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Abstract: The article considers a hysteretic model of consumer behaviour in mono-product markets.
Demand generation with regard to an individual consumer is modeled using a non-ideal relay with
inverted thresholds. Therefore, the sales rate is defined as an analogue of the Preisach converter. The
article considers the problem of the optimal production, storage, and distribution of goods, taking
into account the hysteretic nature of the demand curve. The problem is reduced to a non-classical
optimal control problem with hysteretic non-linearities. The latter is solved using Pontryagin’s
maximum principle. The adopted economic model is based on the binary relationship of consumers
to the product: the product is bought or the product is not bought. Transitions between these states
are determined within the framework of our model only by the price of the goods; therefore, only
the operator of a non-ideal relay can accurately describe such a dependence. The article presents the
results of computational experiments illustrating the theoretical assumptions.

Keywords: hysteresis; non-ideal relay; Preisach operator; sales rate; price function; consumer be-
haviour
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1. Introduction

The production, storage, and distribution of goods is one of the most important
problems in applied economics. A large number of production models use the demand
curve, which characterizes the intention and the ability of consumers to purchase goods
produced by a particular enterprise. The demand curve is most commonly defined as a
deterministic dependence of the sales volume on the “instantaneous” parameters of the
state of the market. Such dependencies usually allow for a qualitative description of the
market dynamics over short periods of time. However, they do not take into account earlier
values of the parameters and, thus, do not account for a number of important factors,
including consumer inertia and demand shifts occurring over time [1].

1.1. Purpose/Background

A number of studies [2–6] have suggested the completion of dynamic models of socio-
economic processes with hysteretic elements. Thus, ref. [5] argues for the use of hysteretic
elements in dynamic models. Here, hysteresis relates to the sum of individual impacts of
all the participants of the market. The effect of hysteretic non-linearities on the level of
unemployment is studied in [7].
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A recent study [8] investigated the robustness of a large variety of macroeconomic
models. The authors demonstrated that non-linear operators, namely, the play operator
and the Prandtl–Ishlinskii operator, can be used to design accurate models of financial and
economic processes.

It is known that hysteresis is commonly observed in various fields of physics, chemistry,
economics, and biology. It takes place when the state of a system is determined by external
conditions at a particular moment in time, as well as at other moments in the past. In this
case, separate parts of a complex system usually exhibit strongly non-linear properties,
which affect the behaviour of the whole system. We should note that dynamics are rather
difficult to describe due to the complexity of the phase space and non-differentiability of
the corresponding operators. Nevertheless, there are a number of constructive models
of hysteretic converters which have been used effectively in the modeling of technical
systems [9–12]. The most recent studies of the problem are presented in [13,14].

A large number of studies are devoted to the problem of the optimal control of
dynamic systems that have hysteresis blocks in their composition. Thus, in [15,16], the
optimal control problem is solved for a system with two state variables, one of which has
evolution regulated by a controlled ordinary differential equation, and the other contains a
hysteresis operator (backlash, Prandtl–Ishlinski operator and Preisach operator). Using the
dynamic programming method, the corresponding Hamilton–Jacobi equation of the first
order is derived, and it is proved that the objective function is the only bounded uniformly
continuous solution of the Cauchy problem.

In a number of studies, hysteresis terms are present both in the equations of state and of
control [17,18]. Within the framework of the discrete-time approach, dynamic programming
equations are obtained and a method for their numerical solution is presented. In the case
of continuous time, the conclusion is essentially based on the concept of the derivatives of
multivalued functions. These results can be applied to systems with sensors and actuators
(for example, piezoceramic materials).

Some specific problems of mathematical physics, in particular, the diffusion problem,
are considered in [19,20]. A constructive method based on a two-parameter penalty function
is proposed. The small parameter determines the deviation of the solution in finite time
from the expected value, while the second parameter is used to approximate the main
variational inequalities. The solution to the problem of control can be obtained by taking
the limit in a doubly degenerate control system; the convergence in spatial coordinates
is observed in a strong sense and is uniform in time. Diffusion in biological systems is
discussed in [21]. In this article, the analyzed system contains three diffusion equations
describing the evolution of three biological species: prey, predator and prey food (or
vegetation). The equation for food density includes a hysteresis operator in the form of a
generalized stop. The problem of minimizing the integral functional of costs in relation to
the solutions of the above-mentioned system is examined. Some relaxation-type results for
the minimization problem are obtained and the existence of an almost optimal solution is
established. The problem of reaction diffusion control [22] is modeled by a system with
two types of control, namely distributed control functions and controls that act on part of
the boundary of the domain. The equation of state is given by the reaction-diffusion system
with the additional property that the scalar stop operator is included in the reaction rate. A
feature of the output of the conjugate system is the non-locality in time of the Hadamard
derivative of the state control operator.

Another interesting way to use hysteresis non-linearities in control problems is pro-
posed in [23]. Here the hysteresis term is introduced as a variational inequality of evolution
with a closed convex m-dimensional real arithmetic space. In this case, there are optimal
solutions, as well as the necessary conditions for optimality of the first order. In particular,
under certain assumptions about regularity, the behavior of solutions of the conjugate
system is described in detail. It is emphasized that a significant difficulty in obtaining
optimality conditions is caused by the non-differentiability of the non-linear operators
considered.
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In technical tasks, the control of elements of mechanical systems, in particular, the
mechanical transmission, is of great interest [24,25]. In some cases, the task is reduced to
eliminating the hysteresis effect in a high-precision mechanical transmission. To describe the
hysteresis behavior of a harmonic drive, a modified Bouc–Wen model is used. With the help of
coordinate transformation and feedback linearization, a mathematical model of a sequential
mechanical drive system is obtained. The reference trajectory is tracked by a controller based
on a linear quadratic controller. The relative error in tracking steady-state fluctuations tends
to zero. When using optimal control, the output signal of the harmonic drive can follow a
more complex trajectory. In a series of investigations, refs. [26–29] demonstrate the possibility
of controlling magnetostrictive and piezoelectric drives. The main task is solved in detail,
achieving a given trajectory of movement, as well as reducing vibrations.

In a recent paper [30], the problem of identifying the parameters of the Preisach con-
verter was solved using the improved particle swarm optimization method, an important
property of which is that it is not necessary to know the exact gradient of the optimized
function. Using the example of calculating the characteristics of piezoelectric actuators
(piezoelectric actuators), fast convergence, small calculation time and higher accuracy were
demonstrated compared to the classical particle swarm optimization algorithm.

The Preisach model is one of the most prominent constructive models of hysteresis [31].
It is also one of the most popular and actively developing models, and employs hysteretic
operators with stochastic parameters. Thus, [32] investigated the response of a non-linear
system to stochastic external factors, while [33] modified the said model to the threshold
numbers characterised by random, rather than deterministic variables. In [34], hysteretic
operators with stochastic parameters are discussed.

Other hysteresis models, such as the Bouc–Wen model, can also be applied in this kind
of approach. For example, in [26], the problem of controlling the drive of an atomic force
microscope driven by piezoelectric actuators was solved. It was shown that the presence
of hysteresis friction degraded the characteristics of the microscope and led to a loss of
accuracy. To eliminate estimation errors, non-simulated vibration and disturbances, a
sliding mode control with perturbation estimation was used. This method was used to
improve the performance and reliability of the system—the designed controller can provide
superior tracking performance for piezoelectric actuators with low input frequencies.
Similar ideas have been considered in recent studies [35–39].

1.2. Method

To date, several methods for solving optimal control problems have been used: the
Bellman principle, dynamic programming, and the Pontryagin maximum principle [40–44].
The first two of these require smoothness of the right parts of the dynamic system, as well
as the integrand in the target functional. The problem considered in this paper contains
strong non-linearities (i.e., non-linearities that do not allow the possibility of linearization).
It is known that the operator corresponding to the Preisach converter does not have a weak
Gâteaux derivative. Therefore, the Pontryagin maximum principle is used to solve the
problem, where smoothness is not necessary [45].

It should be noted that a number of issues related to optimal control leading to non-
classical variational problems have previously been considered by various authors. Further
development of the theoretical foundations of control methods for complex systems has been
aimed at the introduction of stochastic control and stochastic filtering of dynamic systems,
and the construction of general methods for solving non-classical variational problems.

The adopted economic model is based on the binary relationship of consumers to the
product: the product is bought or the product is not bought. Transitions between these
states are determined within the framework of our model only by the price of the goods;
therefore, only the operator of a non-ideal relay can accurately describe such a dependence.
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1.3. Results and Conclusions

In this article, we consider the problem of the optimal production, storage, and distri-
bution of goods, taking into account the hysteretic nature of the demand curve. Namely,
the problem is considered with regard to the demand curve determined by means of the
Preisach converter with an inverted individual relay. With certain limitations imposed on
the parameters, the problem has a single solution.

To use the proposed model for the description of real economic processes, a method
for identifying the model parameters is required. This requires statistical studies of the
attitudes of individual consumers to certain goods; that is, each potential consumer needs
to compare, by means of a survey, the threshold values of the price at which the goods
either cease to be purchased or begin to be purchased. However, in this paper, we solve
the problem associated with modeling hysteresis effects in economic relations, and also
consider a relatively simple problem of optimizing the trade and production strategy of
producers under the conditions of the hysteresis function of demand.

2. Non-Ideal Relay

To describe hysteresis non-linearity, special functional operators are introduced. This
approach to describing the hysteretic behaviour of systems was suggested and actively
developed by M. A. Krasnosel’skii and A. V. Pokrovskii [46]. The models of hysteretic
operators are defined on the space of continuous functions, and the dynamics of these
converters are described by the relations “input state” and “output state”.

Let R[α, β, x0, t0] denote a hysteretic converter corresponding to the non-ideal relay
with thresholds α and β, where x0 ∈ {0, 1} is the initial state of the converter and t0 is the
initial moment. The state space of the non-ideal relay is a set of two elements {0, 1}. The
input of the system is a function u(t), which is continuous, when t > t0. The output of the
system is a step function x(t) determined by the operator relation

x(t) = R[α, β, x0, t0]u(t). (1)

The initial state x0 of the converter has to comply with the following condition:

x0 =

{
0, if u(0) 6 α,
1, if u(0) > β.

(2)

When α 6 u(0) 6 β is satisfied, x0 can take any value belonging to the set {0, 1}. The
output values x(t), when the input u(t) is continuous for t ∈ (t0, ∞) with any t = τ, are
determined according to the following rule:

R[α, β, x0, t0]u(τ) =


x0, if ∀t ∈ [t0, τ] : [α < u(t) < β],

1, if ∃t′ ∈ [t0, τ) : [u(t′) > β] ∧ {∀t ∈ [t′, τ] : [u(t) > α]},
0, if ∃t′ ∈ [t0, τ) : [u(t′) 6 α] ∧ {∀t ∈ [t′, τ] : [u(t) < β]}.

(3)

Thus, the output takes the value of [t1, t2], if either x(t1) = 0 and u(t) 6 α with
t ∈ [t1, t2], or x(t1) = 1 and u(t) > β with t ∈ [t1, t2]. We can say that the relay is on, when
the output is 1. Otherwise the relay is considered to be off. A detailed description of the
non-ideal relay converter and its properties is given in [46].

The Preisach converter is a continuous analogue of non-ideal relays connected in
parallel. The state space of the converter consists of pairs {u, z(α, β)}, where u is an
arbitrary value and z(α, β) is the characteristic function of the subset of the half-plane
α < β. For most applied problems, the support of the z(α, β) function belongs to a finite
set, although this is not a crucial limitation.

The output of this converter is determined by the relation:

R[z(α, β), t0, x0]u(t) =
∫∫

α<β

R[α, β, x0, t0]u(t)dαdβ. (4)
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The state space of the converter is demonstrated in Figure 1.

u(t)

1 1 1 1 1

1 1 1

1

0

0

0

0

0

0

0

0

0

0

0

α

β

Figure 1. An example of the state space of a system of non-ideal relays.

3. Modeling the Demand Curve

As we have mentioned in the Introduction, there are a large number of models that
describe—in more or less detail—the attitude of consumers to a particular good (a group
of goods). These models do not always take into account the history of such relations. In
this regard, we should note that [1,2,7] demonstrated the need to consider the ambiguity of
economic processes. In this article, we suggest a consumer demand model which reflects
the dependence of its present state on its history.

Let the sales rate P(t) (i.e., the number of goods sold per unit of time) at any particular
moment t depend on the price c(t) of the goods and its previous values. We note that con-
sumers’ attitude towards the goods may change over time. Let the attitude of a particular
consumer be a functionR[c(t)], which takes the values from the set {0, 1} according to the
following rule:

R[c(t)] =


1, if c(t) 6 α(t),
0, if c(t) > β(t),
0 or 1, if α(t) < c(t) < β(t),

(5)

According to (5), the functionR[c(t)] equals 1, if the consumer purchases the goods at
the moment t. Otherwise the function equals 0. Let us consider R[c(t)] to be the output
of a converter R[α(t), β(t), R0], analogous to the non-ideal relay with inverted thresholds
α, β, which receives an input signal c(t) with t ∈ [0, T], where R0 is the initial state of
the converter. The attitude towards the goods changing over time can be modeled as
dependencies α = α(t), β = β(t).

The relations between the input and the output of the converter R[α, β, R0] are schemat-
ically shown in Figure 2.
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α β u

1

0

−1

x

Figure 2. The input-output relation of the converter R[α, β, x0, t0] with thresholds α and β. The
hysteresis loop is reverse (i.e., it is directed clockwise) as compared to the classical definition of a
non-ideal relay.

Let γi denote the purchase rate of the i-th consumer, i = 1, . . . , n. Then, for the system
of n consumers, the sales function will be

P(c(t)) =
n

∑
i=1

γiR[αi, βi, R0,(i)]c(t). (6)

Of practical importance is the case with a large number of individual consumers
n→ ∞, when the impact of each participant of the market is γi → 0. In this case, the sales
function should be equal to the continuous limit of the sum (6):

P(c(t)) =
∫

α<β

ω(α, β, t)dµ, (7)

with designations

ω(α, β, t) = Γ[ω0(α, β)]c(t) = R[α(γ), β(γ), R0(γ)]c(t), (8)

and γ ∈ {(α, β) : α < β}. The dependence of the measure µ = µ(t) on the time makes it
possible to update the dynamics of the attitude of groups of consumers towards the goods.

The converter (7) is analogous to the Preisach converter [46,47] with inverted 1 s and 0 s.

4. A Production Model

Below, we suggest that the support of the measure µ is contained in the triangle of the
half-plane β > α, described by the inequalities α > 0, β < a.

In the simplest case, the problem of profit maximisation at the current time is set as
follows: it is necessary to determine the price function c∗(t) on the time interval [0, T] so
that at the moment t = t1, the profit

c(t)P(t)
∣∣
t1
→ max. (9)

Let us assume that ∀t ∈ [0, T] : 0 < c(t) 6 a, i.e., the price of the goods is not negative
and is limited from above by a.

This problem can be solved using the following function:

c∗(t) =


a
τ
(τ − t), if 0 6 t < τ,

a
2(t1 − τ)

(t− τ), if τ 6 t 6 t0.
(10)
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The graph of the function c∗(t) is shown in Figure 3a.

a/2

a

τ tt1

c∗(t)

0

a

1 1 1 1
1 1 1 1
1 1 1
1 1

0 0
0

α

β

a

aa/2

b

Figure 3. (a) The graph of the function c∗(t), demonstrating the profit maximisation c(t)P(t) at the
moment t1 > 0; (b) The state of the Preisach operator at the moment t = t1. The region of the plane
(α, β), where the elementary relays are on, is filled with colour.

Indeed, at the moment t = τ, the goods’ price is maximum c(τ) = a, and all individual
relays are off, which corresponds to the lack of demand. On the segment [τ, t1], the price

monotonously decreases, and the demand P(c(t)) = a2

2
− c2

2
grows (see Figure 3b). As we

can see, when t = t1, the profit reaches its maximum, since the derivative

d(cP(c))
dc

=
d
dc

(
c
(

a2

2
− c2

2

))
=

1
2

(
a2 − 4c2

)
(11)

equals zero, when c =
a
2

, and the second derivative
d2(cP(c))

dc2 = −4c < 0, since the price
is not negative.

Thus, for a rather simple production model, the profit maximisation is obtained
through raising the price to its maximum level and then monotonously reducing it to
a/2. However, a detailed analysis of a more realistic production model requires the use of
optimal control methods [45,48].

Let us consider a problem of the optimal planning of the production process based on
a hysteretic demand curve. For this, we should introduce the following designations (see
Figure 4):

Z(t)—the number of goods at the manufacturer’s warehouse,
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V(t)—the number of goods purchased by the consumer,
U(t)—the production rate, i.e., the number of goods supplied to the warehouse per

unit of time,
P(t)—the sales rate, i.e., the number of goods sold per unit of time,
k1—consumption coefficient,
k2—coefficient characterising the cost of storage per goods item,
c(t)—price per goods item.

U(t) P(t)

production
rate

sales rate
production Z(t)

warehouse
V(t)

consumers

consumption

k1V(t)

Figure 4. A production and consumption model.

Let us assume that the production cost is 1. The system of integro-differential equations
used to model the problem of production, storage, and distribution of goods is presented
as follows:

Ż = U − P, (12)

V̇ = P− k1V, (13)

P(t) = Z(t)
∫

α<β

ω(α, β, t)dαdβ, (14)

ω(α, β, t) = Γ[ω0(α, β)]c(t), (15)

Z(0) = V(0) = 0. (16)

To solve the production optimisation problem, we need to introduce the following
additional assumptions:

(1) 0 6 U(t) 6 U0 — the presence of the threshold U0 of the maximum production rate;
(2) 0 < c(t) 6 a — the price of the goods is not negative and is limited by a;
(3) the production cost equals 1 (by redetermining the unit of measurement of the

number of goods, we can set the cost arbitrarily, provided that it is not negative).
Let us now consider the functional equal to the total income over a finite time interval

T, taken with the opposite sign:

I(T) =
∫ T

0
[−c(t)P(t) + U(t) + k2Z(t)]dt. (17)

Now we need to determine the conditions which allow for the maximum func-
tional I(T).

According to Pontryagin’s maximum principle [45,48], to reach the minimum of the
functional (17), we need the maximum of the function H(p1, p2, Z, V, P, U, c), called the
Hamiltonian of system (16):

H(p1, p2, Z, V, P, U, c) = p1(U − P) + p2(P− k1V)− (−cP + U + k2Z) =

= (p1 − 1)U + (p2 − p1 + c)P− k1 p2V − k2Z. (18)

Since function H is linear along the argument U, max H(p1, p2, Z, V, P, U, c) =
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H(p1, p2, Z, V, P, U∗, c∗) is reached when

U∗(t) =


0, if p1(t) < 1,
U0, if p1(t) > 1,
∀U, if p1(t) = 1.

(19)

Let us describe the conditions, when summand A(c) ≡ (p2 − p1 + c)P(c) makes
an extreme contribution to the Hamiltonian (18). (1) Let p2 − p1 + c > 0 be true. Then,
A→ max when P = (a2 − c(t)2)/2 (see Figure 5a).

dA(c)
dc

=
3
2

c2 − c(p1 − p2)−
1
2

a2. (20)

1 1 1 1
1 1 1 1
1 1 1
0 0
0 0
0 0
0

α

β

a

ac(t)

a

0 0 0 1
0 0 0 1
0 0 0
0 0 0
0 0
0 0
0

α

β

a

ac(t)

b

Figure 5. (a) The extreme value of A(c) when p2 − p1 + c > 0; (b) the extreme value of A(c) when
p2 − p1 + c < 0.

The derivative equals zero when

c± =
1
3
[p1 − p2 ±

√
(p2 − p1)2 + 3a2]. (21)

According to the model, the price belongs to segment [0, a]. Therefore, we need only

the positive root c+ =
1
3
[p1 − p2 +

√
(p2 − p1)2 + 3a2]. With all the possible values of
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p1, p2, a, this root belongs to segment [0, a] and corresponds to the maximum of the function

A(c+), since
d2 A(c)

dc2

∣∣∣
c=c+

< 0.

(2) Let p2 − p1 + c < 0 be true. Then, as shown in Figure 5b, A → max when
P = (a− c)2/2.

A(t) = (p2 − p1 + c)
(a− c(t))2

2
, (22)

dA(c)
dc

=
1
2
(a− c)2 − (a− c)(p2 − p1 + c). (23)

The derivative equals zero when the price value equals either c = a, or

c =
1
3
[a− 2(p2 − p1)]. (24)

Thus, the maximum of the Hamiltonian is reached at a certain c∗ ∈ [0, a], which
satisfies the condition:

c∗ =


1
3
[p1 − p2 +

√
(p2 − p1)2 + 3a2], if p2 − p1 + c∗ > 0;

1
3
[a− 2(p2 − p1)], if p2 − p1 + c∗ < 0.

(25)

Taking into account the determined value of c∗, we obtain:

max
{p1,p2,Z,V,P,U,c}

H = H∗(p1, p2, Z, V)
∣∣∣
c(t)=c∗

= (p1 − 1)U∗ + (p2 − p1 + c∗)P− k1 p2V − k2Z. (26)

According to Pontryagin’s maximum principle, the unknown functions p1(t) and
p2(t) satisfy differential equations

ṗ1(t) = −
∂H∗

∂Z
= k2 − (p2 − p1 + c∗)

∫
α<β

ω(α, β, t)dαdβ, (27)

ṗ2(t) = −
∂H∗

∂V
= k1 p2(t) (28)

when t ∈ [0, T] with boundary conditions p1(T) = p2(T) = 0.
As can be seen, the solution to function p2(t) is trivial: p2(t) ≡ 0 for any t ∈ [0, T].

Therefore, the dynamics of the integro-differential system (16) are determined by the
evolution of the function p1(t) over time. The function, in turn, depends significantly on
the output values of the hysteretic converter.

Relative to p1, the equation is presented as:

ṗ1(t) = k2 − (c∗ − p1)
∫

α<β
ω(α, β, t)dαdβ. (29)

Let us assume that the storage cost is low compared to the production cost and the
revenues: k2 = 0. In this case, the dependence of the parameter p1 on the time in the
interval [0, T] is determined by the differential equation ṗ1(t) = (p1(t)− c∗(t))

∫
α<β

ω(α, β, t)dαdβ,

p1(T) = 0,
(30)

where

c∗ =


1
3

(
p1 +

√
p2

1 + 3a2
)

, if p1 < c∗,

1
3
(a + 2p1), if p1 > c∗.

(31)
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According to (19), when t = 0, the initial condition must satisfy the inequality
p1(0) > 1. Indeed, we would otherwise observe the equality U∗(0) = 0, which, ac-
cording to the model, would mean that the production had not begun. Since the initial
moment for our model is the start of the production process, the inequality p1(0) > 1 is
true at the start of the production process.

The obtained inequality, in turn, imposes an important limitation on the relation (31):
in the time interval [0, T] only p1 < c∗ is implemented. Let us prove it.

Let us assume the opposite: ∃t′ ∈ [0, T] : p1(t′) > c∗(t′). Then, at this point

c∗(t′) =
1
3
(a + 2p1) or

1
3
(a− c(t′)) +

2
3
(p1(t′)− c(t′)) = 0. (32)

In (32), the second summand is positive, which means the first summand (a− c(t′))/3
< 0. This contradicts the idea of price c(t) in our model, since the price is limited over the
whole observation range: ∀t ∈ [0, T] : 0 < c(t) 6 a. We can, thus, conclude that, for our
model, only the first equation from (31) is implemented, namely:

c∗ =
1
3

(
p1 +

√
p2

1 + 3a2
)

. (33)

Being inserted in (30) it results in:
ṗ1(t) =

1
3

(
2p1(t)−

√
p2

1(t) + 3a2
) ∫

α<β ω(α, β, t)dαdβ,

p1(T) = 0,
1 < p1(0) < a.

(34)

Therefore, we come to the following conclusion: in the production model (16) for any
finite time moment T in the interval [0, T], there is a single solution c∗(t) to the system (34),
which is strictly monotonous on [0, T].

Indeed, we can easily see that (∀p1 < a) : 2p1(t) −
√

p2
1(t) + 3a2 < 0. Therefore,

extreme values of the functional I(T) are implemented by the function p(t), for which
ṗ1(t) < 0 and p(T) = 0. It is obvious that this function monotonously decreases from a
particular initial value p1(0) < a to zero. It follows from (31) that the value of p1 on the
right border corresponds to the price at the final moment: c(T) = a/

√
3.

This proves the existence and the strict monotony of the function p1(t) on [0, T]. Then,
according to (33), the price is a strictly monotonous function of p1(t), which proves the
existence of c∗ and its monotony in a strict sense. The uniqueness of c∗ stems from the
uniqueness of the solution to the ordinary differential Equation (34) [49,50]. Therefore, for
any final moment T system (34) has a single solution c∗(t).

5. Results

We should point out that system (34) has a boundary condition corresponding to the
end of the modeling time T. Therefore, the value of p1(0) is unknown. Unfortunately, the
system (34) cannot be solved numerically by reversing the time axis due to the asymmetry
of the Preisach converter with regard to the t parameter.

However, when t = T, the boundary condition can be satisfied using the following
method: based on (34), we select the initial value m ≡ p1(0) ∈ [1, a] and perform the

numerical solution. We can thus determine p1(T)
∣∣∣
m

.

Let us consider the mapping UT : p(0) ≡ p1(0)→ p1(T). Since ∃p(−) : (UT p(−) < 0) and
∃p(+) : (UT p(+) > 0), the continuity of the mapping UT results in ∃p(∗)1 : (UT p(∗)1 = 0) [49,50].
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Due to the monotony of p1(t) over the entire analysed segment, we can use a binary
search to find the single root of the equation

p1(T)
∣∣∣
m
= 0. (35)

The corresponding root m determines the initial value of the studied function at the
moment t = 0, matching the right border.

As we can see, the initial value of p1(0) depends on the parameters of the problem,
namely on the state of the Preisach converter.

For the numerical experiments, we selected the following values of the dynamic
system: a = 10, U0 = 1, k1 = 1.0, T ∈ {10, 50}.

Figures 6–9 demonstrate the initial state of the hysteretic converter, corresponding to
the demand at the moment t = 0 and the function p1(t) and c∗(t). The graphs show that,
at the final moment, p1(t) turns zero and c∗(T) takes the value a/

√
3. The graphs show the

following functions: U(t) (production rate), Z(t) (the number of goods at the warehouse),
V(t) (the number of goods purchased by consumers), P(t) (the sales rate).
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2 4 6 8 10

t
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V(t), P(t)

e

0.00

Figure 6. (a) Initial state; (b) dependence p1(t); graphs of the function p1(t), and p1(t)± 0.1 are given
for clarity; (c) the price function depending on the time; (d) functions U, Z depending on the time;
(e) functions V, P depending on the time. Values of the parameters of the dynamic system: a = 10,
U0 = 1, T = 10, k1 = 1.0.

The number of elementary relays in the analogue of the Preisach converter in our
numerical calculations was N = 210. The monotonous decrease in the price with the
growth of t results in the monotonous increase in P(c(t)). Due to the finiteness of
N, P(c(t)) changes rapidly at some points in time, which results in rapid changes in
P(t) = Z(t)P(c(t)). The behaviour of P(c(t)) described above occurs after the “activation”
of each of the subsequent lines of individual relays of the converter (see Figure 5b).

Figures 6–9 demonstrate that, at the time of production ({t : U(t) > 0}), the number of
goods at the warehouse and the number of good purchased by consumers grow. When the
production process stops, the derivative of the function Z(t) becomes negative, while the
growth of V(t) continues. However, V(t) soon reaches its maximum and begins to decrease
monotonously due to the negative impact of the goods consumption k1V(t) in (13).
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Figure 7. (a) Initial state; (b) dependence p1(t), graphs of the functions p1(t)± 1.0 are given for clarity;
(c) the price function depending on the time; (d) functions U, Z depending on the time; (e) functions
V, P depending on the time. Values of the parameters of the dynamic system: a = 10, U0 = 1, T = 50,
k1 = 1.0.
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Figure 8. (a) Initial state; (b) dependence p1(t), graphs of the functions p1(t)± 0.5 are given for clarity;
(c) the price function depending on the time; (d) functions U, Z depending on the time; (e) functions
V, P depending on the time. Values of the parameters of the dynamic system: a = 10, U0 = 1, T = 10,
k1 = 1.0.

Let us also consider the value Q(T) = −I(T)
T

, showing the profit of the manufacturer
per unit of time. The dependence of this value on the sales duration is presented in Figure 10.
The monotonous dependence demonstrates that the relative profit grows with an increase
in the duration of the production process.
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Figure 9. (a) Initial state; (b) dependence p1(t), graphs of the functions p1(t)± 1.0 are given for clarity;
(c) the price function depending on the time; (d) functions U, Z depending on the time; (e) functions
V, P depending on the time. Values of the parameters of the dynamic system: a = 10, U0 = 1, T = 50,
k1 = 1.0.
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Figure 10. Dependence of Q on the duration of sales T. Values of the parameters of the dynamic
system: a = 10, U0 = 1, k1 = 1.0

6. Conclusions

The article proposes a model of demand generation based on the hysteretic approach.
The attitude of consumers towards the goods was modeled using an operator analogous to
the operator of a non-ideal relay with inverted thresholds. This model makes it possible to
take into account the history of consumers’ attitudes at a finite time interval. The analogue
of the said model for a finite number of consumers (when their number approaches infinity)
is the Preisach converter, whose state space consists of characteristic functions of the
half-plane {α < β} of a non-classical type and determines the clockwise direction of the
hysteresis loop. In this article, we considered the problem of the optimal production,
storage, and distribution of goods on mono-product markets, taking into account the
hysteretic nature of the demand curve. The problem was reduced to a non-classical optimal
control problem with hysteretic non-linearities. The latter was solved using the Pontryagin’s
maximum principle. The study demonstrated that, with certain limitations imposed on
the parameters, the problem has a single solution. The article presents model examples
illustrating the search for an optimal solution to the studied problem.
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Finally, we note that the results obtained can be used in solving optimization problems
related to competition in single-commodity markets. It is also important to study open
economic systems under the conditions of hysteresis behavior of economic agents.
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