Numerical Simulation for Brinkman System with Varied Permeability Tensor †
Abstract
:1. Introduction
2. Governing Equations
- If then the boundary conditions are the Dirichlet condition.
- If then the boundary conditions are the Neumann condition.
3. Mini-Element Method Approximation
4. Stability and a Priori Error Estimates
5. Numerical Simulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brinkman, H.C. On the Permeability of Media Consisting of Closely Packed Porous Particles. Flow Turbul. Combust. 1949, 1, 81–86. [Google Scholar] [CrossRef]
- Iliev, O.; Lazarov, R.; Willems, J. Variational Multiscale Finite Element Method for Flows in Highly Porous Media. Multiscale Modeling Simul. 2011, 9, 1350–1372. [Google Scholar] [CrossRef]
- Kanschat, G.; Lazarov, R.; Mao, Y. Geometric Multigrid for Darcy and Brinkman Models of Flows in Highly Heterogeneous Porous Media: A Numerical Study. J. Comput. Appl. Math. 2017, 310, 174–185. [Google Scholar] [CrossRef]
- Koplik, J.; Levine, H.; Zee, A. Viscosity Renormalization in the Brinkman Equation. Phys. Fluids 1983, 26, 2864–2870. [Google Scholar] [CrossRef]
- Angot, P. Analysis of Singular Perturbations on the Brinkman Problem for Fictitious Domain Models of Viscous Flows. Math. Methods Appl. Sci. 1999, 22, 1395–1412. [Google Scholar] [CrossRef]
- Shahnazari, M.R.; Moosavi, M.H. Investigation of Nonlinear Fluid Flow Equation in a Porous Media and Evaluation of Convection Heat Transfer Coefficient, By Taking the Forchheimer Term into Account. Int. J. Theor. Appl. Mech. 2022, 7, 12–17. [Google Scholar] [CrossRef]
- Shahnazari, M.R.; Hagh, M.Z.B. Theoretical and Experimental Investigation of the Channeling Effect in Fluid Flow through Porous Media. J. Porous Media 2005, 8, 115–124. [Google Scholar] [CrossRef]
- Shahnazari, M.R.; Ahmadi, Z.; Masooleh, L.S. Perturbation Analysis of Heat Transfer and a Novel Method for Changing the Third Kind Boundary Condition into the First Kind. J. Porous Media 2017, 20, 449–460. [Google Scholar] [CrossRef]
- Iasiello, M.; Bianco, N.; Chiu, W.K.; Naso, V. Anisotropic Convective Heat Transfer in Open-Cell Metal Foams: Assessment and Correlations. Int. J. Heat Mass Transf. 2020, 154, 119682. [Google Scholar] [CrossRef]
- Iasiello, M.; Bianco, N.; Chiu, W.K.S.; Naso, V. Anisotropy Effects on Convective Heat Transfer and Pressure Drop in Kelvin’s Open-Cell Foams. J. Phys. Conf. Ser. 2017, 923, 012035. [Google Scholar] [CrossRef]
- Amani, Y.; Takahashi, A.; Chantrenne, P.; Maruyama, S.; Dancette, S.; Maire, E. Thermal Conductivity of Highly Porous Metal Foams: Experimental and Image Based Finite Element Analysis. Int. J. Heat Mass Transf. 2018, 122, 1–10. [Google Scholar] [CrossRef]
- Shah, N.A.; Wakif, A.; El-Zahar, E.R.; Ahmad, S.; Yook, S.-J. Numerical Simulation of a Thermally Enhanced EMHD Flow of a Heterogeneous Micropolar Mixture Comprising (60%)-Ethylene Glycol (EG),(40%)-Water (W), and Copper Oxide Nanomaterials (CuO). Case Stud. Therm. Eng. 2022, 35, 102046. [Google Scholar] [CrossRef]
- Wakif, A.; Chamkha, A.; Animasaun, I.L.; Zaydan, M.; Waqas, H.; Sehaqui, R. Novel Physical Insights into the Thermodynamic Irreversibilities within Dissipative EMHD Fluid Flows Past over a Moving Horizontal Riga Plate in the Coexistence of Wall Suction and Joule Heating Effects: A Comprehensive Numerical Investigation. Arab. J. Sci. Eng. 2020, 45, 9423–9438. [Google Scholar] [CrossRef]
- Nayak, M.K.; Wakif, A.; Animasaun, I.L.; Alaoui, M. Numerical Differential Quadrature Examination of Steady Mixed Convection Nanofluid Flows over an Isothermal Thin Needle Conveying Metallic and Metallic Oxide Nanomaterials: A Comparative Investigation. Arab. J. Sci. Eng. 2020, 45, 5331–5346. [Google Scholar] [CrossRef]
- Wakif, A. A Novel Numerical Procedure for Simulating Steady MHD Convective Flows of Radiative Casson Fluids over a Horizontal Stretching Sheet with Irregular Geometry under the Combined Influence of Temperature-Dependent Viscosity and Thermal Conductivity. Math. Probl. Eng. 2020, 2020, 1675350. [Google Scholar] [CrossRef]
- Ashraf, M.U.; Qasim, M.; Wakif, A.; Afridi, M.I.; Animasaun, I.L. A Generalized Differential Quadrature Algorithm for Simulating Magnetohydrodynamic Peristaltic Flow of Blood-Based Nanofluid Containing Magnetite Nanoparticles: A Physiological Application. Numer. Methods Partial. Differ. Equ. 2022, 38, 666–692. [Google Scholar] [CrossRef]
- Wakif, A.; Zaydan, M.; Alshomrani, A.S.; Muhammad, T.; Sehaqui, R. New Insights into the Dynamics of Alumina-(60% Ethylene Glycol+ 40% Water) over an Isothermal Stretching Sheet Using a Renovated Buongiorno’s Approach: A Numerical GDQLLM Analysis. Int. Commun. Heat Mass Transf. 2022, 133, 105937. [Google Scholar] [CrossRef]
- Xiong, Q.; Hajjar, A.; Alshuraiaan, B.; Izadi, M.; Altnji, S.; Shehzad, S.A. State-of-the-Art Review of Nanofluids in Solar Collectors: A Review Based on the Type of the Dispersed Nanoparticles. J. Clean. Prod. 2021, 310, 127528. [Google Scholar] [CrossRef]
- Ramesh, G.K.; Shehzad, S.A.; Izadi, M. Thermal Transport of Hybrid Liquid over Thin Needle with Heat Sink/Source and Darcy–Forchheimer Porous Medium Aspects. Arab. J. Sci. Eng. 2020, 45, 9569–9578. [Google Scholar] [CrossRef]
- Huu-Quan, D.; Mohammad Rostami, A.; Shokri Rad, M.; Izadi, M.; Hajjar, A.; Xiong, Q. 3D Numerical Investigation of Turbulent Forced Convection in a Double-Pipe Heat Exchanger with Flat Inner Pipe. Appl. Therm. Eng. 2021, 182, 116106. [Google Scholar] [CrossRef]
- Ern, A. Aide-Mémoire Des Éléments Finis; Dunod: Malakoff, France, 2005. [Google Scholar]
- Raviart, P.-A. Introduction à L’Analyse Numérique Des Équations Aux Dérivées Partielles; Dunod: Malakoff, France, 1983. [Google Scholar]
- Boffi, D.; Brezzi, F.; Fortin, M. Mixed Finite Element Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 44. [Google Scholar]
- El Moutea, O.; El Amri, H.; El Akkad, A. Mixed Finite Element Method for Flow of Fluid in Complex Porous Media with a New Boundary Condition. Comput. Sci. 2020, 15, 413–431. [Google Scholar]
- John, V. Finite Element Methods for Incompressible Flow Problems; Springer: Berlin/Heidelberg, Germany, 2016; Volume 51. [Google Scholar]
- Elakkad, A.; Elkhalfi, A.; Guessous, N. An a Posteriori Error Estimate for Mixed Finite Element Approximations of the Navier-Stokes Equations. J. Korean Math. Soc. 2011, 48, 529–550. [Google Scholar] [CrossRef]
- Tinsley Oden, J.; Wu, W.; Ainsworth, M. An a Posteriori Error Estimate for Finite Element Approximations of the Navier-Stokes Equations. Comput. Methods Appl. Mech. Eng. 1994, 111, 185–202. [Google Scholar] [CrossRef]
- Hannukainen, A.; Juntunen, M.; Stenberg, R. Computations with Finite Element Methods for the Brinkman Problem. Comput. Geosci. 2011, 15, 155–166. [Google Scholar] [CrossRef]
- Arnold, D.N.; Brezzi, F.; Fortin, M. A Stable Finite Element for the Stokes Equations. Calcolo 1984, 21, 337–344. [Google Scholar] [CrossRef]
- Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 15. [Google Scholar]
- Koubaiti, O.; Elkhalfi, A.; El-Mekkaoui, J.; Mastorakis, N. Solving the Problem of Constraints Due to Dirichlet Boundary Conditions in the Context of the Mini Element Method. Int. J. Mech. 2020, 14, 12–21. [Google Scholar]
- Bramble, J.H.; Pasciak, J.E.; Vassilev, A.T. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems. SIAM J. Numer. Anal. 1997, 34, 1072–1092. [Google Scholar] [CrossRef]
- Hackbusch, W. Iterative Solution of Large Sparse Systems of Equations; Springer: Berlin/Heidelberg, Germany, 1994; Volume 95. [Google Scholar]
- Koko, J. Efficient MATLAB Codes for the 2D/3D Stokes Equation with the Mini-Element. Informatica 2019, 30, 243–268. [Google Scholar] [CrossRef]
- Juntunen, M.; Stenberg, R. Analysis of Finite Element Methods for the Brinkman Problem. Calcolo 2010, 47, 129–147. [Google Scholar] [CrossRef]
- Schäfer, M.; Turek, S.; Durst, F.; Krause, E.; Rannacher, R. Benchmark Computations of Laminar Flow around a Cylinder. In Flow Simulation with High-Performance Computers II; Springer: Berlin/Heidelberg, Germany, 1996; pp. 547–566. [Google Scholar]
Permeability | Mesh Size | Rate | Rate | ||
---|---|---|---|---|---|
2.58490367 × 10−3 | 7.30459072 × 10−2 | ||||
7.29374932 × 10−4 | 1.23 | 3.65242949 × 10−2 | 1.26 | ||
2.00944198 × 10−4 | 1.12 | 1.82662182 × 10−2 | 1.20 | ||
5.45035935 × 10−5 | 1.20 | 9.13565045 × 10−3 | 1.17 | ||
1.46182239 × 10−5 | 1.13 | 4.56876194 × 10−3 | 1.14 | ||
6.34523145 × 10−6 | 1.07 | 8.5232210 × 10−4 | 1.31 | ||
9.79901277 × 10−2 | 1.71655622 ×100 | ||||
5.71231633 × 10−2 | 1.23 | 1.13006936 × 100 | 1.30 | ||
2.10804196 × 10−2 | 1.34 | 4.88759130 × 10−1 | 1.29 | ||
5.96212978 × 10−3 | 1.32 | 1.82645760 × 10−1 | 1.30 | ||
1.54001284 × 10−3 | 1.26 | 6.50585157 × 10−2 | 1.27 | ||
3.88183415 × 10−4 | 1.21 | 2.29466805 × 10−2 | 1.31 |
Mesh Size | ||||||
---|---|---|---|---|---|---|
CPU Time (s) | 0.4521 | 0.1894 | 0.5811 | 2.4645 | 14.1669 | 26.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Ouadefli, L.; El Akkad, A.; El Moutea, O.; Moustabchir, H.; Elkhalfi, A.; Luminița Scutaru, M.; Muntean, R. Numerical Simulation for Brinkman System with Varied Permeability Tensor. Mathematics 2022, 10, 3242. https://doi.org/10.3390/math10183242
El Ouadefli L, El Akkad A, El Moutea O, Moustabchir H, Elkhalfi A, Luminița Scutaru M, Muntean R. Numerical Simulation for Brinkman System with Varied Permeability Tensor. Mathematics. 2022; 10(18):3242. https://doi.org/10.3390/math10183242
Chicago/Turabian StyleEl Ouadefli, Lahcen, Abdeslam El Akkad, Omar El Moutea, Hassan Moustabchir, Ahmed Elkhalfi, Maria Luminița Scutaru, and Radu Muntean. 2022. "Numerical Simulation for Brinkman System with Varied Permeability Tensor" Mathematics 10, no. 18: 3242. https://doi.org/10.3390/math10183242
APA StyleEl Ouadefli, L., El Akkad, A., El Moutea, O., Moustabchir, H., Elkhalfi, A., Luminița Scutaru, M., & Muntean, R. (2022). Numerical Simulation for Brinkman System with Varied Permeability Tensor. Mathematics, 10(18), 3242. https://doi.org/10.3390/math10183242