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Abstract: In this paper, we extend some results involving the energy release rate in the case of the
propagation of a straight crack in an elastic solid. These results, approached by Gurtin and Yatomi in
classical elasticity, are generalized in order to cover a Cosserat-type elastic body. We also investigate
the effects of the microinertia and the couple stresses on the energy release rate.
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1. Introduction

It is unanimously accepted that the non-classical theories of elasticity have as their
main goal to eliminate experimental aspects that cannot be described by elasticity based
on the classical theory. If a body’s intimate structure is considered for behavior, classical
elasticity theory does not offer a good description, for example, in polymers, human and
animal bones, and graphite. This is even more pronounced in materials with specific porous
or granular internal structures. For more information, we recommend [1,2].

The first researcher who approached microstructure theories in a large number of
studies was Eringen, who is considered a true pioneer in this field. We suggest [3,4].
After the way was opened by Eringen, many other researchers tackled a large number
of aspects of microstructure, such as [5–21]. In [7], Ciarletta investigated the bending of
microstretch elastic material plates with no thermal effects using the main ideas of Eringen.
In [5], Iesan and Pompei find a exact solution of the Boussinesq–Somigliana–Galerkin
type for a boundary-value problem in the same context of an elastic material with mi-
crostretch structure. In [12,14], the authors present some aspects regarding the propagation
of waves through bodies with different microstructures. One of the first and most important
microstructures is the Cosserat type. The Cosserat continuum, proposed by the French
brothers Cosserat, introduces the rotational kinematic degree of freedom in addition to
the translation components of the Cauchy model. A large number of influential scientists
have granted great importance to this type of structure. A long time ago, the study of crack
propagation was raised, at first, obviously, in the case of elastic or thermoelastic media. The
first studies dedicated to this matter include Eringen [22], Freund [23], Gurtin [24], Gurtin
and Yatomi [25], and so on. For instance, Freund [18] proved that energy flux depends
on the elastic field near the tip. Further, Gurtin [24] discussed some thermodynamically
cohesive models of mechanical fractures.

Gurtin and Yatomi [25] provided some expressions for the energy release rates in the pres-
ence of a propagating crack for a body that is hyperelastic and is subject to finite deformation.
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The authors of [26] address the physical meaning of path-independent integrals for
elastodynamically propagating cracks, the relation of these integrals to the energy release
rates for propagating cracks, and the relation between these integrals and time-dependent
stress-intensity factors in general mixed-mode dynamic crack propagation. Recently, some
studies have presented new results regarding the energy release rate for crack propaga-
tion in bodies with microstructures. For examples, Zhang and Wang [27] theoretically
investigated magneto–thermo–electro–elastic crack branching in these materials. A mathe-
matical model was presented by Tian and Rajapakse [28] to find the parameters of fracture
in the case of a finite impermeable crack in a magneto–electro–elastic plane actuated by
magneto–electro–mechanical loading.

A study of a semi-infinite crack that is constantly propagated in an elastic material was
conduected by Gourgiotis and Piccolroaz [29]. The body is subjected to some plane-strain
shear loadings.

Our present paper tackles the problem of the propagation of a straight crack in a
Cosserat elastic material.

2. Preliminaries

An open region D of the Euclidean three-dimensional space R3 is considered, and
an elastic Cosserat material fills this domain. As usual, the closure of D is denoted by D̄,
and its boundary ∂D is assumed to be a regular surface so as to allow application of the
divergence theorem. We adopt the Cartesian vector and tensor notation and use two types
of variables: the points of D have the spatial variables xm, and we use the temporal variable
t, with t ∈ [0, t0]. When the meaning is unambiguous, we do not specify the dependence of
a function on its spatial and/or temporal variables. We use the known rule of summation
in the case of repeated indices.

Regarding the differentiation of functions, we use the following two rules: (1) a
superposed dot on a function denotes the partial differentiation of the function with respect
to t; and (2) the partial differentiation with respect to spatial variables xm will be designated
with the respective subscript preceded by a comma: f , m.

Notations for the mechanical quantities:

- vm the components of the displacement vector field;
- φm the components of the microrotation vector;
- emn the components of the strain tensor;
- εmn the components of the couple strain tensor;
- εmnk the permutation symbol (the Ricci’s tensor);
- τmn the components of the stress tensor;
- σmn the components of the couple stress tensor;
- $ the reference mass density;
- Jmn the components of the microinertia;
- fm the components of the body force;
- gm the components of the couple body force;
- nk are the director cosines of the unit normal, outward to the boundary ∂D;
- τm the components of the surface traction vector;
- σm the components of the couple surface traction vector;
- E the dynamic energy release rate;

The deformation of a Cosserat elastic body will be described using the following
internal constitutive variables, as functions depending on the time t ∈ [0, t0] and on point
position x ∈ D:

- vm(x, t) the component elements of the vector of displacement;
- φm(x, t) the component elements of the tensor of Cosserat displacement.

The strain tensors have the component elements εmn and emn, and these are introduced
with help of the components of displacement by means of the next kinematic relations:
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εmn = vn,m + εnmkφk,

emn = φn,m. (1)

Because our subsequent considerations are made only in the context of a linear theory, it is
normal to consider that the density of the internal energy E is a quadratic form regarding
all its constitutive variables. Thus, by assuming that our body in its reference state is free
from stress and has zero intrinsic body couples, E has the following expression:

E =
1
2

Cklmnεklεmn + Bklmnεklemn +
1
2

Aklmneklemn. (2)

Taking into account the expression of the density of internal energy using Clausius–Duhem
inequality, we can obtain the constitutive relations that give the expressions for the stress
tensors τmn and σmn in terms of the strain tensors:

τmn =
∂E

∂εmn
= Cklmnεkl + Bklmnekl ,

σmn =
∂E

∂emn
= Bklmnεkl + Aklmnekl , (3)

obtained in the case of a homogenous Cosserat elastic body.
Above tensors Cklmn, Bklmn, and Aklmn are elastic constants that characterize the mate-

rial properties and obey these relations of symmetry:

Cmnkl = Cklmn, Aklmn = Amnkl . (4)

By using the procedure of Eringen [4], we can deduce the equations of motion. If it is
assumed that mass forces and the couples of forces are missing, then the motion equations
have the following form:

$v̈m = τnm,n,

Jmnφ̈n = σnm,n + εmnkτnk, (5)

in which $ is the density of the body in its reference state, and Jmn are the components of
the tensor of inertia, with Jmn = Jnm.

Further, εmnk is the permutation symbol (the Ricci’s tensor).
We assume that Equations (1), (3), and (5) take place for all (x, t) ∈ B× [0, t0].
Further, we suppose that our body D in moment t has a straight crack, denoted by Ct,

and the tip of this crack at moment t is denoted by yt. Assume that yt is a function of class
C2 regarding the time variable t, and its velocity is wt = dyt/dt.

Let us denote by D0 the domain covered by yt for all t ∈ [0, t0].
In what follows, we consider certain applications of the form ϕ(x, t), depending on
x ∈ D \ Ct and on t ∈ [0, t0]. According to a suggestion given by Gurtin and Yatomi
in [20], we introduce the next definition.

Definition 1. We say that a function f is called a Cm fracture field for a positive integer m if the
following two conditions are met:

(1) f admits derivatives of any order i, i ≤ m, except for the points in the crack;
(2) all derivatives f (i), i ≤ n, are continuous applications except for the points in the crack,

and functions f (i) are continuous at points approaching the crack from both sides except in points at
the tip of the crack.

Let us specify some theoretical issues that we use below.
(i) The notation f ∈ Lp(D) means that we are in the case f (x, t) ∈ Lp(D) for any

t ∈ [0, t0];
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(ii) Let us introduce the family Dβ of smooth surfaces Dβ of D, having the property:
area

(
D \ Dβ

)
→ 0 as β→ 0. If h ∈ Lp(D), we have

lim
β→0

∫
Dβ

|h(x, t)|pdV =
∫

D
|h(x, t)|pdV. (6)

(iii) If the limit from (6) takes place uniformly with regards to t ∈ [0, t0], we consider
that f ∈ Lp(D) belongs uniformly in time.

(iv) Consider that r is the vector of the position from the tip. If f is a function that
depends on t in the form f (yt + r, t), then the derivative of f with respect to t, denoted by
f ′, is computed as follows:

f ′ =
∂ f
∂t

+ ci
∂ f
∂xi

= ḟ + dc f , (7)

holding r fixed. Here, we use the notation

dc f = ci
∂ f
∂xi

.

(v) In the case of three scalar functions u, v, and w with properties u, w ∈ C1, and
u̇ = v + dcw, we use the rule:∫

D
udV =

∫
D

v dV +
∫

∂D
wc.n dA,

in which n is a normal versor oriented outward from ∂D.
(vi) If u is a C1 fracture field so that div u ∈ L1(D), then the divergence theorem gives:∫

∂D
u.n dA =

∫
D

div u dV,

called the “flow-divergence formula”.
Statements (v) and (vi) above are easy to prove. However, for more details, we

recommend [20].

3. Basic Results

We assume that the displacement vector of components vm and the couple displace-
ment vectors of components φm are C3 fracture fields in the sense of the above definition.
Further, we suppose that the tensors of stress τmn and σmn are C1 fracture fields.

We can now define the surface traction vector of components τl and the couple surface
traction vector of components σl with the help of the next equations:

τl = τklnk, σl = σklnk, (8)

where nk are the director cosines of the unit normal outward to the border ∂D.
By definition, the application E defined in any t of the interval [0, t0] is called a rate of

the dynamic energy release if E has the following expression:

E =
∫

∂D
(τmv̇m + σmφ̇m)dA− d

dt

∫
D

[
1
2
($v̇mv̇m + Jmnφ̇mφ̇n)

+
1
2

Cklmnεklεmn + Bklmnεklemn +
1
2

Aklmneklemn

]
dV. (9)

We will consider S a surface that includes its inside at time t1 at the tip of the crack, where
t1 ∈ [0, t0] and so ∂S and yt ∈ S intersects the crack Ct only once.

It can be shown that the rate of dynamic energy release does not depend on the choice
of surface S.
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Now, we prove a property of the crack tip.

Proposition 1. The rate of dynamic energy release E is intrinsic to the tip of the crack.

Proof. First of all, observing the expression of the internal density, we can write:

Ė = τmn ε̇mn + σmn ėmn. (10)

Then, considering the theorem of divergence and Equation (8), we can write:∫
∂(D\S)

(τmv̇m + σmφ̇m)dA =
∫

D\S
(τmnv̇n + σmnφ̇n),mdV. (11)

Further, if we consider the motion Equations (5) and (10), we deduce:∫
∂(D\S)

(τmv̇m + σmφ̇m)dA

=
∫

D\S
($v̈mv̇m + Jmnφ̈mφ̇n + τmn ε̇mn + σmn ėmn)dV (12)

=
d
dt

∫
D\S

1
2
($v̇mv̇m+ Jmnφ̇mφ̇n+Cklmnεklεmn+2Bklmnεklemn+Aklmneklemn)dV.

After these calculations, dynamic energy release rate receives the form:

E =
∫

∂D
(τmv̇m + σmφ̇m)dA− d

dt

∫
D

[
1
2
($v̇mv̇m + Jmnφ̇mφ̇n)

+
1
2

Cklmnεklεmn + Bklmnεklemn +
1
2

Aklmneklemn

]
dV,

which is even (9), and thus we conclude the proof of this proposition.

In our next result, we obtain another expression for the rate of dynamic energy release.

Theorem 1. For any t ∈ [0, t0], the rate of dynamic energy release can be written in the following form:

E(t) = lim
S→yt

∫
S

{[
1
2
($dcvmdcvm + Jmndcφmdcφn)

+
1
2

Cklmnεklεmn + Bklmnεklemn +
1
2

Aklmneklemn

]
cs (13)

−τsmdcvm − σsmdcφm}nsdA,

where S is a surface that includes the inside of the tip of the crack. Further, cs represent the elements
of the speed of the tip yt, and dc appears in (7).

Proof. If we consider Rule (7), we obtain∫
∂D
(τmv̇m+σmφ̇m)dA=

∫
∂D

(
τmv′m+σmφ′m

)
dA−

∫
∂D
(τmdcvm+σmdcφm)dA. (14)

If we take into account the kinematic Equation (1), we are led to(
τmnu′m + σmnφ′m

)
,n = $v̈mv′m + Jmnφ̈mφ′n + τmnε′mn + σmne′mn, (15)

where the following notations are used:

ε′mn = v′n,m + εnmkφ′k, e′mn = φ′n,m.
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Applying the second derivative, according to the rule in (7), we deduce:

v̈m = v′′m − 2dcv′m + d2
c vm − dcvm, d2

c vm = vm,klclck,

φ̈m = φ′′m − 2dcφ′m + d2
c φm − dcφm, d2

c φmm = φm,klclck. (16)

We obtain a relation similar to the one in (11) using (7) again:∫
∂D

(
τmv′m + σmφ′m

)
dA

=
∫

D

(
$v̈mv′m + Jmnφ̈mφ′n + τmnε′mn + σmne′mn

)
dV, (17)

and by using (16), we also deduce that

1
2

d
dt
($v̇mv̇m+ Jmnφ̇mφ̇n) = $v̈mv′m+ Jmnφ̈mφ′n

−$
(
v′′m − 2dcv′m − dcvm

)
dcvm − Jmn

(
φ′′m − 2dcφ′m − dcφm

)
dcφn (18)

−1
2

dc($ dcvmdcvm + Jmndcφmdcφn).

Now, if we take into account Equation (2) and use the relation (7), the following equality
is obtained

Ė = E′ − dcE, (19)

so that from previous equations we deduce:

d
dt

∫
D

[
1
2
($v̇mv̇m + Jmnφ̇mφ̇n)

+
1
2

Cklmnεmnεmn + Bijmnεmnemn +
1
2

Aklmnεmnemn

]
dV

=
d
dt

∫
D
(E + $v̇mv̇m + Jmnφ̇mφ̇n)dV (20)

=
∫

D

[
E′ +

1
2

d
dt
($v̇mv̇m+ Jmnφ̇mφ̇n)+

1
2
($ dcvmdcvm+ Jmndcφmdcφn)

]
dV

−
∫

∂D

[
E +

1
2
($ dcvmdcvm + Jmndcφmdcφn)

]
csnsdA,

where cs represent the elements of the speed of the tip, and n = (ns) is the outward normal
to the border ∂D.

By taking into account Equations (11), (12), (17) and (20), the following relation
is obtained:

E(t) =
∫

∂D

{[
1
2
($dcvmdcvm + Jmndcφmdcφn)

+
1
2

Cklmnεklεmn + Bklmnεklemn +
1
2

Aklmneklemn

]
cs (21)

−τmkdcvm − σmkdcφm}nkdA

−
∫

D

[
E′+

1
2
($v̇mv̇m+ Jmnφ̇mφ̇n)−τmnε′mn+σmne′mn−$v̈mv′m− Jmnφ̈mφ′n

]
dV.

Finally, we take into account that surface S includes the tip of its crack in its inside at time t.
Based on Proposition 1, we know that the rate of the dynamic energy release E is intrinsic
relative to the tip of the crack, as such, E can be written in the form:
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E(t) =
∫

S

{[
1
2
($dcvmdcvm + Jmndcφmdcφn)

+
1
2

Cklmnεklεmn + Bklmnεklemn +
1
2

Aklmneklemn

]
cs

−τmkdcvm − σmkdcφm}nkdA

−
∫

S

(
E′+

1
2
($v̇mv̇m+ Jmnφ̇mφ̇n)−τmnε′mn−σmne′mn−$v̈mv′m− Jmnφ̈mφ′n

)
dV.

In this last relation, we take into account that the area of S is tending to zero, and so we
obtain (13), which concludes the demonstration of Theorem 1.

In Theorem 2 that follows, we obtain another expression of the rate of dynamic energy
release at an arbitrary fixed time t ∈ [0, t0].

Theorem 2. For a fixed time t1 ∈ [0, t0], the rate of dynamic energy release can be written in the form:

E(t1) =

(
d
dt

) ∫
D

∫ t

t1

[
(τmn(t)− τmn(s))ε̇mn(s) + (σmn(t)− σmn(s))ėij(s) (22)

+$(v̈m(t)− v̈m(s))v̇m(s) + Jmn(φ̈m(t)− φ̈m(s))φ̇m(s)]dsdV.

Proof. We start with the observation that:

E =
d
dt

(∫ t

t1

∫
∂D

(τmv̇m + σmφ̇m)dAds
)

− d
dt

(∫
D

[
E +

1
2
($v̇mv̇m+ Jmnφ̇mφ̇n)

]
dV
)

. (23)

Then, we have∫ t

t1

∫
∂D

(τmv̇m + σmφ̇m)dAds =
∫ t

t1

∫
∂D

[τm(t)v̇m(s) + σm(t)φ̇m(s)]dAds

+
∫ t

t1

∫
∂D
{[τm(s)− τm(t)]v̇m(s) + [σm(s)− σm(t)]φ̇m(s)}dAds.

Now, it is easy to verify that we have:

d
dt

(∫ t

t1

∫
∂D
{[τm(s)− τm(t)]v̇m(s) + [σm(s)− σm(t)]φ̇m(s)}dAds

)
= −

∫ t

t1

∫
∂D

[τm(t)v̇m(s) + σm(t)φ̇m(s)]dAds.

According to these last two equations, we deduce that:(
d
dt

)
t1

(∫ t

t1

∫
∂D

(τmv̇m + σmφ̇m)dAds
)

=

(
d
dt

)
t1

(∫
∂D
{[vm(t)− vm(t1)]τm(t) + [φm(t)− φm(t1)]σm(t)}dA

)
.

Now, we consider the motion Equation (5), the kinematic relations (1) and the tractions on
the surface from (8), so that we obtain the next identity:
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(
d
dt

)
t1

(∫
∂D
{[vm(t)− vm(t1)]τm(t) + [φm(t)− φm(t1)]σm(t)}dA

)
=

(
d
dt

)
t1

(∫
D
{$[vm(t)− vm(t1)]v̈m(t) + Jmn[φm(t)− φm(t1)]φ̈n(t)}dV

)
(24)

+

(
d
dt

)
t1

(∫
D
{[εmn(t)−εmn(t1)]τmn(t)+[emn(t)−emn(t1)]σmn(t)}dV

)
.

According to the Equation (24), one can write:

E(t1) =

(
d
dt

)
t1

(∫
D
{$[vm(t)− vm(t1)]v̈m(t) + Jmn[φm(t)− φm(t1)]φ̈n(t)}dV

)
+

(
d
dt

)
t1

(∫
D
{[εmn(t)−εmn(t1)]τmn(t)+[emn(t)−emn(t1)]σmn(t)}dV

)
(25)

−
(

d
dt

)
t1

(∫
D

[
E +

1
2
($v̇mv̇m+ Jmnφ̇mφ̇n)

]
dV
)

.

Further, it is not difficult to verify that:∫ t

t1

[τmn(t)ε̇mn(s) + σmn(t)ėmn(s)]ds

= [εmn(t)− εmn(t1)]τmn(t) + [emn(t)− emn(t1)]σmn(t). (26)

Now, by integrating over D for both sides of Equation (26), we deduce:∫
D

{∫ t

t1

[τmn(t)ε̇mn(s) + σmn(t)ėmn(s)]ds
}

dV

=
∫

D
{[εmn(t)−εmn(t1)]τmn(t)+[emn(t)−emn(t1)]σmn(t)}dV. (27)

By using some similar calculus, we can obtain an analogous relation:∫
D

∫ t

t1

[$v̈m(t)v̇m(s) + Jmnφ̈m(t)φ̇n(s)]ds dV

=
∫

D
{$[vm(t)− vm(t1)]v̈m(t) + Jmn[φm(t)− φm(t1)]φ̈n(t)}dV. (28)

Now, we consider Equation (10) in order to obtain:

d
dt

∫
D

[
E +

1
2
($v̇mv̇m+ Jmnφ̇mφ̇n)

]
dV

=
d
dt

∫
D

∫ t

t1

[τmn(t)ε̇mn(s) + tmn(t)ėmn(s) (29)

+$v̈m(t)v̇m(s) + Jmnφ̈m(t)φ̇n(s)]dsdV.

Ultimately, we consider the relations (27)–(29) so that from (25), we arrive at identity (22),
and the proof of the theorem ends.

Our results are placed within a linear theory of Cosserat elastic media. After formulat-
ing the basic equations and conditions in this context, we approached the rate of dynamic
energy release due to the propagation of a straight crack in this type of material. We insisted
on highlighting the effect of microinertia and the couples stresses on this rate, these being
contributions of the Cosserat structure. Now, we emphasize the fact that compared to
classical elasticity:

a. There was only one balance equation, namely (5)1; now there is another one, namely
(5)2, in which microinertia appears.
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b. There was only one stress tensor; now there is another one that appears in both
balance equations.

c. There was only one strain tensor; now there is another one that appears in both
constitutive equations.

d. There was only one constitutive equation; now there is another one.
It is not difficult to observe that these contributions are not so obvious as to cause spectac-
ular and meaningful changes in the propagation of a straight crack. In our basic results,
concretized in estimations (13) and (22), we deduced certain alternative formulations for the
rate of dynamic energy release. These refer to some boundary concrete integrals calculated
on a surface that includes the crack in its inside, and this surface shrinks to the tip of
the crack.
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