal

matrices A0 A

0.8735 0.9733 0.8458 0.9733
0.9386 0.8504 0.9203 0.8504
0.9445 0.9142 0.9445 0.9142
0.9595 0.8771 0.9325 0.8771

max 0.9595 0.9733 0.9445 0.9733
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Table A3. Cont.

goal

normalized matrices Â0 Â

0.9104 1 0.8954 1
0.9781 0.8737 0.9743 0.8737
0.9844 0.9393 1 0.9393

1 0.9011 0.9872 0.9011

weights 0.4 0.6 0.4 0.6

performances a0
1 = 0.9641 a1 = 0.9581

a0
2 = 0.9155 a2 = 0.9139

a0
3 = 0.9573 a3 = 0.9636

a0
4 = 0.9407 a4 = 0.9355

Appendix D

Table A4. Summary of Example 2 solution under L2 normalization.

Criteria

Matrices A0
11 A11 A12

100 70 65 70 65 100 140
100 65 80 65 80 110 160
100 70 90 70 90 130 120
100 55 85 55 85 150 130

sum 400 260 320 260 320 490 550

normalized matrices Â0
11 Â11 Â12

0.25 0.2692 0.2031 0.2692 0.2031 0.2040 0.2545
0.25 0.25 0.25 0.25 0.25 0.2244 0.2909
0.25 0.2692 0.2812 0.2692 0.2812 0.2653 0.2181
0.25 0.2115 0.2656 0.2115 0.2656 0.3061 0.2363

weights 0.4 0.3 0.3 0.5 0.5 0.55 0.45

performances a0
111 = 0.2417 a111 = 0.2361 a112 = 0.2267

a0
211 = 0.25 a211 = 0.25 a212 = 0.2543

a0
311 = 0.2651 a311 = 0.2752 a312 = 0.2441

a0
411 = 0.2431 a411 = 0.2385 a412 = 0.2747

matrices A0
1 A1 A2

0.2417 0.2267 0.2361 0.2267 140 140
0.25 0.2543 0.25 0.2543 130 110

0.2651 0.2441 0.2752 0.2441 120 150
0.2431 0.2747 0.2385 0.2747 130 120

sum 1 1 1 1 520 520
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Table A4. Cont.

Criteria

normalized matrices Â0
1 Â1 Â2

0.2417 0.2267 0.2361 0.2267 0.2692 0.2692
0.25 0.2543 0.25 0.2543 0.25 0.2115

0.2651 0.2441 0.2752 0.2441 0.2307 0.2884
0.2431 0.2747 0.2385 0.2747 0.25 0.2307

weights 0.5 0.5 0.5 0.5 0.6 0.4

performances a0
11 = 0.2342 a11 = 0.2314 a12 = 0.2692

a0
21 = 0.2521 a21 = 0.2521 a22 = 0.2346

a0
31 = 0.2546 a31 = 0.2596 a32 = 0.2538

a0
41 = 0.2589 a41 = 0.2566 a42 = 0.2423

matrices A0 A

0.2342 0.2692 0.2314 0.2692
0.2521 0.2346 0.2521 0.2346
0.2546 0.2538 0.2596 0.2538
0.2589 0.2423 0.2566 0.2423

sum 1 1 1 1

normalized matrices Â0 Â

0.2342 0.2692 0.2314 0.2692
0.2521 0.2346 0.2521 0.2346
0.2546 0.2538 0.2596 0.2538
0.2589 0.2423 0.2566 0.2423

weights 0.4 0.6 0.4 0.6

performances a0
1 = 0.2552 a1 = 0.2541

a0
2 = 0.2416 a2 = 0.2416

a0
3 = 0.2541 a3 = 0.2561

a0
4 = 0.2489 a4 = 0.2480
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