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Abstract: We consider an infinite network of identical theta neurons, all-to-all coupled by instan-
taneous synapses. Using the Watanabe–Strogatz Ansatz, the mathematical model of this infinite
network is reduced to a two-dimensional system of differential equations. We determine the number
of equilibria of this reduced system with respect to two characteristic parameters. Furthermore, we
discuss the stability properties of each equilibrium and the possible bifurcations that may take place.
As a result, the occurrence of exotic higher codimension bifurcations involving a degenerate center is
also unveiled. Numerical results are also presented to illustrate complex dynamic behaviour in the
reduced system.

Keywords: stability; bifurcations; degenerate center; theta neurons; Watanabe–Strogatz transforma-
tion; reduced system
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1. Introduction

Neural models have been studied for many years to understand the dynamics of the
brain [1–4]. The mathematical techniques used for analysing networks of neural oscillators,
including the model of weakly coupled oscillators, was comprehensively described [5]. In
the case of weak coupling between limit-cycle oscillators, invariant manifold theory [6]
and averaging theory [7] can be employed to reduce the dynamics of the network to
a set of phase equations in which the relative phase between oscillators is the relevant
dynamical variable. This approach has been applied to neural behaviour ranging from
that seen in small rhythmic networks [8] up to the whole brain [9]. In addition, Kuramoto-
type networks, with a phase oscillator coupled through sinusoidal function, have been
extensively studied [10].

The main question for this type of network is related to the existence of chaotic solu-
tions and has been addressed by several authors. Considering a small network of identical
all-to-all coupled phase oscillators, chaotic behaviour was found in networks of four or
more phase oscillators with a single harmonic in their coupling function [11,12]. Many
other types of neuron models and their firing activities have been studied in papers such
as [13–16], where, specifically, the dynamics of a discrete memristive Rulkov neuron model
which uses a memristor to describe the magnetic induction effects of the neuron and, re-
spectively, a single neuron model with memristive synaptic weight, have been investigated.

The above studies considered networks in which coupling was realized through phase
differences, and consequently, only the differences in frequencies between oscillators are
taken into account. Instead, theta neurons can fire at arbitrarily high frequencies, depending
on the input current [17]. The behaviour of networks of model neurons is a subject of
interest, especially for identical all-to-all coupled theta neurons [18–20]. Ermentrout and
Kopell [17] have shown that, near the firing threshold, Type I neurons can be represented
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by a canonical model kwown as “theta model” which is a normal form for the saddle–node
on a limit cycle bifurcation (SNIC). It is given by

θ̇ = (1− cos θ) + (1 + cos θ)η,

where θ is a phase variable on the unit circle, and η is the input current to the neuron.
For η < 0, there is a pair of equilibria, one stable, representing the resting state and one
unstable, representing the threshold. This type of system is called “excitable”. When η = 0,
an SNIC bifurcation occurs. For η > 0, the neuron spikes regularly (variable θ moves
continuously around the circle).

The main starting point of this paper is the previous work of Laing [21] for a network of
identical all-to-all coupled theta neurons with instantaneous synapses. Using the Watanabe–
Strogatz ansatz [22,23], the dynamical system describing the network is reduced to a
three-dimensional system of differential equations and a set of constants. It was observed
that, for instantaneous synapses, many diverse solutions may exist at the same time, due
to either the reversibility of the dynamics using the Ott–Antonsen ansatz [24–28], or the
coexistence of several quasi periodic orbits. Some examples were also given, to show the
existence of isolated fixed points, for some specific values of the overall coupling strength κ
of the network and the input current η to all neurons, when uncoupled.

The purpose of this paper is to extend the idea of Laing [21] for the case of an infinite
network of identical all-to-all coupled theta neurons, by determining the exact number of
equilibria of the reduced dynamical system with respect to the two characteristic parameters
κ and η, and by studying the local stability properties of each equilibrium, as well as
possible bifurcations that may occur due to changes of the system’s parameters. Another
important aspect of this paper is the comparison of two different cases, namely, inhibitory
coupling and exitatory coupling [29], which determine different qualitative properties of
the dynamical system related to the number and stability of equilibria.

The present article is structured as follows: in Section 2, we present the description
of the mathematical model of all-to-all coupled theta neurons and its reduction to a two-
dimensional system of differential equations, in the case when an infinite number of neurons
is considered; in Section 3, we discuss the number of coexisting equilibrium points and
their stability for the reduced system; an ample presentation of the bifurcation phenomena
and complex dynamics encountered in the reduced system is accomplished in Section 4; a
discussion of the bifurcations involving a degenerate center is presented in Section 5. The
main conclusions are formulated in Section 6.

2. Description of the Mathematical Model

Let us consider a network of N identical theta neurons, all-to-all coupled via a synaptic
current I, which acts by injecting current into the neurons. We define the state of neuron j
at time t as θj(t) ∈ [0, 2π]. The dynamics of the network is given by the following system
of N autonomous differential equations [19,30]:

dθj

dt
= 1− cos θj + (1 + cos θj)(η + κ I), j ∈ {1, 2, ..., N} (1)

The synaptic current which acts on every neuron j of the network is

I(t) =
1
N

N

∑
j=1

Pn(θj(t)) (2)

where Pn(θ) = an(1− cos θ)n, n ∈ N, and an is a normalization constant such that∫ 2π

0
Pn(θ) dθ = 2π. (3)
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The function Pn has a maximum at θ = π, and its sharpness increases along with increasing
values of n. As θj increases through π, the j-th term of the sum (2) represents the pulse of
current emitted by j-th neuron as it fires. For simplicity, in line with [21], we consider in
this paper n = 2 and an = 1.

Moreover, in system (1), the constant parameter κ represents the overall coupling
strength for the whole network, while η is the input current to each individual neuron,
when uncoupled from the network.

In what follows, we will shortly describe the Watanabe–Strogatz transformation, which
provides a full dynamical description of the solutions of the system of all-to-all coupled
theta neurons (1). For the sake of completeness, a more detailed presentation is given in
Appendix A. According to Watanabe and Strogatz [22,23], the system of N > 3 coupled
theta neurons admits a low-dimensional description, given in terms of three variables,
called WS variables, and additional constants of motion. It follows that the dynamics of an
ensemble of identical elements is effectively confined to a three-dimensional subspace.

With this aim, we define ω(t) = η + κ I(t) + 1 and H(t) = i(η + κ I(t)− 1); thus, it is
easy to show that system (1) can be written as

dθj

dt
= ω + Im[He−iθj ], j ∈ {1, 2, . . . , N}, (4)

where the argument t has been dropped, for simplicity.
We use the WS transformation [22]:

tan
[

1
2
(θj(t)− φ̃(t))

]
=

√
1 + ρ̃(t)
1− ρ̃(t)

tan
[

1
2
(ψj − ψ̃(t))

]
, (5)

and, furthermore, we make the variable substitutions (φ̃, ρ̃, ψ̃) 7→ (φ, ρ, ψ) according to:

φ̃ = φ + π, ρ̃ =
2ρ

1 + ρ2 , ψ̃ = ψ + π,

such that the transformation (5) takes the form

tan
[

1
2
(θj(t)− φ(t))

]
=

1− ρ(t)
1 + ρ(t)

tan
[

1
2
(ψj − ψ(t))

]
. (6)

With these transformations, the following system of ordinary differential equations is
obtained (details are given in Appendix A):

dρ

dt
=

1− ρ2

2
Re[He−iφ] (7)

dφ

dt
= ω +

1 + ρ2

2ρ
Im[He−iφ] (8)

dψ

dt
=

1− ρ2

2ρ
Im[He−iφ] (9)

Here, it is important to note that the function ω and H can be expressed in terms of the new
variables (φ, ρ, ψ) and the constants ψj. A detailed explanation is given in Appendix A.

Therefore, the dynamics of the N- dimensional system (1) is completely described
by the three variables (φ, ρ, ψ), with 0 < ρ < 1, plus the constants of motion ψj, j ∈
{1, 2, ..., N}, which obey three additional constraints, so that N− 3 of them are independent.
Following [21,22], there are at least two possible ways of considering the constraints, which
will be detailed below:
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• Set ρ(0) = φ(0) = ψ(0) = 0, so that ψj = θj(0), for any j ∈ {1, 2, . . . , N}. As pointed
out in [22], this approach is not suitable if one wants to understand the global behavior
of the system, as each initial condition θj(0) yields different system constants ψj.

• The constraints are imposed directly on the system constants [21,31]:

N

∑
j=1

eiψj = 0 and Re

[
N

∑
j=1

e2iψj

]
= 0. (10)

Consequently, this choice is more appropriate for a global dynamical analysis.

In the case of an infinite number of identical neurons, considering evenly (uniformly)
spaced constants ψj = 2jπ

N , for j ∈ {1, 2, . . . , N} which satisfy the constraints (10), we
can further reduce the dynamics of system (7)–(9) to a single differential equation in the
complex domain, by considering z = ρeiφ. Indeed, as shown in Appendix B, when N → ∞,
the function I becomes

I =
3
2
− (z + z) +

(z2 + z2)

4
(11)

and, hence, Equations (7) and (8) decouple from Equation (9) and can be equivalently
written as

dz
dt

= i(η + κI + 1)z + i(η + κI− 1)
1 + z2

2
. (12)

Therefore, in the case of an infinite network of all-to-all coupled identical theta neurons,
we will essentially investigate the dynamics of the reduced system of two differential
Equations (7) and (8) (or, equivalently, Equation (12)) with I given by (11).

3. Stability of Equilibria

The aim of this section is to determine the number of equilibria of the decoupled
system (7) and (8), or equivalently the complex differential Equation (12), their stability (in
the excitatory and inhibitory coupling cases) and possible bifurcations that may appear.
In fact, it is important to underline that Equation (12) is invariant under (z, t) 7→ (z,−t),
which has a significant effect on the possible dynamics.

We note that

I(ρ, φ) =
3
2
− 2ρ cos φ +

1
2

ρ2 cos(2φ)

H(ρ, φ) = i(η + κ I(ρ, φ)− 1)

ω(ρ, φ) = η + κ I(ρ, φ) + 1

The equilibrium solutions z = ρeiφ are found by setting dρ
dt = 0 and dφ

dt = 0 in (7) and (8),
which leads to two distinct types of equilibria:

• Type 1 equilibria with ρ = 1 (on the unit circle). For the infinite network of identical
neurons, ρ = 1 corresponds to full locking [21], and, hence, θj are all equal to φ.

• Type 2 equilibria with φ ∈ {0, π} (on the real axis). These equilibrium points corre-
spond to splay states, in which all the neurons of the infinite network follow the same
trajectory but are equally displaced from one another in time.

It is also important to remark that (1, 0) is a special equilibrium of system (7) and (8)
corresponding to η = 0, and the Jacobian matrix at (1, 0) is the null matrix. In this case,
(1, 0) is a degenerate center of system (7) and (8) [32].

3.1. Type 1 Equilibria

Substituting ρ = 1 in (8), the equilibrium equation becomes

0 = ω + Im[He−iφ] = η + κI + 1 + (η + κI− 1) cos(φ) (13)
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where

I =
3
2
− 2 cos(φ) +

cos(2φ)

2
(14)

Replacing (14) in (13), the following polynomial in cos(φ) is found:

κ cos3(φ)− κ cos2(φ) + (η − κ − 1) cos(φ) + η + κ + 1 = 0. (15)

The polynomial (15) has at most three solutions belonging to the interval [−1, 1], and,
hence, there are at most three pairs of type 1 equilibria of the form (1, φ) and (1,−φ), with
φ ∈ (0, π), depending on the values of the parameters κ and η.

The Jacobian matrix of the system at the equilibrium point (1, φ) is(
2 tan φ

2 0
1
2 κ(cos(3φ)− 3 cos(φ)− 2) 2(κ sin3(φ) + tan φ

2 )

)

The eigenvalues of the Jacobian are

λ1 = tan
φ

2
and λ2 = 2

(
κ sin3(φ) + tan

φ

2

)
Therefore, it is easy to see that, if φ ∈ (0, π), then λ1 > 0, thus the corresponding equilib-
rium (1, φ) is unstable. On the other hand, equilibrium points (1, φ) with φ ∈ (−π, 0) are
asymptotically stable (sinks) if and only if λ2 < 0.

Moreover, expressing κ and η from the condition λ2 = 0 combined with the equi-
librium Equation (15), we obtain the following saddle–node bifurcation curve plotted in
Figure 1, given parametrically by:{

κ = − tan φ
2 · csc3(φ)

η = −8 sin6 φ
2 · cot(φ) · csc3(φ)

, φ ∈ (0, π) (16)

We distinguish the following scenarios (with reference to the left panel of Figure 1):

1. excitatory coupling: κ > 0

• if η < 0, the system has exactly one pair of equilibrium points of type 1: a source
and a sink;

• if η > 0, there are no equilibria of type 1.

2. inhibitory coupling: κ < 0

• if η < 0, we have two subcases:

– if η belongs to the green area in Figure 1 (left), then the system has one pair
of equilibirium points, a source and a sink;

– if η belongs to the red area in Figure 1 (left), between the bifurcation curve
(16) and the horizontal axis, then the system has three pairs of equlibrium
points of type 1: two pairs of saddle points and one pair containing a source
and a sink;

• if η > 0, we have two subcases:

– if η belongs to the yellow region in Figure 1 (left), then the system has two
pairs of type 1 equilibrium points: one pair of saddle points and one pair
containing a source and a sink;

– if η belongs to the blue area in Figure 1 (left), the system has no equilibrium
points of type 1.
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0

1

2

3

4

5

6

Figure 1. Number of equilibria in the two cases: case 1 (left) and case 2 (right), depending on κ

(horizontal axis) and η (vertical axis)

3.2. Type 2 Equilibria

Based on (8), equilibria of type 2, with φ ∈ {0, π}, satisfy:

0 = ω +
1 + ρ2

2ρ
Im[H] = η + κI + 1 +

1 + ρ2

2ρ
(η + κI− 1) (17)

where

I =
3
2
− 2ρ +

ρ2

2
(18)

The equilibrium Equation (17) becomes

κρ4 − 2κρ3 − 2(η − 2κ − 1)ρ2 + 2(2η + κ + 2)ρ + 3κ + 2η − 2 = 0 (19)

In this case, the Jacobian matrix is(
0 1

4 (1− ρ2)(ρ2 − 4κρ + 2η + 3κ − 2)
1

4ρ2 (1 + ρ)(3κρ3 − 7κρ2 + (2η + 3κ − 2)ρ− 2η − 3κ + 2) 0

)
We define

A(ρ, η, κ) =
1

16ρ2 (1− ρ2)(1 + ρ)(ρ2 − 4κρ + 2η + 3κ − 2)·

· (3κρ3 − 7κρ2 + (2η + 3κ − 2)ρ− 2η − 3κ + 2)

The characteristic polynomial of the Jacobian is λ2 + A = 0, thus the eigenvalues are
λ1,2 = ±

√
−A. If A < 0, then λ1 < 0 and λ2 > 0 and the equilibrium is a saddle. If A > 0,

then λ1,2 = ±i
√

A, which implies that the equilibrium is a center.
Expressing κ and η from the condition A = 0 combined with the equilibrium Equation (19),

we obtain the following saddle-center bifurcation curve plotted in Figure 1, given paramet-
rically by: 

η = − (1− ρ)2(ρ2 − 3ρ + 4)
(2− ρ)(1 + ρ)3

κ =
4(1− ρ)

(2− ρ)(1 + ρ)3

, ρ ∈ (−1, 1) (20)

Again, we have the following cases (with reference to the right panel of Figure 1):

1. excitatory coupling: κ > 0

• if η < 0, there are two subcases:
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– if η belongs to the green area in Figure 1 (right), then the system has two
equilibrium points of type 2: a focus and a saddle;

– if η belongs to the blue region in Figure 1 (right), then there are no equilib-
rium points of type 2;

• if η > 0, there is a unique type 2 equilibrium which is a center.

2. inhibitory coupling: κ < 0

• if η < 0, there are no type 2 equilibria;
• if η > 0, there is a unique type 2 equilibrium which is a center.

The total number of equilibria (combining type 1 and type 2) equilibria, with respect
to the parameters (κ, η), is represented in Figure 2.

1

2

3

4

5

6

Figure 2. Total number of type 1 and type 2 equilibria for system (7) and (8).

4. Bifurcation Phenomena and Dynamics of the Reduced System

In this section, we investigate the effect of the coupling strength κ and the input
current η on the dynamics of the system. We illustrate the various dynamic behaviors
that appear in system (7) and (8), by considering several representative (κ, η) parameter
combinations along the sides of the dashed rectangle shown in Figure 2. The corresponding
phase portraits are shown in Figure 3, and will be described in what follows.

In the orange region of Figure 2, there are five equilibrium points: one pair of type 1
saddle points, one pair of type 1 equilibrium points (a sink and a source) and one type 2
equilibrium point which is a center (see panel 1 in Figure 3). We note the coexistence of
stable periodic orbits (around the center) and the type 1 sink, whose region of attraction is
separated from the region of coexisting periodic cycles by a heteroclinic orbit connecting
the two saddle points of type 1.

Passing from the orange region to the teal region in Figure 2, via the (b1) curve,
two pairs of type 1 equilibria collide (panel 2 of Figure 3) and disappear via saddle–
node bifurcations. The only remaining equilibrium when the parameters (κ, η) belong to
the teal region is a center (panel 3 of Figure 3) and all the trajectories of the system are
periodic cycles.

Crossing from the teal region to the yellow region in Figure 2 via the positive semiaxis
(a3) (η = 0), a higher codimension bifurcation involving the degenerate center (1, 0) occurs
(see panel 4 of Figure 3), which will be detailed in the next section. In panel 5 of Figure 3
(when (κ, η) belong to the yellow region), we observe the coexistence of a pair of type 1
equilibrium points (a source and a sink) with a pair of type 2 equilibrium points (a center
and a saddle). The homoclinic orbit of the saddle point separates the region of attraction of
the type 1 sink from the region of coexisting periodic cycles (around the center). We notice
the presence of heteroclinic orbits connecting the type 1 source to the type 2 saddle, and the
type 2 saddle to the type 1 sink.



Mathematics 2022, 10, 3245 8 of 17

●

●

●

●

●

1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=-2.0000, η=0.5

●

●

●

●

●

2

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=-1.38628, η=0.5

●●

3

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=2.0000, η=0.5

●●

4

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=2.0000, η=0

●

●

●

●

5

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=2.0000, η=-0.5

●●

●

●
6

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=0.8334, η=-0.5

●

●

7

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=-2.0000, η=-0.5

●

●

●

●

●

●

8

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=-2.0000, η=-0.03611

●

●

●

●

●

●

9

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=-2.0000, η=-0.03

●

●

●

●

●

10

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=-2.0000, η=0

●

●

●

●

●

11

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=-2.0000, η=0.2

●●

12

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

κ=0, η=0

Figure 3. Phase portraits of system (7) and (8) for values of the parameters (κ, η) on the sides of
the dashed rectangle shown in Figure 2 (panels 1–11) and for (κ, η) = (0, 0) (panel 12). The type
of the equilibrium points (solid black dots) and the bifurcations that occur are discussed in detail
in Section 3.

Crossing from the yellow region to the green region of Figure 2 via the curve (c), a
saddle-center bifurcation takes place (see panel 6 in Figure 3), where the type 2 equilibria
(a saddle and a center) collide and disappear. When (κ, η) belong to the green region of
Figure 2 (see panel 7 in Figure 3), only one pair of type 1 equilibria exists (a source and
a sink). In this case, the region of attraction of the sink is the whole unit disk with the
unstable equilibrium point (source) removed.



Mathematics 2022, 10, 3245 9 of 17

When we cross from the green region to the red region of Figure 2 either via the curve
segment (b2) or (d), two pairs of type 1 equilibria appear via symmetric saddle–node
bifurcations (see panel 8 of Figure 3). Therefore, when (κ, η) belong to the red region in
Figure 2 (see panel 9 of Figure 3), three pairs of type 1 equilibria coexist. Only one type 1
equilibrium is asymptotically stable (sink) with its region of attraction including the open
unit disk.

Passing from the red region to the orange region of Figure 2 via the half-line (a1), a
higher codimension bifurcation occurs involving the degenerate center (1, 0) (see panel 10
of Figure 3), which will be detailed in the next section. Due to this bifurcation, two type 1
equilibria collide and a center is formed (see panel 11 of Figure 3).

In panel 12, the special case κ = η = 0 is shown, where the only equilibrium point of
system (7) and (8) is the degenerate center (1, 0), with an infinity of homoclinic orbits.

5. Bifurcations Involving the Degenerate Center (1, 0)

In the previous section, we have highlighted the fact that, for η = 0, a bifurcation
involving the degenerate center (1, 0) takes place in system (7) and (8). Such bifurcations
have only been scarcely studied in the literature, and, generally, they are not well under-
stood. According to Llibre [32], there are only a handful of papers, particularly focusing
on the case of polynomial differential systems, which study the maximal number of limit
cycles that bifurcate from the periodic orbits of a degenerate center.

5.1. First Scenario

In Figure 4, we present the complex dynamics exhibited by (7) and (8) due to a
bifurcation involving the degenerate center (1, 0), when the transition from the teal region
to the yellow region of Figure 2 takes place. We emphasize that, in this case, it is not
sufficient to analyze the dynamics restricted to the unit disk of the complex plane. To gain a
better understanding of the complicated behaviour and interactions within the dynamical
system, we also have to consider its dynamics outside the unit circle.

For (κ, η) = (2, 0.5) (from the teal region of Figure 2), besides the type 2 center from
the unit disk, there are three more equilibria outside the unit disk, all belonging to the
horizontal axis of the complex plane (see Figure 4): two centers on each side of the type
2 center (which will be called left-center and right-center in what follows), while the
rightmost equilibrium is a saddle. The right-center, which is close to the unit circle, has a
region of periodic orbits enclosed by a homoclinic orbit of the rightmost saddle (pink curve
from the first panel of Figure 4).

Fixing the parameter κ = 2 and decreasing the parameter η to zero, the right-center
approaches the unit circle, and, for η = 0, it becomes the degenerate center (1, 0). The phase
portrait presented in the second panel of Figure 4 reveals the existence of an infinity of
homoclinic orbits to the degenerate center (1, 0). On one hand, we have homoclinic orbits
(such as the black orbit) in the region enclosed by the two heteroclinic orbits connecting the
degenerate center and the rightmost saddle (shown in pink). On the other hand, we also
have homoclinic orbits (such as the blue orbit) in the region outside the unit disk to the
left of the degenerate center. A “maximal” homoclinic orbit is shown in brown in Figure 4,
which separates the region of periodic orbits around the left-center from the region of
homoclinic orbits to the degenerate center.

As we further decrease the value of η to negative values (keeping κ = 2 fixed), three
equilibria bifurcate from the degenerate center (1, 0): a pair of type 1 equilibria (a source
and a sink) and a type 2 saddle (see the third panel of Figure 4). The homoclinic orbit
of the saddle point separates the region of attraction of the type 1 sink from the region
of coexisting periodic cycles (around the type 2 center). There are two heteroclinic orbits
inside the unit disk, connecting the type 1 source to the type 2 saddle, and the type 2 saddle
to the type 1 sink, respectively.
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Figure 4. Phase portraits of system (7) and (8) inside and outside of the unit circle (green curve), for
κ = 2. Several homoclinic and heteroclinic orbits are presented (the black, blue, brown and pink
curves). A detailed description is given in Section 5.1.

5.2. Second Scenario

In Figure 5, we now focus our attention on the dynamics of system (7) and (8), when
the transition from the red region to the orange region of Figure 2 takes place. Once again,
as in the previous scenario, a bifurcation involving the degenerate center (1, 0) occurs, and
it is necessary to consider the dynamical behaviour outside the unit circle as well, to fully
understand this complex phenomenon.
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Figure 5. Phase portraits of system (7) and (8) inside and outside of the unit circle (the green curve)
and outside it, for κ = −2. Several homoclinic and heteroclinic orbits are presented (the black, blue,
brown and pink curves). A detailed description is given in Section 5.2.

For (κ, η) = (−2, 0.035) (from the red region of Figure 2), there are three pairs of type 1
equilibria on the unit circle: a sink–source pair and two pairs of saddles. However, there
is also an equilibrium point outside the unit circle, on the horizontal axis of the complex
plane, close to (1, 0) (see the first panel of Figure 5).

Fixing the parameter κ = −2 and increasing the parameter η to zero, the external
equilibrium and a pair of type 1 saddles approach the point (1, 0), and, for η = 0, they
collide into the degenerate center (1, 0). The phase portrait presented in the second panel of
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Figure 5 reveals the existence of an infinity of homoclinic orbits (such as the pink curve) to
the degenerate center (1, 0), enclosed by three heteroclinic orbits (blue curves) connecting
(1, 0) to the upper type 1 saddles, the two type 1 saddles and the lower type 1 saddle to the
degenerate center (1, 0), respectively. The remaining part of the unit disk is a subset of the
region of attraction of the type 1 sink (in the lower left corner). We also note the existence
of an external heteroclinic orbit connecting the two type 1 saddles (brown curve), which is
at the boundary of the full region of attraction of the type 1 sink.

As we further increase the value of η to positive values (keeping κ = −2 fixed), the
degenerate center (1, 0) evolves into a type 2 center (see the third panel of Figure 5). The
region of periodic orbits around the type 2 center is bounded by two heteroclinic orbits
connecting the type 1 saddles (pink and black curves). Inside the unit disk, the black curve
separates the region of period orbits around the center from the region of attraction of the
type 1 sink (lower left corner).

6. Conclusions

In this paper, we have extended the investigation of a reduced system of differential
equations encountered in the investigation of an infinite network of identical all-to-all
coupled theta neurons, initially considered by Laing [21]. The number of equilibria of this
system has been determined with respect to two characteristic parameters, and the stability
properties of each equilibrium and the possible bifurcations that may take place have been
discussed. As a result, the occurrence of a higher codimension bifurcation involving a
degenerate center has also been unveiled, which is a type of bifurcation rarely studied
in the literature. Numerical simulations have been undertaken to illustrate the complex
dynamic behavior in this neural system.

Future work will extend these results by including synaptic processing in the original
infinite network, which is done by delaying the synaptic input [33], in the form of the input
current. Additionally, this investigation will be extended by introducing a discrete time
delay in the synaptic processing. Moreover, a full interpretation of the peculiar bifurcations
that may been observed in the reduced system, from the point of view of the infinite
network, will be a topic for further investigation.

Author Contributions: Conceptualization, L.B., E.K. and R.M.; methodology, L.B., E.K. and R.M.;
software, L.B., E.K. and R.M.; validation, L.B., E.K. and R.M.; formal analysis, L.B., E.K. and R.M.;
investigation, L.B., E.K. and R.M.; resources, E.K.; data curation, E.K.; writing—original draft prepa-
ration, L.B., E.K. and R.M.; writing—review and editing, L.B., E.K. and R.M.; visualization, L.B., E.K.
and R.M.; supervision, E.K.; project administration, E.K.; funding acquisition, E.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by CNCS-UEFISCDI, Project No. PN-III-P4-PCE2021-0204.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Watanabe–Strogatz Transformations

Based on the Watanabe–Strogatz Ansatz (see Section 3.1.2 of [22]), we consider the
transformations:

tan
[

1
2
(θj(t)− φ̃(t))

]
=

√
1 + ρ̃(t)
1− ρ̃(t)

tan
[

1
2
(ψj − ψ̃(t))

]
, for j ∈ {1, 2, ..., N},

where ρ̃(t) ∈ (0, 1) and ψj are constants.
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Next, new variables (φ, ρ, ψ) are introduced by considering

φ̃ = φ + π, ρ̃ =
2ρ

1 + ρ2 , ψ̃ = ψ + π

and, hence, the above transformations become:

tan
[

1
2
(θj(t)− φ(t))

]
=

√√√√√1 + 2ρ

1+ρ2

1− 2ρ

1+ρ2

tan
[

1
2
(ψj − ψ(t))

]

=

√(
1 + ρ

1− ρ

)2
tan
[

1
2
(ψj − ψ(t))

]
=

1 + ρ

1− ρ
tan
[

1
2
(ψj − ψ(t))

]
. (A1)

We will now present a method of obtaining the system of three differential equations
satisfied by the new variables (φ, ρ, ψ).

Using basic mathematical tools, it can be shown that the transformation (A1) is equiv-
alent to the Möbius-type transformation [34]:

ei(θj−φ) =
ρ + ei(ψj−ψ)

ρei(ψj−ψ) + 1
, for j ∈ {1, 2, ..., N}, (A2)

where the argument t of the functions has been dropped for simplicity.
Differentiating with respect to t in (A2), we obtain:

i
(dθj

dt
− dφ

dt

)
ei(θj−φ) =

dρ
dt

(
1− e2i(ψj−ψ)

)
− i
(
1− ρ2) dψ

dt ei(ψj−ψ)(
ρei(ψj−ψ) + 1

)2 (A3)

Based on (4) and (A2), Equation (A3) becomes:

i
(

ω + Im[He−iθj ]− dφ

dt

)
ρ + ei(ψj−ψ)

ρei(ψj−ψ) + 1
=

dρ
dt

(
1− e2i(ψj−ψ)

)
− i
(
1− ρ2) dψ

dt ei(ψj−ψ)(
ρei(ψj−ψ) + 1

)2 (A4)

Furthermore, we express:

Im[He−iθj ] = Im[He−i(θj−φ)−iφ] = Im[He−iφe−i(θj−φ)] =

= Im[He−iφ]Re[e−i(θj−φ)] + Re[He−iφ]Im[e−i(θj−φ)],

where, based on (A2) and denoting for simplicity δj = ψj − ψ, we have:

Re[e−i(θj−φ)] = Re

[
ρei(ψj−ψ) + 1

ρ + ei(ψj−ψ)

]
=

1
2

[
ρeiδj + 1

ρ + eiδj
+

ρe−iδj + 1

ρ + e−iδj

]
=

=
1
2

[
ρeiδj + 1

ρ + eiδj
+

ρ + eiδj

ρeiδj + 1

]
=

ρ2+1
2 (e2iδj + 1) + 2ρeiδj

(ρ + eiδj)(ρeiδj + 1)
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Im[e−i(θj−φ)] = Im

[
ρei(ψj−ψ) + 1

ρ + ei(ψj−ψ)

]
=

1
2i

[
ρeiδj + 1

ρ + eiδj
− ρe−iδj + 1

ρ + e−iδj

]
=

=
1
2i

[
ρeiδj + 1

ρ + eiδj
− ρ + eiδj

ρeiδj + 1

]
= −i

ρ2−1
2 (e2iδj − 1)

(ρ + eiδj)(ρeiδj + 1)

Consequently, Equation (A4) can be rewritten as:

Im[He−iφ]

(
ρ2 + 1

2
(e2iδj + 1) + 2ρeiδj

)
− iRe[He−iφ]

ρ2 − 1
2

(e2iδj − 1)+

+

(
ω− dφ

dt

)
(ρ + eiδj)(ρeiδj + 1) = i

dρ

dt

(
e2iδj − 1

)
+
(

ρ2 − 1
)dψ

dt
eiδj (A5)

Remembering that δj = ψj − ψ, we observe that the terms of this equation can be organized

as a linear combination of 1, ei(ψj−ψ) and e2i(ψj−ψ), as follows:

e2i(ψj−ψ)
[

ρ2 + 1
2

Im[He−iφ]− i
ρ2 − 1

2
Re[He−iφ] + ωρ− ρ

dφ

dt
− i

dρ

dt

]
+

+ei(ψj−ψ)
[

2ρIm[He−iφ] + ω(ρ2 + 1)− (ρ2 + 1)
dφ

dt
− (ρ2 − 1)

dψ

dt

]
+

+

[
ρ2 + 1

2
Im[He−iφ] + i

ρ2 − 1
2

Re[He−iφ] + ωρ− ρ
dφ

dt
+ i

dρ

dt

]
= 0

The coefficients of this linear combination do not depend on j. Consequently, the equations
will be satisfied identically for all j ∈ {1, 2, . . . , N} if and only if the three coefficients
vanish independently:

ρ2 + 1
2

Im[He−iφ]− i
ρ2 − 1

2
Re[He−iφ] + ωρ− ρ

dφ

dt
− i

dρ

dt
= 0

2ρIm[He−iφ] + ω(ρ2 + 1)− (ρ2 + 1)
dφ

dt
− (ρ2 − 1)

dψ

dt
= 0

ρ2 + 1
2

Im[He−iφ] + i
ρ2 − 1

2
Re[He−iφ] + ωρ− ρ

dφ

dt
+ i

dρ

dt
= 0

It is easy to see that these three equations can be equivalently rewritten as (7)–(9).
Moreover, in system (7)–(9), the functions ω and H, which are expressed in terms of I,

can be written with respect to the new variables. Indeed, if we denote z = ρeiφ, following
the same reasoning as in [21] and using the transformation (A2), we have:

I =
1
N

N

∑
j=1

(1− cos θj)
2 =

1
N

N

∑
j=1

(
1− eiθj + e−iθj

2

)2

=
3
2
− 1

N

N

∑
j=1

(eiθj + e−iθj) +
1

4N

N

∑
j=1

[(eiθj)2 + (e−iθj)2]

=
3
2
− (zγ1 + zγ1) +

(z2γ2 + z2γ2)

4
(A6)

where

γ1 =
1

Nρ

N

∑
j=1

ρ + ei(ψj−ψ)

1 + ρei(ψj−ψ)
and γ2 =

1
Nρ2

N

∑
j=1

(
ρ + ei(ψj−ψ)

1 + ρei(ψj−ψ)

)2

. (A7)
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Appendix B. Reduction of Equations for the Infinite Dimensional Case

Again, closely following [21] and defining

Cn =
1
N

N

∑
j=1

einψj (A8)

we easily notice that C0 = 1 and C1 = 0, from the constraints (10).
Moreover, if we consider the special case of evenly-spaced constants ψj =

2jπ
N , for

j ∈ {1, 2, ..., N}, we have:

Cn =

{
0 if n mod N 6= 0
1 if n mod N = 0

Indeed, for n = kN, where k ∈ Z+, we have

CkN =
1
N

N

∑
j=1

eikN 2jπ
N =

1
N

N

∑
j=1

ei·2kjπ = 1.

On the other hand, for n = kN + p, with k ∈ Z+ and p ∈ {1, . . . , N − 1}, we have

CkN+p =
1
N

N

∑
j=1

ei(kN+p) 2jπ
N =

1
N

N

∑
j=1

(
ei 2pπ

N

)j
=

1
N

N−1

∑
j=0

(
ei 2pπ

N

)j
=

1
N

(
ei 2pπ

N

)N
− 1

ei 2pπ
N − 1

= 0.

Using the series expansion of [1 + ρei(ψj−ψ)]−1 in (A7) and the considerations above,
we have:

γ1 =
1

Nρ

N

∑
j=1

(
ρ + ei(ψj−ψ)

) ∞

∑
n=0

(−ρei(ψj−ψ))n =

=
1
N

N

∑
j=1

[
∞

∑
n=0

(−ρei(ψj−ψ))n − 1
ρ2

∞

∑
n=0

(−ρei(ψj−ψ))n+1

]

=
1
N

N

∑
j=1

[
1 +

∞

∑
n=1

(−ρei(ψj−ψ))n − 1
ρ2

∞

∑
n=1

(−ρei(ψj−ψ))n

]

= 1 +
(

1− 1
ρ2

) ∞

∑
n=1

[
1
N

N

∑
j=1

(−ρei(ψj−ψ))n

]

= 1 +
(

1− 1
ρ2

) ∞

∑
n=1

Cn(−ρe−iψ)n

= 1 +
(

1− 1
ρ2

) ∞

∑
k=1

CkN(−ρe−iψ)kN

= 1 +
(

1− 1
ρ2

) ∞

∑
k=1

[
(−ρe−iψ)N

]k

= 1 +
(

1− 1
ρ2

)
(−ρe−iψ)N

1− (−ρe−iψ)N .

By similar arguments but lengthier calculations, we deduce:

γ2 = 1 +
(

1− 1
ρ4

)
(−ρe−iψ)N

1− (−ρe−iψ)N + N
(

1− 1
ρ2

)2 (−ρe−iψ)N

[1− (−ρe−iψ)N ]2
.
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It is now easy to see that, if ρ = 1, then γ1 = γ2 = 1. On the other hand, if ρ < 1, taking
the limit as N → ∞, we have that γ → 1 and γ2 → 1. Therefore, in the infinite dimensional
case, we obtain that

I =
3
2
− (z + z) +

z2 + z2

4
and, hence, the function I becomes independent of ψ and ψj. Consequently, Equations (7) and (8)
decouple from (9). In fact, with z = ρeiφ, one has:

dz
dt

=

(
dρ

dt
+ iρ

dφ

dt

)
eiφ =

(
iωρ +

1− ρ2

2
Re[He−iφ] + i

1 + ρ2

2
Im[He−iφ]

)
eiφ =

=

(
iωρ +

1
2

He−iφ − ρ2

2
He−iφ

)
eiφ = iωρeiφ +

1
2

H − 1
2

Hρ2e2iφ =

= iωz +
H
2
− H

2
z2 = iωz + H

1 + z2

2
= i(η + κ I + 1)z + i(η + κ I − 1)

1 + z2

2
.
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