
Citation: El Ouadefli, L.; El Akkad,

A.; El Moutea, O.; Moustabchir, H.;

Elkhalfi, A.; Luminit,a Scutaru, M.;

Muntean, R. Numerical Simulation

for Brinkman System with Varied

Permeability Tensor. Mathematics

2022, 10, 3242. https://doi.org/

10.3390/math10183242

Academic Editor: Fernando Simoes

Received: 9 July 2022

Accepted: 2 September 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Numerical Simulation for Brinkman System with Varied
Permeability Tensor †

Lahcen El Ouadefli 1, Abdeslam El Akkad 1,2, Omar El Moutea 3, Hassan Moustabchir 4, Ahmed Elkhalfi 1 ,
Maria Luminit,a Scutaru 5,* and Radu Muntean 6

1 Mechanical Engineering Laboratory, Faculty of Science and Technology, B.P. 30000 Route Imouzzer,
Fez 30000, Morocco

2 Department of Mathematics Regional Centre for Professions of Education and Training (CREMF Fès-Meknès),
Rue Koweit, B.P: 49 Commune Agudal, Ville Nouvelle, Fez 30050, Morocco

3 Laboratory of Mathematics and Applications, ENS, Hassan II University Casablanca,
Casablanca 20000, Morocco

4 Laboratory of Systems Engineering and Applications (LISA), National School of Applied Sciences of Fez,
Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco

5 Faculty of Mechanical Engineering, Transilvania University of Brasov, 500036 Brasov, Romania
6 Faculty of Civil Engineering, Transilvania University of Brasov, 500036 Brasov, Romania
* Correspondence: lscutaru@unitbv.ro
† This paper is an extended version of our paper: Numerical computation of the Brinkman system in a

heterogeneous porous medium by mini-element P1–Bubble/P1, published in 2021 Fifth International
Conference on Intelligent Computing in Data Sciences (ICDS); 20–22 October 2021, pp. 1–5; IEEE.
https://ieeexplore.ieee.org/document/9626767 (accessed on 1 December 2021).

Abstract: The aim of this paper is to study a stationary Brinkman problem in an anisotropic porous
medium by using a mini-element method with a general boundary condition. One of the important
aspects of the P1 − Bubble/P1 method is satisfying the inf-sup condition, which allows us the
existence and the uniqueness of the weak solution to our problem. To go further in this theoretical
study, an a priori error estimate is established. To see the importance of this method in reality, we
applied this method to a real problem. The numerical simulation studies support our results and
demonstrate the effectiveness of this method.

Keywords: anisotropic porous media; ADINA system; a priori estimate error; Brinkman equation;
mini-element; stability
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1. Introduction

The purpose of this paper is to approach the Brinkman system using a finite-element
method. The Brinkman system involves modifying the usual Darcy law by the addition of
a standard viscosity term; this system was first defined by H.C. Brinkman [1]. In reality,
many applications use this equation; for example, in a porous media it used to model
fluid flow in a complex domain [2–4] and in a fictitious domain [5]. Shahnazari and al.
worked on the nonlinear cases and products of the nonlinear Brinkman equation where
the viscosity is nonlinear [6–8]. The Brinkman equations have very important practical
applications in the field of anisotropic porous media [9–11], as well as in several other real
domains such as nanofluids [12–20].

One important method for the resolution of differential equations is the mixed finite-
element method (MFEM) [21–23]. This method has been used by several researchers to solve
incompressible fluid flow problems [24–27]. Many research papers [24,28] are interested
in solving the Brinkman equation using the mixed finite-element method, therefore the a
priori and a posteriori error estimates for the Brinkman system are studied [28].
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In this paper, we study the discretization, and we will establish the stability and a
priori error estimate of the Brinkman problem with the permeability as a matrix by the
finite-element method (mini-element); this method was introduced by Arnold, Brezzi and
Fortin [29]. The method P1/P1 is not stable, so to overcome this obstacle we propose to
use the P1− Bubble/P1. The basic idea for P1− Bubble/P1 is that the construction of
the mini-element starts with standard finite-element spaces for velocity and pressure and
then enriches the velocity space such that the discrete inf-sup condition is satisfied. This
method leads to a relatively low number of degrees of freedom with a good approximate
solution [29–31].

The numerical study of this linear problem is obtained in the matrix form of large
size; indeed, we propose an efficient (preconditioned) Uzawa conjugate gradient method to
accelerate the convergence of the numerical solution derived from the one used with P2/P1
(or P1− iso− P2/P1) [32,33]. To simulate the Brinkman equation in a heterogeneous reser-
voir, we modified the code suggested by J. Koko for the generalized Stokes problem [34],
such that our model is based on the permeability as a matrix.

This paper is organized as follows: The governing equations and assumptions to
conserve the existence and uniqueness of the solution are described in Section 2; Then a
presentation of the mini-element method and the notations used in the approximation of
our problem is performed in Section 3; The important theoretical results—the stability and
a priori estimation—are proved in Section 4; Finally, to see the importance of this method,
we propose several numerical experiments in Section 5 to prove that the convergence of
our method is validated for an exact solution example.

2. Governing Equations

Let Ω ⊂ Rd, (d = 2, 3) be a bounded open set with a Lipschitz boundary Γ. The
Brinkman system is represented by the following equations{

−∇·(µ̃∇u) +∇p + µK−1u = f in Ω,
∇·u = 0 in Ω.

(1)

The system in Equation (1) is completed by the boundary conditions on Γ given by

A−1u + B(µ̃∇u− pI)·n = g on Γ. (2)

where u and p represent, respectively, the velocity field and the pressure, with the pressure
equation belonging in the space L2(Ω) and satisfying

∫
p dx = 0 there by enforcing a null

mean value of the pressure field over the entire domain Ω, restoring uniqueness. Moreover,
f is the external volumetric force acting on the fluid ( f ∈

[
L2(Ω)

]d), and in the boundary

condition we assume that g ∈
[
L2(Γ)

]d and the functions µ̃, µ are continuous bounded
functions that represent, respectively, the Newtonian viscosity and dynamic viscosity of
a fluid. The matrix K defines the permeability of the reservoir such that two constants
k1, k2 � 0 exist:

k1ψtψ ≤ ψtK−1ψ ≤ k2ψtψ, ∀ψ ∈ Rd. (3)

The matrix B is invertible and is a bounded matrix function belonging to L∞(Γ), i.e.,
there exist two constants b1, b2 � 0 such that

b1ψtψ ≤ ψtB−1ψ ≤ b2ψtψ, ∀ψ ∈ Rd. (4)

The matrix A is invertible and is a bounded matrix function belonging to L∞(Γ), i.e.,
there exist two constants a1, a2 > 0 such that

a1ψtψ ≤ ψt A−1ψ ≤ a2ψtψ, ∀ψ ∈ Rd. (5)

Remark: Under the notation
∣∣∣∣∣∣A∣∣∣∣∣∣= max

∣∣ai,j
∣∣, (i, j = 1, 2, 3), we can observe that
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• If
∣∣∣∣∣∣B∣∣∣∣∣∣�∣∣∣∣∣∣A−1

∣∣∣∣∣∣ then the boundary conditions are the Dirichlet condition.
• If

∣∣∣∣∣∣A−1
∣∣∣∣∣∣�∣∣∣∣∣∣B∣∣∣∣∣∣ then the boundary conditions are the Neumann condition.

We denote by H1(Ω) the standard Sobolev space of order 1, and by H1
0(Ω) its subspace

made of all functions equal to 0 on the boundary Γ. We introduce the spaces

V = [H1(Ω)]
d
, (6)

for the velocity field and

Q =

{
q ∈ L2(Ω),

∫
Ω

qdx = 0
}

, (7)

for the pressure.
The Brinkman problem (1) and (2) has a unique solution (u, p) ∈ V × Q [5]. In

order to analyze the numerical solution of this problem using the finite-element method
P1− Bubble/P1, we must first describe the weak formulation of the Brinkman system.

The weak formulation of the system (1) and (2) is to find (u, p) ∈ V×Q such that{
a(u, v) + b(v, p) = F(v) ∀v ∈ V,
b(q, u) = 0 ∀q ∈ Q,

(8)

where a : V ×V → R is a bilinear form defined by

a(u, v) =
∫

Ω
µ̃∇u·∇vdx +

∫
Ω

K−1µu·vdx +
∫

Γ
B−1 A−1u·vdσ, (9)

b : V ×Q→ R is a bilinear form given by

b(v, p) = −
∫

Ω
p∇·v dx, (10)

and F : V → R is a linear continuous function given by

F(v) =
∫

Ω
f ·vdx +

∫
Γ

B−1g·vdσ. (11)

We define the norms for the spaces Q, H1(Ω), V and V×Q by

‖ v ‖0,Ω:=‖ v ‖Q=‖ v ‖L2(Ω)=

(∫
Ω
|v|2dx

) 1
2
∀v ∈ L2(Ω), (12)

‖ v ‖2
1=‖ ∇v ‖2

0,Ω + ‖ v ‖2
0,Ω, (13)

‖ v ‖V= a(v, v)
1
2 , (14)

and
‖ (v, q) ‖V×Q=‖ v ‖V + ‖ q ‖Q . (15)

In what follows, we will show the existence and uniqueness of the weak solution of
the system (1) and (2), for which we use these theorems.

Theorem 1. There exist two strictly positive constants c1 and c2 such that

c1 ‖ u ‖1≤‖ u ‖V≤ c2 ‖ u ‖1, ∀u ∈ H1(Ω). (16)

Proof of Theorem 1. The mapping

γ : H1 → L2(Γ) u 7→ γ(u) = uΓ
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is continuous, so a strictly positive constant c3 exists such that

‖ u ‖0,Γ≤ c3 ‖ u ‖1 (17)

from (4) and (5), we obtain

‖ u ‖V≤ c2 ‖ u ‖1, ∀u ∈ H1(Ω). (18)

On the other hand, there exists a strictly positive constant α such that

‖ u ‖2
0,Ω≤ α(‖ u ‖2

0,Γ + ‖ ∇u ‖2
0,Ω), (19)

by using the assumptions (3)–(5), a constant c1 exists such that

c1 ‖ u ‖1≤‖ u ‖V , ∀u ∈ H1(Ω). (20)

Finally, based on the inequalities (18)–(20), the norms ‖ . ‖1 and ‖ . ‖V are equivalents.
�

Corollary 1. The space V that includes the norm ‖ . ‖V is a Helbert space.

Theorem 2. The bilinear continuous form b(·, ·) satisfies the inf-sup condition defined by the fact
that there exists a constant β � 0 such that

inf
q∈Q

sup
v∈V

b(q,v)
‖v‖V‖q‖Q

≥ β, (21)

Proof of Theorem 2. See Section 2 in [29]. �

It is well known that, under these Assumptions (3) − (5), the bilinear form a(·, ·)
is a continuous coercive function. The bilinear form b(·, ·) is a continuous function that
satisfies the in f − sup condition defined by (21). Under the Assumption (4), F(·) is a
linear continuous function. Therefore, the Problem (8) is well-posed and has only one
solution [24].

3. Mini-Element Method Approximation

Our goal here is to approximate the stationary Brinkman equations with general
boundary conditions in a d-dimensional domain (d = 2, 3) by using the mini-element
method P1− Bubble/P1.

The mini-element method was first created by Arnold, Brezzi and Fortin [29]. The
basic idea of the mini-element method is to add local functions called bubbles to correctly
enrich the discrete velocity space in order to stabilize the unstable method P1/P1. Figures 1
and 2 present the reference element of the mini-element P1− Bubble/P1 in two dimensions
below and in three dimensions above.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 13 
 

 

 

Figure 1. Mini-element 1 / 1P Bubble P−  in 2D . 

 

Figure 2. Mini-element 1 / 1P Bubble P−   in 3D . 

Let hT  be a triangulation of Ω ; we consider the function 1 ( )b H T∈ , which takes 

the value 1  at the barycenter and zero at the boundary T∂  of the reference triangle T  
and verifies 0 1b≤ ≤ . Such a function is known as a bubble function. The space asso-
ciated with the bubble is defined by 

= { ( ); , },T T
h h h hB v C v xb T T∈ Ω = ∀ ∈  (22) 

where 𝑥𝑥 is a real number. 
We define the discrete function spaces 

1V { ( ) : ( ); }, = 1, ..., .T

ih h h hv C v P T T T i d= ∈ Ω ∈ ∀ ∈  (23) 

1Q = { ( ) : ( ); , = 0},T

h h h h hq C q P T T T q dxΩ∈ Ω ∈ ∀ ∈ ∫  (24) 

where 𝑃𝑃1(𝑇𝑇) is the set of all 1-order polynomials on triangle 𝑇𝑇. 
And we set  

= V ,ih ih hX B⊕  (25) 

1 2X = ... .h h h dhX X X× × ×  (26) 

As a result, Xh V⊂ , the 1 / 1P Bubble P−  finite-element approximation of problem 

(8), will find ( , ) X Qh h h hu p ∈ ×  such that 

{ ( , ) ( , ) = ( ) ,
( , ) = 0 .

h h h h h h h

h h h h

a u v b v p F v v X
b q u q Q

+ ∀ ∈

∀ ∈
 (27) 

The velocity field hu  and the pressure hp  for a given triangle T  are approximated 

by linear combinations of the basis functions ( ) 1,..., 1i i dφ = +  in the form 

1 1

=1 =1
= ( ) ( ), = ( ), 2, 3

d d
T T

i i b b i ih h
i i

u u x u x p p x dφ φ φ
+ +
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Figure 1. Mini-element P1− Bubble/P1 in 2D.
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Let Th be a triangulation of Ω; we consider the function b ∈ H1(T), which takes the
value 1 at the barycenter and zero at the boundary ∂T of the reference triangle T and verifies
0 ≤ b ≤ 1. Such a function is known as a bubble function. The space associated with the
bubble is defined by

Bh =
{

vh ∈ C(Ω); vT
h = xbT , ∀T ∈ Th

}
, (22)

where x is a real number.
We define the discrete function spaces

Vih =
{

vh ∈ C(Ω) : vT
h ∈ P1(T); , ∀T ∈ Th

}
, i = 1, . . . , d. (23)

Qh = {qh ∈ C(Ω) : qT
h ∈ P1(T); , ∀T ∈ Th,

∫
Ω

qhdx = 0}, (24)

where P1(T) is the set of all 1 -order polynomials on triangle T.
And we set

Xih = Vih ⊕ Bh, (25)

Xh = X1h × X2h × . . .× Xdh. (26)

As a result, Xh ⊂ V, the P1− Bubble/P1 finite-element approximation of problem (8),
will find (uh, ph) ∈ Xh ×Qh such that{

a(uh, vh) + b(vh, ph) = F(vh) ∀vh ∈ Xh,
b(qh, uh) = 0 ∀qh ∈ Qh.

(27)

The velocity field uh and the pressure ph for a given triangle T are approximated by
linear combinations of the basis functions (φi)i=1,...,d+1 in the form

uT
h =

d+1

∑
i=1

uiφi(x) + ubφb(x), pT
h =

d+1

∑
i=1

piφi(x), d = 2, 3 (28)

where ui and pi are nodal values of uh and ph, while ub is the bubble value. The basis
functions are defined by

φ1(x, y) = 1− x− y, φ2(x, y) = x, φ3(x, y) = y, φb(x, y) = 27φ1(x, y)φ2(x, y)φ3(x, y)

if d = 2 and

φ1(x, y) = 1− x− y− z, φ2(x, y) = x, φ3(x, y) = y, φ4(x, y) = z,
φb(x, y) = 256φ1(x, y)φ2(x, y)φ3(x, y)φ4(x, y)

if d = 3.
We can rephrase system (27) as a (large) square matrix problem with the vectors U

and P as the unknowns. By consequence, we obtain the following algebraic form:[
A Bt

B 0

][
U
P

]
=

[
F
0

]
, (29)
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where the matrices A, B, and the vector F are defined by

A = (Aij),Aij =
∫

Ω µ̃∇φi∇φjdx +
∫

Ω K−1µφiφj, dx +
∫

∂Ω B−1 A−1φiφjdσ,

i, j = 1, . . . , nu.

B = (Bkj),Bkj = −
∫

Ω ∂1φkφj, dx−
∫

Ω ∂2φkφj, dx,k = 1, . . . , np and

j = 1, . . . , nu.

F = (Fi),Fi =
∫

Ω f φi, dx +
∫

∂Ω B−1gφi, dσ,i = 1, . . . , nu.

To solve the large system we can be use the Uzawa conjugate gradient algorithm [32–34].

4. Stability and a Priori Error Estimates

In this section, we will establish the stability and a priori estimate for the pressure and
the velocity of our problem.

Lemma 1. There is a constant c4 � 0 independent from the mesh parameter h such that

sup
vh∈Xh

b(vh, qh)

‖ vh ‖V
≥ C4 ‖ qh ‖0,Ω, ∀qh ∈ Qh. (30)

Proof of Lemma 1. This Lemma can be established by the same proof of Lemma 2 in [35].
�

Theorem 3. For any (wh, sh) ∈ Xh ×Qh there is a constant c5 � 0 independent from the mesh
parameter h such that

sup
(vh ,qh)∈Xh×Qh

a(wh, vh) + d(sh, qh)

‖ vh ‖V + ‖ qh ‖0,Ω
≥ C5(‖ wh ‖V + ‖ sh ‖0,Ω), (31)

where d(sh, qh) =
∫

Ω shqh, dx, ∀(qh, sh) ∈ Q2
h.

Proof of Theorem 3. For any (wh, sh) in Xh ×Qh we have:
Firstly,

sup
(vh ,qh)∈Xh×Qh

a(wh, vh) + d(sh, qh)

‖ vh ‖V + ‖ qh ‖0,Ω
≥ a(wh, wh) + d(sh, 0)
‖ wh ‖V + ‖ 0 ‖0,Ω

≥‖ wh ‖V, (32)

On the other hand,

sup
(vh ,qh)∈Xh×Qh

a(wh, vh) + d(sh, qh)

‖ vh ‖V + ‖ qh ‖0,Ω
≥ a(wh, 0) + d(sh, sh)

‖ 0 ‖V + ‖ sh ‖0,Ω
≥‖ sh ‖0,Ω, (33)

by combining these inequalities in Equations (32)–(33), we obtain the result Equation (31),
of which the constant is C5 = 1

2 . �

Now, we will introduce and demonstrate the a priori estimate error.

Theorem 4. Let (u, p) be the solution of (1)–(2), and (uh, ph) be the solution of (27). Then the
following error estimate holds

‖ u− uh ‖V + ‖ p− ph ‖0,Ω≤ C

{
in f
v∈Xh

‖ u− v ‖V + in f
q∈Qh

‖ p− q ‖0,Ω

}
, (34)

where C is a constant independent of the mesh size h.
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Proof of Theorem 4. Using the triangle inequality, we have

‖ u− uh ‖V + ‖ p− ph ‖0,Ω≤‖ u− v ‖V + ‖ p− q ‖0,Ω + ‖ uh − v ‖V + ‖ ph − q ‖0,Ω, (35)

from Equation (31) there exists (w, q) ∈ Xh ×Qh with

‖ w ‖Xh + ‖ q ‖0,Ω≤ γ1, (36)

such that
‖ uh − v ‖V + ‖ ph − q ‖0,Ω≤ a(uh − v, w) + b(w, ph − q). (37)

Since
a(u− v, w) + b(w, p− q) = a(uh − v, w) + b(w, ph − q), (38)

and by using the Schwartz inequality we obtain ·

a(u− v, w) + b(w, p− q) =
∫

Ω µ̃∇(u− v)∇w, dx +
∫

Ω K−1µ(u− v).w, dx
+
∫

Γ B−1 A−1(u− v)·w, dσ +
∫

Ω(p− q)∇·w, dx
≤ µ̃0 ‖ ∇(u− v) ‖0,Ω‖ ∇w ‖0,Ω +k2µ0 ‖ u− v ‖0,Ω‖ w ‖0,Ω

+b2a2 ‖ u− v ‖0,Γ‖ w ‖0,Γ + ‖ p− q ‖0,Ω‖ ∇w ‖0,Ω
≤ C6 ‖ u− v ‖V‖ w ‖V +C7 ‖ p− q ‖0,Ω‖ w ‖V

≤ C(‖ u− v ‖V + ‖ p− q ‖0,Ω)

by the consistency, we have the result Equation (34). �

5. Numerical Simulation

In this section, some numerical results were obtained by programming the mini-
element method in MATLAB and we compare these obtained results with those constructed
from the ADINA system. Using our solver, we ran two test problems regarding the flow
around a cylinder; our tests were focused on the change in the value of the diagonal
coefficients of the permeability matrix. For both of the tests, the domain considered in the
simulation experiment is the one studied by Schäfer et al. in [36] for two dimensions.

Example 1. In this test, we performed simulations for the flow around a cylinder (Figure 3) by the

change in the values of the coefficients α1 and α2 of the matrix K−1 defined as K−1 =

(
α1 0
0 α2

)
,

where α1 and α2 are two positive real numbers.
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2D test case.

The Figure 3 presents the domain geometry of the cylinder. The channel height is H = 0.41 m
and the diameter is D = 0.1 m.

Next, we present the simulation made with the MATLAB software with the validation tests per-
formed by the ADINA system. We used the Newtonian viscosity and dynamic viscosity, µ = µ̃ = 1.
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For the boundary conditions, we considered the boundary defined in [36], for which we considered
the matrix A−1 and B defined by

A−1 =

(
1 0
0 1

)
, B =

(
10−6 0

0 10−6

)
. (39)

The Figure 4 shows the ADINA created domain mesh upon which the various tests are based.
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Firstly, we present in Figures 5 and 6 the velocity field of our problem (1) and (2) in the
following different cases α1 = α2 = 10−6 and α1 = 10−4, α2 = 1.
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The streamlines were derived from the velocity solution by numerically solving the Poisson
equation with a zero Dirichlet boundary condition. Figures 7 and 8 present the streamlines in the
following different cases: α1 = α2 = 10−6 andα1 = 10−4, α2 = 1.
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In the previous example, the two-dimensional flow past a circular cylinder was simulated
for varied permeability tensor K−1. The objective of the present simulation was to investigate
the solution of Brinkman’s equations by using the mini-elements method P1− Bubble/P1. Our
simulation focused on two tests with deferent values for K−1 such that the first was α1 = α2 = 10−6

and the second was α1 = 10−4, α2 = 1. The computations with MATLAB and the ADINA system
led to very similar results.

Example 2. We consider the stationary Brinkman problem (1) in Ω = [0; 1]× [0; 1], with µ = 1
and µ̃ = 1, the function f on the right-hand side in (1) is adjusted so that the exact solution is

u1(x, y) = x2(
x
3
− 1

2
),u2(x, y) = xy(1− x), (40)

for the velocity, and we take the pressure to be

p(x, y) = x2 − 1
3

, (41)

with the boundary conditions
[

1 0
0 1

][
u1
u2

]
+

[
10−6 0

0 10−6

]
(∇u− pI).n = 0onΓ.

The domain Ω is first discretized by a uniform mesh of size h = 1/16 (289 nodes and
512 triangles in the fine mesh). This initial mesh is successively refined to produce meshes with sizes
2−5, 2−6, 2−7, 2−8, 2−9 and 2−10. We report in Table 1 the convergence rates and the distances
‖ u− uh ‖H1 and ‖ u− uh ‖L2 between the exact solution (40) and (41) and approximate solution.
For this test, we took two values of K−1, and we noticed that these norms were converging to zero.

Table 1. Numerical error and convergence rates for example 2.

Permeability Mesh Size ‖u−uh‖L2 Rate ‖u−uh‖H1 Rate

K−1 =

(
1 0
0 1

) 2−5 2.58490367 × 10−3 7.30459072 × 10−2

2−6 7.29374932 × 10−4 1.23 3.65242949 × 10−2 1.26
2−7 2.00944198 × 10−4 1.12 1.82662182 × 10−2 1.20
2−8 5.45035935 × 10−5 1.20 9.13565045 × 10−3 1.17
2−9 1.46182239 × 10−5 1.13 4.56876194 × 10−3 1.14
2−10 6.34523145 × 10−6 1.07 8.5232210 × 10−4 1.31

K−1 =(
104 0
0 104

)
2−5 9.79901277 × 10−2 1.71655622 ×100

2−6 5.71231633 × 10−2 1.23 1.13006936 × 100 1.30
2−7 2.10804196 × 10−2 1.34 4.88759130 × 10−1 1.29
2−8 5.96212978 × 10−3 1.32 1.82645760 × 10−1 1.30
2−9 1.54001284 × 10−3 1.26 6.50585157 × 10−2 1.27
2−10 3.88183415 × 10−4 1.21 2.29466805 × 10−2 1.31

Since the assembly process is essentially based on the number of elements, we expect that the
time to assemble the matrices will increase by approximately the same factor. We can see that Table 2
shows an almost linear optimal time-scaling for our implementation.
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Table 2. CPU time in seconds for example 2 with K−1 =

(
1 0
0 1

)
.

Mesh Size 2−5 2−6 2−7 2−8 2−9 2−10

CPU Time (s) 0.4521 0.1894 0.5811 2.4645 14.1669 26.20

6. Conclusions

We were interested in this work on the numeric solution of this equation in a heteroge-
neous porous media with a permeability tensor. In this study, we used the discretization
of the mini-element method P1− Bubble/P1. We established the stability and a priori
error estimate for this approximation. The numerical and bidimensional simulations are
presented and show the accuracy and efficiency of the proposed finite-element method.
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