A Novel Surrogate Model-Based Solving Framework for the Black-Box Dynamic Co-Design and Optimization Problem in the Dynamic System
Abstract
:1. Introduction
2. Background
2.1. Dynamic Co-Design and Optimization Problem and Its Direct Solving Method
2.2. Kriging Technique
3. The BDCDO Solving Framework
3.1. Adaptive Sequential Sampling Strategy
3.2. Termination Criterion: The State Trajectory Overlap Ratio
- If the dimension of the state variables , , the theorem is established.
- If the dimension of the state variables , suppose
- If the dimension of the state variables , , the theorem is established.
- If the dimension of the state variables , Equation (18) can be obtained based on Equations (20) and (21).
3.3. The BDCDO Solving Framework Combined with SRIRMD and STOR
4. Numerical Examples
4.1. Example 1: A Mathematical Nonlinear Dynamic Optimization Problem
4.2. Example 2: A Mathematical Nonlinear Dynamic Codesign and Optimization Problem
5. Engineering Examples
5.1. The BDCDO of 3-DOF Manutec r3 System
5.2. The BDCDO of the Horizontal Axis Wind Turbine (HAWT)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, R.; Mo, Y.; Lu, Y.; Lyu, Y.; Zhang, Y.; Guo, H. Swarm-intelligence optimization method for dynamic optimization problem. Mathematics 2022, 10, 1803. [Google Scholar] [CrossRef]
- Diveev, A.; Sofronova, E.; Zelinka, I. Optimal control problem solution with phase constraints for group of robots by pontryagin maximum principle and evolutionary algorithm. Mathematics 2020, 8, 2105. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, P.T.; Rico-Ramirez, V.; Rico-Martinez, R.; Diwekar, U.M. A new approach to solving stochastic optimal control problems. Mathematics 2019, 7, 1207. [Google Scholar] [CrossRef]
- Deshmukh, A.P.; Allison, J.T. Multidisciplinary dynamic optimization of horizontal axis wind turbine design. Struct. Multidiscip. Optim. 2016, 53, 15–27. [Google Scholar] [CrossRef]
- Biegler, L.T. An overview of simultaneous strategies for dynamic optimization. Chem. Eng. Process. 2007, 46, 1043–1053. [Google Scholar] [CrossRef]
- Herber, D.R.; Allison, J.T. Nested and simultaneous solution strategies for general combined plant and control design problems. J. Mech. Des. 2018, 141, 011402. [Google Scholar] [CrossRef]
- Allison, J.T.; Herber, D.R. Multidisciplinary design optimization of dynamic engineering systems. AIAA J. 2014, 52, 691–710. [Google Scholar] [CrossRef]
- Peng, H.J.; Wang, W. Adaptive surrogate model-based fast path planning for spacecraft formation reconfiguration on libration point orbits. Aerosp. Sci. Technol. 2016, 54, 151–163. [Google Scholar] [CrossRef]
- Betts, J.T. Practical Methods for Optimal Control Using Nonlinear Programming, 2nd ed.; SIAM Press: Philadelphia, PA, USA, 2010. [Google Scholar]
- Eberhard, P.; Dignath, F.; Kübler, L. Parallel evolutionary optimization of multibody systems with application to railway dynamics. Multibody Syst. Dyn. 2003, 9, 143–164. [Google Scholar] [CrossRef]
- Negrellos-Ortiz, A.; Flores-Tlacuahuac, B.; Gutierrez-Limon, M.A. Dynamic optimization of a cryogenic air separation unit using a derivative-free optimization approach. Comput. Chem. Eng. 2018, 109, 1–8. [Google Scholar] [CrossRef]
- Rahmani, R.; Mobayen, S.; Fekih, A.; Ro, J. Robust passivity cascade technique-based control using RBFN approximators for the stabilization of a cart inverted pendulum. Mathematics 2021, 9, 1229. [Google Scholar] [CrossRef]
- Li, Y.; Shen, J.; Cai, Z.; Wu, Y.; Wang, S. A kriging-assisted multi-objective constrained global optimization method for expensive black-box functions. Mathematics 2021, 9, 149. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Y.Z.; Lu, L.; Qiao, P. An adaptive Dendrite-HDMR metamodeling technique for high dimensional problems. J. Mech. Des. 2022, 144, 081701. [Google Scholar] [CrossRef]
- Wiangkham, A.; Ariyarit, A.; Aengchuan, P. Prediction of the influence of loading rate and sugarcane leaves concentration on fracture toughness of sugarcane leaves and epoxy composite using artificial intelligence. Theor. Appl. Fract. Mech. 2022, 117, 103188. [Google Scholar] [CrossRef]
- Kudela, J.; Matousek, R. Recent advances and applications of surrogate models for finite element method computations: A review. Soft Comput. 2022. [Google Scholar] [CrossRef]
- Deshmukh, A.P.; Allison, J.T. Design of dynamic systems using surrogate models of derivative functions. J. Mech. Des. 2017, 139, 101402. [Google Scholar] [CrossRef]
- Chowdhury, R.; Adhikari, S. Fuzzy parametric uncertainty analysis of linear dynamical systems: A surrogate modeling approach. Mech. Syst. Signal. Proc. 2012, 32, 5–17. [Google Scholar] [CrossRef]
- Wang, Y.; Bortoff, S.A. Co-design of nonlinear control systems with bounded control inputs. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2015. [Google Scholar]
- Shokry, A.; Espuna, A. Sequential dynamic optimization of complex nonlinear processes based on kriging surrogate models. Procedia Technol. 2014, 15, 376–387. [Google Scholar] [CrossRef]
- Lefebvre, T.; De Belie, F.; Crevecoeur, G. A trajectory-based sampling strategy for sequentially refined metamodel management of metamodel-based dynamic optimization in mechatronics. Optim. Control. Appl. Methods 2018, 39, 1786–1801. [Google Scholar] [CrossRef]
- Qiao, P.; Wu, Y.Z.; Ding, J.W.; Zhang, Q. A new sequential sampling method of surrogate models for design and optimization of dynamic systems. Mech. Mach. Theory 2021, 158, 104248. [Google Scholar] [CrossRef]
- He, Y.P.; McPhee, J. Multidisciplinary design optimization of mechatronic vehicles with active suspensions. J. Sound Vibr. 2005, 283, 217–241. [Google Scholar] [CrossRef]
- Maraniello, S.; Palacios, R. Optimal vibration control and co-design of very flexible actuated structures. J. Sound Vibr. 2016, 377, 1–21. [Google Scholar] [CrossRef]
- Li, M.W.; Peng, H.J. Solutions of nonlinear constrained optimal control problems using quasilinearization and variational pseudospectral methods. ISA Trans. 2016, 62, 177–192. [Google Scholar] [CrossRef]
- Ross, I.M.; Karpenko, M. A review of pseudospectral optimal control: From theory to flight. Annu. Rev. Control 2012, 36, 182–197. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.Z.; Wang, B.; Ding, J.W.; Jie, H.X. An adaptive local range sampling method for reliability-based design optimization using support vector machine and Kriging model. Struct. Multidiscip. Optim. 2017, 55, 2285–2304. [Google Scholar] [CrossRef]
- Phiboon, T.; Khankwa, K.; Petcharat, N.; Phoksombat, N.; Kanazaki, M.; Kishi, Y.; Bureerat, S.; Ariyarit, A. Experiment and computation multi-fidelity multi-objective airfoil design optimization of fixed-wing UAV. J. Mech. Sci. Technol. 2021, 35, 4065–4072. [Google Scholar] [CrossRef]
- Liu, H.T.; Ong, Y.S.; Cai, J.F. A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design. Struct. Multidiscip. Optim. 2017, 57, 393–416. [Google Scholar] [CrossRef]
- Patterson, M.A.; Rao, A.V. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 2014, 41, 1–37. [Google Scholar] [CrossRef]
- Lophaven, S.N.; Nielsen, H.B.; Sndergaard, J. DACE—A MATLAB Kriging Toolbox, Version 2, Informatics and Mathematical Modelling; Technical University of Denmark: Copenhagen, Denmark, 2002. [Google Scholar]
- Jung, E.; Lenhart, S.; Feng, Z. Optimal control of treatments in a two-strain tuberculosis model. Discret. Contin. Dyn. Syst. Ser. B 2002, 2, 473–482. [Google Scholar] [CrossRef]
- Otter, M.; Tuerk, S. The Dfvlr Models 1 and 2 of the Manutec R3 Robot; Institut für Dynamik der Flugsysteme Press: Oberpfaffenhofen, Germany, 1988. [Google Scholar]
Input | The upper and lower bounds of physical design parameters , state variables and control inputs . The initial guess values of physical design parameters , state variables and control inputs . The termination criterion threshold for the SRIRMD-STOR method. The solving tolerance and max iteration for the DOP solvers [30]. |
Output | The optimal design point of physical design parameters . The optimal trajectories of state variables . The optimal curves of control inputs . |
The SRIRMD-STOR Method |
---|
Step 1: Apply LHS method to sample initial points set in the design domain consisting of feasible regions of physical design parameters , state variables and control inputs . Step 2: Construct the initial surrogate model of the derivative function by Kriging technique [31] with the initial samples set . Step 3: Transcribe the BDCDO into the NLP at the time grid nodes via DT, then solve NLP based on the initial guess values of and obtain the current optimal plant design parameters, state trajectories, control curves, and performance index . Step 4: Calculate the state component trajectory overlap ratios of all state variables according to the initial guess trajectories and the current optimal trajectories, then calculate the state trajectory overlap ratio . If , terminate the solving process; otherwise, go to Step 5. Step 5: Employ the SRIRMD strategy to select new samples from the current DTPs, update the samples set , and rebuild the surrogate model . Step 6: Update the time grid nodes using the grid optimization algorithm and translate the BDCDO into the NLP at the new time grid nodes. Step 7: Solve NLP based on the current values of plant design parameters; state trajectories and control inputs, and current model ; and acquire the latest optimal plant parameters, state trajectories, control curves, and performance index. Note: starts from 1. Step 8: Calculate and . If , stop the solving process; otherwise, go to Step 5. |
Method | HS-MASRI | TEI-MASRI | EFDC-MASRI | SRIRMD-MASRI | SRIRMD-STOR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Index | NoS | J | NoS | J | NoS | J | NoS | J | NoS | J | |
Test | 1 2 3 4 5 6 7 8 9 10 | 350 350 350 350 350 350 350 350 350 350 | 5161.4 5186.3 5177.1 5166.0 5170.8 5178.0 5162.8 5184.7 5224.6 5258.2 | 346 240 325 319 315 345 346 267 346 346 | 5152.3 5157.5 5169.4 5156.4 5152.4 5154.3 5155.5 5152.6 5156.3 5153.3 | 185 249 230 225 238 215 225 231 197 230 | 5153.4 5159.7 5153.3 5155.0 5165.7 5155.0 5160.7 5157.6 5155.7 5161.9 | 153 207 193 183 177 184 150 152 145 150 | 5152.4 5153.0 5152.8 5152.6 5152.8 5152.7 5153.0 5152.3 5152.4 5152.5 | 130 170 150 159 159 167 130 130 121 130 | 5153.1 5153.6 5153.1 5152.6 5153.1 5153.0 5153.2 5151.8 5152.6 5153.0 |
Mathematical Model | TEI-MASRI | EFDC-MASRI | SRIRMD-MASRI | SRIRMD-STOR | |
---|---|---|---|---|---|
NoS | 1255262 | 93 | 55 | 100 | 90 |
XP | −0.7854 | −0.7854 | 1.5708 | −0.7854 | −0.7854 |
J | −50.00 | −50.00 | 0.0000 | −50.00 | −50.00 |
Dynamic Model | TEI-MASRI | EFDC-MASRI | SRIRMD-MASRI | SRIRMD-STOR | |
---|---|---|---|---|---|
NoS | 3422 | 215 | 256 | 228 | 203 |
[L1,L2] | [0.4500, 0.9500] | [0.4151, 1.0000] | [0.4121, 0.9339] | [0.4019, 0.9982] | [0.4019,0.9982] |
J | 0.9082 | 0.9067 | 0.9064 | 0.9060 | 0.9060 |
Original System | HS-MASRI | EFDC-MASRI | TEI-MASRI | SRIRMD-MASRI | SRIRMD-STOR | |
---|---|---|---|---|---|---|
NoS | 546400 | 540 | 291 | 460 | 240 | 210 |
[Rh Lb Ht] | [1.2000,13.7330,32.3944] | |||||
J | 805.4801 | 806.0783 | 806.3677 | 807.1469 | 805.3558 | 805.3550 |
Absolute Error | 0 | 0.5982 | 0.8876 | 1.6668 | 0.1243 | 0.1251 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wu, Y.; Lu, L. A Novel Surrogate Model-Based Solving Framework for the Black-Box Dynamic Co-Design and Optimization Problem in the Dynamic System. Mathematics 2022, 10, 3239. https://doi.org/10.3390/math10183239
Zhang Q, Wu Y, Lu L. A Novel Surrogate Model-Based Solving Framework for the Black-Box Dynamic Co-Design and Optimization Problem in the Dynamic System. Mathematics. 2022; 10(18):3239. https://doi.org/10.3390/math10183239
Chicago/Turabian StyleZhang, Qi, Yizhong Wu, and Li Lu. 2022. "A Novel Surrogate Model-Based Solving Framework for the Black-Box Dynamic Co-Design and Optimization Problem in the Dynamic System" Mathematics 10, no. 18: 3239. https://doi.org/10.3390/math10183239
APA StyleZhang, Q., Wu, Y., & Lu, L. (2022). A Novel Surrogate Model-Based Solving Framework for the Black-Box Dynamic Co-Design and Optimization Problem in the Dynamic System. Mathematics, 10(18), 3239. https://doi.org/10.3390/math10183239