
Citation: Coban, M.; Tezcan, S.S.

Feed-Forward Neural Networks

Training with Hybrid Taguchi Vortex

Search Algorithm for Transmission

Line Fault Classification. Mathematics

2022, 10, 3263. https://doi.org/

10.3390/math10183263

Academic Editors: Xinchao Zhao,

Xingquan Zuo, Yinan Guo and

Kunpeng Kang

Received: 17 August 2022

Accepted: 6 September 2022

Published: 8 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Feed-Forward Neural Networks Training with Hybrid Taguchi
Vortex Search Algorithm for Transmission Line Fault Classification
Melih Coban 1,2,* and Suleyman Sungur Tezcan 2

1 Department of Electrical Electronic Engineering, Bolu Abant Izzet Baysal University, Golkoy,
Bolu 14030, Turkey

2 Department of Electrical-Electronic Engineering, Gazi University, Maltepe, Ankara 06570, Turkey
* Correspondence: melihcoban@ibu.edu.tr or melih.coban@gazi.edu.tr

Abstract: In this study, the hybrid Taguchi vortex search (HTVS) algorithm, which exhibits a rapid
convergence rate and avoids local optima, is employed as a new training algorithm for feed-forward
neural networks (FNNs) and its performance was analyzed by comparing it with the vortex search
(VS) algorithm, the particle swarm optimization (PSO) algorithm, the gravitational search algorithm
(GSA) and the hybrid PSOGSA algorithm. The HTVS-based FNN (FNNHTVS) algorithm was applied
to three datasets (iris classification, wine recognition and seed classification) taken from the UCI
database (the machine learning repository of the University of California at Irvine) and to the 3-bit
parity problem. The obtained statistical results were recorded for comparison. Then, the proposed
algorithm was used for fault classification on transmission lines. A dataset was created using 735 kV,
60 Hz, 100 km transmission lines for different fault types, fault locations, fault resistance values and
fault inception angles. The FNNHTVS algorithm was applied to this dataset and its performance was
tested in comparison with that of other classifiers. The results indicated that the performance of the
FNNHTVS algorithm was at least as successful as that of the other comparison algorithms. It has
been shown that the FNN model trained with HTVS can be used as a capable alternative algorithm
for the solution of classification problems.

Keywords: fault classification; HTVS algorithm; optimization; training feed-forward neural networks

MSC: 65K10; 68T07

1. Introduction

An artificial neural network (ANN) is a computational model based on the human
nervous system and it is a useful modeling tool. For this reason, ANNs have been re-
searched with interest in many disciplines such as engineering, finance, technology, etc.
ANN structures inspired by biological neural networks have been developed and used in
classification [1–3], signal processing [4,5] and prediction tasks [6–8], as well as in various
other studies [9–12]. In the successful use of an ANN, it is important to choose the training
algorithm, the activation function in the neurons, the neural network structure and the
parameters (weights and biases) correctly. The training algorithms used in the training of
networks aim to create a suitable network structure for the problem by finding the optimal
weights and bias parameters. For example, studies have been conducted in an attempt
to find the optimal weights and biases by keeping the network topology and activation
function constant [13–15].

There is a need for a training set that includes suitable features for network training.
The parameters of the network are regulated by the training algorithms using the training
data [16]. In this context, the main purpose of network training is to ensure harmony
between network output and real output by means of training algorithms.

There are many algorithms and methods in the literature that can be used in ANN train-
ing. The most commonly used mathematical methods are the back-propagation (BP) [17],

Mathematics 2022, 10, 3263. https://doi.org/10.3390/math10183263 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10183263
https://doi.org/10.3390/math10183263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9528-7187
https://orcid.org/0000-0001-6846-8222
https://doi.org/10.3390/math10183263
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10183263?type=check_update&version=1

Mathematics 2022, 10, 3263 2 of 19

gradient descent (GD) [18], conjugate gradient (CG) [19] and Levenberg–Marquardt (LM)
methods [20]. Many heuristic algorithms can be used to construct the appropriate network
in FNN training.

In [14], the PSOGSA algorithm was proposed for FNN training. The obtained results
were compared with the PSO-based FNN (FNNPSO). It has been observed that the PSOGSA-
based FNN (FNNPSOGSA) algorithm produces better results compared to the PSO-based
FNN (FNNPSO) and GSA-based FNN (FNNGSA) algorithms.

A study was conducted to investigate the effectiveness of the use of the VS algorithm in
FNN training [13]. In [13], the performance of the VS-based FNN (FNNVS) was compared
with the performance of an FNN trained with other optimization algorithms using different
classification problems. The obtained results showed that the VS algorithm can be used in
FNN training. Furthermore, the discrete-continuous version of the vortex search algorithm
was used to determine the sizes and locations of PV sources [21]. In [22], the optimal
selection of conductors in three-phase distribution networks was performed through the
use of a discrete version of the vortex search algorithm.

It can be used in models obtained as a result of hybridizing classical training algo-
rithms and heuristic optimization algorithms in ANN training. In [23], a new method
was presented, based on hybridizing the artificial bee colony (ABC) algorithm and the
LM algorithm (ABC-LM). The authors carried out this study to prevent the LM algorithm
from getting stuck on local minimums and the ABC algorithm converged slowly to global
minimums.

Heidari et al. [24] presented a stochastic training algorithm in their study. They
suggested that the grasshopper optimization algorithm (GOA) performed well in the
solution of optimization problems and could also be used in the training of multilayer
perceptron (MLP) neural networks. The GOAMLP model was compared with other efficient
algorithms using five different classification problems. The authors stated that the use of
GOAMLP contributed to obtaining accurate classification performance.

In [25], the dragonfly algorithm (DA) was used in FNN training. Experiments were
conducted on classification problems and a civil engineering problems. The obtained
results showed that the DA was quite successful in FNN training. Additionally, they tried
to emphasize the avoidance of the local optima.

In [26], weights and biases parameters of the FNN were optimized by means of the
whale optimization algorithm (WOA). Within the scope of the study, comparisons were
made with different algorithms through classification problems. The authors stated that
it performed better in terms of its avoidance of the local optimum and its convergence
rate. In addition to the studies mentioned above, other studies have been conducted
using optimization algorithms for ANN training. These include studies of the krill-herd
algorithm (KHA) [27], the cuckoo search (CS) algorithm [28] and the the symbiotic organism
search (SOS) algorithm [29]. Table 1 presents some algorithms used in FNN training. The
main purpose of these studies was to train the FNN structure in the best way. The main
difference between these studies is that they used different algorithms from one another.
The algorithm presented in this study is different from these, and it was also used for
transmission line fault classification.

Mathematics 2022, 10, 3263 3 of 19

Table 1. Brief summary of algorithms used in the literature for FNN training.

Reference Algorithm

Faris, H. et al., 2016 [1] Multi-Verse Optimizer
Sag, T. et al., 2021 [13] Vortex Search Algorithm
Mirjalili, S. et al., 2012 [14] Hybrid PSO-GSA algorithm
Pashaei, E. et al., 2021 [15] Enhanced Black Hole Algorithm
Hagan, M.T. et al., 1994 [20] Marquardt Algorithm
Ozturk, C. et al., 2011 [23] Hybrid Artificial Bee Colony Algorithm
Heidari, A.A. et al., 2019 [24] Grasshopper Optimization Algorithm
Gulcu, S., 2022 [25] Dragonfly Algorithm
Aljarah, I. et al., 2018 [26] Whale Optimization Algorithm
Lari, N.S. et al., 2014 [27] Krill-Herd Algorithm
Jiao-hong, Y. et al., 2014 [28] Cuckoo Search Algorithm
Wu, H. et al., 2016 [29] Symbiotic Organisms Search Algorithm
Zhang, J.R. et al., 2007 [30] Hybrid PSO-BP Algorithm
Mirjalili, S. et al., 2014 [31] Biogeography-based Optimizer

To the best of our knowledge, this is the first study conducted on HTVS-based FNN
training. In this study, our main purpose was not to find the most suitable FNN structure
for a test problem or to obtain the smallest error value that could be achieved. Rather,the
primary purpose of this study was to present the use of the HTVS algorithm [32] in FNN
training and to compare its performance with that of the VS [33], PSO [34], PSOGSA [14] and
GSA [35]. Therefore, 3-bit parity, iris classification, wine recognition and seed classification
benchmark datasets were used for performance comparisons. In order to show that the
HTVS algorithm had a competitive character compared to other algorithms used in FNN
training, tests were conducted using different hidden neuron numbers in the FNN structure.

The second main purpose of the study was to show that the proposed algorithm can
be used in fault classification on transmission lines. For this purpose, a transmission line
of 735 kV, 60 Hz and 100 km longwas modeled as frequency-dependent with the help of
Matlab/Simulink. Fault data were produced and recorded on the modeled transmission
line. Using these data, the FNNHTVS algorithm and the optimization algorithm-based
FNNVS, FNNPSO, FNNPSOGSA and FNNGSA algorithms were compared. Additionally,
the performance of the proposed algorithm was compared with that of classifiers such
as a support vector machine (SVM), the K-nearest neighbor (KNN) method and an FNN
with LM and Naive Bayes (NB). The results showed that the FNNHTVS algorithm was
quite successful.

The main contributions of this study are briefly listed as follows.

• The HTVS algorithm is presented for the first time as an alternative algorithm to
overcome slow convergence and local optimum problems in FNN training.

• The effectiveness of the HTVS algorithm in FNN training is demonstrated.
• It has been proven that the FNNHTVS structure can achieve results comparable to

and better than those of other successful algorithms in classification studies.
• It has been shown that the FNNHTVS algorithm can be used as an alternative algo-

rithm for transmission line short-circuit fault classification tasks.

The remainder of this paper is organized as follows. In Section 2 we explain the basics
concept of the FNN, the HTVS algorithm and FNN training using HTVS. In Section 3 we
present the experimental results and a discussion of the performance of the algorithms. In
Section 4 we present an evaluation of the performance of FNNHTVS in fault classification.
In Section 5, we present our conclusions.

2. Basic Principles
2.1. Feed-Forward Neural Network

FNNs are neural networks that have forward data flow. They are frequently used in
classification and regression problems. Neurons are represented as processing units for
FNNs. In the structure of each neuron, there are activation functions that may be radial,

Mathematics 2022, 10, 3263 4 of 19

linear, sigmoid, etc. Neurons generate output data based on input data using activation
functions. In FNNs, neurons in each layer are fed only by the neurons of the previous layer.
Neurons are arranged in layers and the outputs of neurons in one layer are input to the
next layer over weights. The input layer transmits the information it receives from the
external environment to the neurons in the next layer without making any changes [36].
The first layer is the input, the last layer is the output and the layers between these two
are called hidden layers. Figure 1 presents the basic structure of a three-layer FNN. The
number of neurons in the input and output layer varies depending on the nature of the
problem. The number of hidden layers and the number of neurons in the hidden layers are
chosen according to the complexity of the problem being studied [13]. The overall goal of
network training is to minimize the difference between the target output and the achieved
output. The FNN training process is completed by updating the weights in its structure
and the bias parameters used to balance these weights in each cycle.

In1

In2

Hn1

Hn2 O2

O1

Bias Bias

Input Layer Hidden Layer Output Layer

Figure 1. General FNN structure for (2-2-2).

2.2. HTVS Algorithm

HTVS is an optimization algorithm created by hybridizing the VS algorithm and the
Taguchi orthogonal array approach (TOAA) [32]. This algorithm has shown successful
results in optimization problems [32]. For this algorithm the use of orthogonal arrays (OAs)
in the population generation phase is preferable. Since there are OAs in the structure of the
HTVS algorithm, the computational cost is slightly higher than that of VS. However, the
disadvantages of VS, such as its slow convergence and the fact that it can become trapped in
local minima, are compensated for in this way. In the HTVS algorithm, randomly generated
candidate solutions are evenly distributed in the search space via TOAA. The developed
candidate solutions are used for the VS algorithm. HTVS is an optimization algorithm that
can achieve highly effective results using fewer iterations.

The working principle of HTVS can be briefly explained as follows. Firstly, candidate
solutions are distributed through TOAA. In the OA, columns represent the parameters
that need to be optimized. Each row describes a possible combination of the level values
for these parameters. The problem size and OA columns are compatible with each other.
Secondly, OA-related level values are determined for each candidate solution in order
to improve the candidate solutions produced. Optimum level values are determined for
each candidate solution and they are selected for OA training. Finally, the optimized
candidate solutions are sent to the VS search space (circle). The best solution produced by
the candidate solutions is determined as the best of that iteration. If the solution obtained
as a result of an iteration is better than the previous results, it is saved and kept as the best
solution. These operations are performed until a specified number of iterations has been
reached. The pseudo-code of the HTVS is presented in Algorithm 1. At the beginning of the

Mathematics 2022, 10, 3263 5 of 19

algorithm, necessary definitions, such as problem boundaries, size, number of iterations,
reduction ratio coefficient, etc., are set. The desired OA is created according to the problem
dimensions. Then, candidate solutions are created and checked to see if they are within the
boundaries. Each level value is determined for each candidate solution. These level values
are associated with the OA. Optimum level values are determined for each parameter. The
level difference is reduced by means of the reduction ratio coefficient and this process
is continued until the target error value is reached. Thus, the candidate solutions are
improved. The improved candidate solutions are sent to the vortex circle for examination.
If the iteration’s best value is better than the global best value, the iteration’s best value
is selected and recorded as the global best value. Then, the radius of the vortex circle is
updated and reduced. The algorithm’s steps continue until the maximum iteration number
is reached. More detailed information about the HTVS and VS algorithms can be found
in [32,33], respectively.

Algorithm 1: HTVS Algorithm.
Start Algorithm
Define algorithm parameters;
Define problem dimensions;
Generate OA;
for max. iter. do

Shift candidate solutions into boundaries;
for Each candidate solutions do

Define Level Difference;
while Error value > Target error value do

Determine candidate solution levels;
Select optimal level;
Find improved candidate solutions;

end
end
Choose best iteration solution;
if iteration best value < global best value then

Memorized iteration best value as global best value;
end
Update circle radius;

end
End Algorithm

2.3. FNN Training Using HTVS

In this section, the basics of using the HTVS algorithm in FNN training are explained.
In this study, optimal weights and biases were selected to improve the FNN’s performance.
The activation function and FNN structure remained constant. By means of the optimum
values obtained, we ensured that the FNN reached the minimum error. In order to create
the FNNHTVS structure discussed in this article, the fitness function and encoding strategy
should be determined. A fitness function must be defined based on the mean square error
(MSE) value in the FNN output.

The fitness function is produced as in [30]. For an FNN with a structure as in Figure 2,
the fitness function is calculated by following the steps outlined below, where n is the
number of inputs, hn is the number of hidden layer nodes and on is equal to the output
number. To calculate each hidden node,

f (xl) = 1/
(

1 + exp
(
−

(n

∑
k=1

wkl · xl − bl

)))
, l = 1, 2, . . . , hn (1)

where wkl is the connection weight from input nodes to hidden layer nodes. bl stands for

Mathematics 2022, 10, 3263 6 of 19

the hidden layer node bias and xl is the lth input for the network. After calculating the
output of the hidden nodes, the output is evaluated as follows:

outm =
hn

∑
i=1

wmi · f (hi)− bm, m = 1, 2, . . . , on (2)

where wmi is the weight value from the hidden layer nodes to the output layer nodes and
bm is used to express the output layer nodes’ biases. MSE is determined as follows:

MSE =
1
ns

ns

∑
q=1

(on

∑
i=1

outz
i − tz

i

)2

(3)

where ti is equal to the real value, ns is the number of samples used for training and z
stands for an output node.

In1

In2

Hn1

Hn2

x1

x2

Input Layer

Hidden Layer

Output Layer

y1O1

x3
In3

Bias1 Bias2

w11

w12

w21

w32

w31

w22

w41

w51

b1

b2

b3

Figure 2. Candidate solutions of 3-2-1 FNN structure.

After the fitness function was created, the coding strategy was chosen. In this study,
the matrix encoding strategy, used in studies related to FNN training, was chosen. The
candidate solution matrix (CSM) consists of the combination of the four matrices described
below. Figure 2 shows the weights and biases for an FNN with a 3-2-1 topology.

CSM is performed as follows:

CSM =
[
weight1 weight′2 bias1 bias2

]
Weight1 =

[
w11 w21 w31
w12 w22 w32

]
, Bias1 =

[
b1
b2

]

Weight′2 =

[
w51
w61

]
, Bias2 =

[
b3
]

where Weight1 is the weight matrix from the input layer to the hidden layer, Bias1 is the
hidden layer node bias matrix, Weight′2 is the transpose weight matrix for from the hidden
layer to the output layer and Bias2 is the output layer node bias matrix.

After the fitness function and coding strategy are determined, a mesh structure suitable
for the data set is determined. The steps of the FNNHTVS algorithm are followed in order

Mathematics 2022, 10, 3263 7 of 19

to find the best values of the weights and biases. A flowchart diagram of the FNNHTVS
algorithm is shown in Figure 3.

Meeting end criterion?

Update HTVS parameters

according to rules
Select best CSs FNN module

Determine improved CSs

via TOAA

Return best solutions with

minimum MSE

Define algorithm

parameters
Generate CSs

Determine structure of

FNN
Start

Training

data

Yes

No

MSE

Figure 3. Flowchart of the FNNHTVS approach.

The FNN structure is determined for the classification dataset. HTVS parameters are
defined, such as the maximum iteration number, the initial range of candidate solutions,
the population size, etc. The dimensions of the problem are equal to the total number of
weights and biases. To achieve the best values of weights and biases, candidate solutions
are constructed depending on the OA and improved candidate solutions are determined.
The feed-forward calculation is first applied for each sample in the dataset. Then, the errors,
which are the difference between the calculated and desired values, are found. Finally, MSE
is calculated. The best candidate solutions (CSs) are selected and parameters are updated
according to rules. FNNHTVS continues until meeting the end criterion.

3. Validation of the FNNHTVS via Benchmark Datasets

In this section, the proposed FNNHTVS training algorithm is compared with the
FNNVS, FNNPSO, FNNGSA and FNNPSOGSA algorithms. All algorithms are run on
FNNs with the same structure. To analyze the performance of the FNNHTVS algorithm
and to compare it with other algorithms, four frequently used classification problems
were selected. These are iris classification, wine recognition, seed classification and the
3-bit parity problem. The first three of these were taken from the UCI machine learning
repository of the University of California at Irvine [37]. The fourth problem is the 3-bit
parity problem. The input and output values related to this problem are given in Table 2.

Table 2. 3-bit parity problem.

Input 000 001 010 011 100 101 110 111
Output 0 1 1 0 1 0 0 1

The problems chosen for comparison are classification problems that are frequently
used in the literature [13–15]. The features and class numbers related to the problems are
expressed in Table 3.

Table 3. Dataset information.

Problem N. of Features N. of Classes N. of Samples

3-bit parity 3 2 8
Seeds 7 3 210
Iris 4 3 150
Wine 13 3 178

The parameters common to all algorithms were kept the same. For all algorithms, the
population size and maximum iteration were set to 30 and 100, respectively. An initial

Mathematics 2022, 10, 3263 8 of 19

range of candidate solutions of [−50, 50] was preferred so that all the training algorithms
could search within a wider space. Additionally, these algorithms contain user-controlled
parameters. Table 4 presents these parameters.

Table 4. Special parameters for each algorithm.

Algorithm Parameter Value

HTVS Level difference 0.8
PSO C1 and C2 constants 2

Inertia weights [0.9, 0.5]
GSA a 20

Gravitational constant 1
Initial acceleration and mass 0

PSOGSA C′1 and C′2 constants 1
Gravitational constant 1
Inertia weights [0.9, 0.5]

In this study, a network structure with 1 input, 1 hidden and 1 output (i-h-o) layer was
selected. The Sigmoid function was determined for each node as the activation function.
The algorithms were compared using benchmark datasets for 11 different numbers of
hidden nodes. The algorithms were run until they reached the maximum number of
iterations. Each algorithm was run 30 different times for each case. MSE was chosen as the
comparison parameter and the mean, standard deviation (std. dev.) and best and worst
values of the obtained data were recorded. These recorded statistical values provided
information for the comparison. However, the Wilcoxon signed rank (WSR) pairwise
comparison test was also applied to make a stronger comparison. The WSR test was used to
determine which of the two comparing methods was superior. In this study, the statistical
significance value was 0.05 for the WSR test. For each problem, the FNNHTVS algorithm
was compared with other algorithms separately and measures of superiority, equality and
loss were noted. Detailed information about the WSR test can be found in [38].

3.1. 3-Bit Parity Problem

The 3-bit parity problem is a frequently used nonlinear problem. It is an important
problem used to measure the performance of training algorithms against nonlinear prob-
lems. In the three-input, single-output 3-bit parity problem, if the number of ones in the
inputs is odd, the output is one; if even, the output is zero. The input and output sets of
this problem are expressed in Table 2. Hn is the number of hidden nodes with Hn= 4, 5, 6,
7, 8, 9, 10, 11, 12, 15, 20, 30. For the 3-bit parity problem, a 3-Hn-1 FNN structure is used.
This structure has a total of (5Hn + 1) parameters, 4Hn weights and Hn + 1 biases, and
the parameter range is taken as [−50, 50]. Algorithms were evaluated based on the mean,
standard deviation and the best and worst value of MSE. The statistical results obtained
after 30 independent runs are shown in Table A1 .

Looking at Table A1 from a general perspective, it can be observed that the FNNHTVS
algorithm performed better than the other compared algorithms. The proposed algorithm
for all hidden nodes obtained the best mean MSE values. This indicates that it effectively
escaped the local minimum. We determined that the FNNGSA algorithm had the lowest
standard deviations, except for hidden nodes 7, 15, 20 and 30. When the best and worst
MSE values were examined, we found that the best values belonged to the FNNHTVS
algorithm. The closest follower of the FNNHTVS algorithm was the FNNVS algorithm.

Additionally, the WSR test results are presented in Table 5. The Winner column in
Table 5 shows in how many cases (11 different hidden nodes) the two compared algorithms
outperformed each other. The column specified as Equal shows the number of cases where
the algorithms could not outperform each other. As a result of the paired comparisons,
the superiority of the FNNHTVS algorithm can be observed. Within the framework of the
results, the effectiveness of the proposed training algorithm for this nonlinear problem has
been shown.

Mathematics 2022, 10, 3263 9 of 19

Table 5. WSR test results for the 3-bit parity problem.

Method Winner (FNNHTVS/Method 2) Equal

FNNHTVS vs. FNNVS 11/0 0
FNNHTVS vs. FNNPSO 11/0 0
FNNHTVS vs. FNNPSOGSA 11/0 0
FNNHTVS vs. FNNGSA 11/0 0

3.2. Iris Classification Problem

The iris dataset is the best-known and most commonly used dataset in the pattern
recognition literature [37]. The dataset consists of four inputs and three classes. The dataset
contains a total of 150 samples, fifty for each class. The first class is classified as Iris setosa,
the second class is Iris Versicolor and the third class is Iris Virginica.For the iris classification
problem, a 4-Hn-3 FNN structure is used. This structure has a total of 8Hn + 3 parameters,
7Hn weights and Hn + 3 biases, and the initial parameter range is taken as [−50, 50]. The
statistical results obtained after 30 independent runs are presented in Table A2.

Based on the MSE results shown in Table A2, the FNNHTVS training algorithm
displayed the best mean values for all cases except Hn = 30. For Hn = 30, the pro-
posed training algorithm was ranked third.FNNHTVS had the smallest values for Hn =
6, 9, 10, 12, 20, 30. For other cases, it was most often ranked third. Its performance was
competitive with that of the other compared algorithms in terms of its robust operation.
In this problem, it was observed that the FNNVS algorithm exhibited the worst standard
deviation value. In terms of the MSE values, FNNHTVS was ranked first in 7 of 11 FNN
structures with Hn = 7, 8, 9, 10, 12, 15, 30.

The pairwise comparisons are presented in Table 6. As a result of comparing FNNHTVS
and FNNVS, FNNHTVS won in nine cases and lost in one case. The lost Hn value was
determined to be 30.The two compared algorithms were not able to outperform each other
for Hn = 4. In addition, the FNNHTVS algorithm lost to the FNNPSO algorithm for
Hn = 30.

Table 6. WSR test results for the iris classification problem.

Method Winner (FNNHTVS/Method 2) Equal

FNNHTVS vs. FNNVS 9/1 1
FNNHTVS vs. FNNPSO 10/1 0
FNNHTVS vs. FNNPSOGSA 11/0 0
FNNHTVS vs. FNNGSA 11/0 0

3.3. Wine Recognition Problem

These data are the result of a chemical analysis of wines grown in the same region
in Italy and produced from three different types of grapes [37]. Within the scope of the
analysis, the amounts of 13 components found in wine types were recorded. Therefore,
the dataset consists of 13 features. Wine types are divided into three classes according to
these inputs. The dataset contains 178 samples. In the wine recognition dataset, there are
59 data samples for the first class, 71 for the second class and 48 for the third class. For the
wine recognition problem, a 13-Hn-3 FNN structure is used. This structure has a total of
17Hn + 3 parameters, 16Hn weights and Hn + 3 biases, and the initial parameter range is
taken as [−50, 50]. The statistical results obtained after 30 independent runs are presented
in Table A3.

For all Hn values, the FNNHTVS training algorithm achieved the best statistical values
and showed superior performance. The FNNVS training algorithm was also a follower of
the proposed algorithm in terms of performance. The WSR test results presented in Table 7
support the claim that the proposed algorithm outperformed the other compared algorithms.

Mathematics 2022, 10, 3263 10 of 19

Table 7. WSR test results for the wine recognition problem.

Method Winner (FNNHTVS/Method 2) Equal

FNNHTVS vs. FNNVS 11/0 0
FNNHTVS vs. FNNPSO 11/0 0
FNNHTVS vs. FNNPSOGSA 11/0 0
FNNHTVS vs. FNNGSA 11/0 0

3.4. Seed Classification Problem

This dataset, which can be used in performance evaluations of classification and cluster
analysis algorithms, includes the results of the classification of three different wheat seeds.
The dataset consists of seven inputs and three classes [39]. The dataset contains 210 samples,
70 for each class. The first class is classified as Kama, the second class is Rosa and the third
class is Canadian. For this problem, a 7-Hn-3 FNNstructure is used. This structure has a
total of 11Hn + 3 parameters, 10Hn weights and Hn + 3 biases, and the initial parameter
range is taken as [−50, 50]. The statistical results obtained after 30 independent runs are
demonstrated in Table A4.

In terms of all statistical parameters shown in Table A4, the FNNHTVS training
algorithm outperformed the other algorithms. In the WSR test, it outperformed all the
compared algorithms. The WSR test results are presented in Table 8.

Table 8. WSR test results for the seed classification problem.

Method Winner (FNNHTVS/Method 2) Equal

FNNHTVS vs. FNNVS 11/0 0
FNNHTVS vs. FNNPSO 11/0 0
FNNHTVS vs. FNNPSOGSA 11/0 0
FNNHTVS vs. FNNGSA 11/0 0

4. Performance Evaluation in Fault Classification

Short circuit fault classification is one of the important issues that are studied in
order to more accurately intervene in response to faults occurring in transmission lines.
Furthermore,some fault location algorithms need to know the fault class. This situation
increases the importance of fault classification. For fault classification, various classification
properties are obtained at first. Then, using these features and different artificial intelligence
techniques, fault types are classified.

In this section of our study, short-circuit faults occurring on a 735 kV, 60 Hz, 100 km
transmission line was modeled as frequency-dependent with the help of Matlab/Simulink.
Classification data were produced by introducing short circuit faults into the model, which
is shown in Figure 4. Classification was carried out with the FNNHTVS algorithm, the va-
lidity of which has been shown in the previous section. The performance of the FNNHTVS
algorithm in fault classification was compared not only with the FNNVS, FNNPSO, FN-
NPSOGSA and FNNGSA algorithms, but also with other classifiers (SVM, KNN, FNN with
LM and NB).

Fault

S R

Figure 4. 735-kV, 60-Hz, 100-km transmission system model.

The selected classification features need to be specific and consistent for each fault type.
In this study, post-fault one-cycle line currents and the zero sequence component of the

Mathematics 2022, 10, 3263 11 of 19

line currents were taken as the input data. In each fault condition, the three-phase currents
and the zero component were reduced by means of a certain method. In this reduction
method, the highest peak value of the three phase currents was found in any fault, then
each line current and zero component were divided by this peak value and the signals
were scaled. The transmission line model studied here was a frequency-dependent model.
Three-phase current signals and the zero sequence component for one cycle post-fault were
sampled with a sampling frequency of 20 kHz and recorded. Measurements were made
from the sending side of the transmission line. The root mean square (RMS) values of these
recorded signals were calculated. The dataset was created using different fault resistance
values, fault locations, fault types and fault inception angles. Single line to ground (SLG),
line to line (LL), line to line to ground (LLG) and three-phase symmetric ground (LLLG)
faults were generated in each phase.A random fault resistance value was chosen between
0.1 and 150 ohms. The fault inception angles (FIA) were determined as 0, 30, 45, 90 150 or
270. The fault location was chosen as 10, 20, 30, 50, 60, 80 or 90 km. A total of 250 data were
created, 175 of which were training data and 75 were test data. The proposed algorithm
and all other algorithms for comparison were run 30 different times. In each independent
run, training and test samples were randomly selected from the created dataset.

Based on the formula Hn = 2In + 1 presented in [26,31], Hn = 9 was used. In is the
input number. For the fault classification problem, an 4-9-4 FNN structure is used. This
structure has a total of 85 parameters, 72 weights and 13 biases, and the parameter range
is taken as [−50, 50]. The maximum iteration number was equal to 100 for all algorithms,
which were evaluated based on the mean, standard deviation and best and worst MSE and
accuracy values. The statistical results obtained after 30 independent runs are shown in
Table 9. When Table 9 is examined, it can be observed that the FNNHTVS algorithm had a
lower mean MSE and higher mean classification accuracy, compared to the other methods.
A box plot graph is shown in Figure 5 and a convergence curve is depicted in Figure 6. It
can be observed that the FNNHTVS algorithm had a low standard deviation and reached a
lower mean MSE value in fewer iterations. The convergence curve was obtained by taking
the average of 30 different runs. The FNNHTVS algorithm was compared with the methods
of SVM, KNN, FNN with LM and NB. When the results shown in Table 10 are examined, it
can be seen that the proposed algorithm exhibited a very competitive structure in relation
to the other classifiers.

Table 9. Statistical fault classification results for Hn = 9.

Algorithms MSE Accuracy (%)
Mean Median Std. Dev. Best Worst Mean Median Std. Dev. Best Worst

FNNHTVS 0.00944 0.01136 0.00590 6.89125 × 10−32 0.01714 99.1111 98.6666 0.99380 100 96
FNNVS 0.01489 0.01413 0.01055 1.40023 × 10−17 0.04374 98.3555 98.6666 1.31918 100 94.6666

FNNPSO 0.04263 0.03521 0.02908 0.00227 0.12496 97.9555 98.6666 2.49997 100 88
FNNPSOGSA 0.05369 0.04075 0.03241 0.01066 0.12397 97.0666 98.6666 3.21846 100 85.3333

FNNGSA 0.23634 0.24117 0.03002 0.16531 0.28993 75.0285 74.8571 10.6037 94.8571 49.7142

Table 10. Statistical results showing the accuracy of FNNHTVS and other classifiers.

Algorithms Mean Median Std. Dev. Best Worst

FNN (LM) 97.9111 98.6666 5.24012 100 70.6666
KNN 98.4762 98.6666 1.25486 100 94.6666
SVM 98.8571 98.6666 1.02151 100 97.3333
Naive Bayes 98.8804 98.6666 0.88012 100 97.3333
FNNHTVS 99.1111 98.6666 0.99380 100 96

Mathematics 2022, 10, 3263 12 of 19

FNNHTVS FNNVS FNNPSO FNNPSOGSA FNNGSA
Algorithms

0

0.05

0.1

0.15

0.2

0.25

0.3

M
S
E

Figure 5. Box plot chart for fault classification.

0 10 20 30 40 50 60 70 80 90 100
Number of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
S

E

FNNHTVS
FNNVS
FNNPSO
FNNPSOGSA
FNNGSA

Figure 6. Convergence curve for fault classification.

The accuracy values obtained in the fault classification studies may vary depending on
the sample number, data type and the transmission line model studied. Therefore, it would
be more accurate to compare the FNNHTVS algorithm with the classifiers and algorithms
used in this study. The comparison of the FNNHTVS training algorithm with the studies
related to fault classification in the literature could create a misleading impression due to the
differences in the datasets studied. Considering this situation, some studies in the literature
are presented in Table 11, along with their important features. In [40], the discrete wavelet
(DW)-based SVM method was used. The average accuracy rate was approximately the
same as for FNNHTVS. In [41], fault classification and fault location tasks were undertaken
using the multiclass SVM (MCSVM) method. In [42], it was observed that the classification
accuracy decreased as the fault resistance increased. In a study using the Poincare-based
correlation (PbC) method, the authors stated that higher classification rates were obtained
for fault resistances up to 100 and 120 ohms. Based on the results shown in Table 11, we
concluded that the FNNHTVS algorithm, with a mean accuracy rate of 99.1111%, obtained
successful results that are compatible with those presented in the literature.

Mathematics 2022, 10, 3263 13 of 19

Table 11. Comparative assessment.

Malathi, V. et al., 2010 [40] Ekici, S., 2012 [41] Mukherjee, A. et al., 2022 [42] FNNHTVS

Line length (km) 225 360 150 100
Frequency (Hz) 50 - - 60
Voltage (kV) 240 380 270 735
Method DW-SVM MCSVM PbC FNNHTVS
Fault resistance (ohm) 1–200 10–1000 0–150 0–150
FIA 36–126◦ - - 0–270◦

Predicted class 4 4 4 4
Class. accuracy (%) 99.11 99 98.143 99.1111

5. Conclusions

Many heuristic optimization algorithms have been used in the training of ANNs
to determine the optimal values of weights and biases due to factors such as the non-
linearity of problem types and their very large dimensions. In this study, the usability of
the HTVS algorithm, which has not been used for this purpose in the literature before, was
examined in the training of FNNs. The HTVS algorithm was used to train FNNs and its
performance was analyzed. It was compared with other methods on test problems and
a short circuit fault classification problem in a transmission line. In order to compare the
training performance of the algorithms, all samples of the datasets in Section 3 were used
as training data and the MSE of training error was calculated. These problems were used to
demonstrate the validity of the FNNHTVS algorithm. All algorithms were run 30 different
times for each problem. The FNN training process was stopped when the maximum
number of iterations was reached. For each optimization algorithm, the maximum number
of iterations was 100, the population size was 30, and the initial candidate solution interval
was [−50, 50]. As shown in Section 4, 70% of the data were used as a training set and the
remaining 30% were used as a test set in the fault classification problem. The performance
of the FNNHTVS algorithm was also compared with that of the SVM, KNN, FNN with
LM and NB classifiers in the task of fault classification. Performance evaluations of the
algorithms were undertaken by listing the results obtained from all stages separately. Based
on the obtained results, we concluded that the HTVS algorithm is a viable approach in the
training of FNNs for classification purposes.

The following ideas can be explored in future works:

• It may be interesting to detect fault locations using FNNHTVS;
• The HTVS algorithm could be used to train other types of ANNs; and
• The optimal structure of FNNs could be determined using HTVS, including the

number of nodes and the number of hidden layers.

Author Contributions: Conceptualization, M.C.; methodology, M.C.; software, M.C.; validation,
M.C.; formal analysis, M.C. and S.S.T.; investigation, M.C.; data curation, M.C.; writing—original draft
preparation, M.C.; writing—review and editing, M.C. and S.S.T.; visualization, M.C.; supervision,
S.S.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors wish to express their appreciation to the reviewers for their helpful
suggestions, which greatly improved the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this study:

FNN Feed-Forward Neural Network
HTVS Hybrid Taguchi Vortex Search

Mathematics 2022, 10, 3263 14 of 19

VS Vortex Search
PSO Particle Swarm Optimization
GSA Gravitational Search Algorithm
PSOGSA Particle Swarm Optimization Gravitational Search Algorithm
UCI Machine Learning Repository of the University of California at Irvine
FNNHTVS Hybrid Taguchi Vortex Search-based Feed-forward Neural Network
ANN Artificial Neural Network
BP Back-Propagation
GD Gradient Descent
CG Conjugate Gradient
LM Levenberg–Marquardt
FNNPSO Particle Swarm Optimization-Based Feed-Forward Neural Network
FNNPSOGSA PSOGSA-based Feed-Forward Neural Network
FNNGSA Gravitational Search Algorithm-Based Feed-Forward Neural Network
FNNVS Vortex Search-Based Feed-Forward Neural Network
ABC Artificial Bee Colony
GOA Grasshopper Optimization Algorithm
MLP Multilayer Perceptron
GOAMLP Grasshopper Optimization Algorithm-Based Multilayer Perceptron
DA Dragonfly Algorithm
WOA Whale Optimization Algorithm
KHA Krill-Herd Algorithm
CS Cuckoo Search
SOS Symbiotic Organism Search
SVM Support Vector Machine
KNN K-Nearest Neighbor
NB Naive Bayes
Max. Iter. Maximum Iteration
TOAA Taguchi Orthogonal Array Approach
OAs Orthogonal Arrays
MSE Mean Square Error
CSM Candidate Solution Matrix
CSs Candidate Solutions
Std. Dev. Standart Deviation
WSR Wilcoxon Signed Rank
RMS Root Mean Square
SLG Single Line to Ground
LL Line to Line
LLG Line to Line to Ground
LLLG Three phase symmetric ground
DW Discrete Wavelet
MCSVM Multiclass Support Vector Machine
PbC Poincare-Based Correlation

Appendix A. Statistical Results

Table A1. Statistical results (MSE) for the 3-bit parity problem.

Hidden Nodes Parameters FNNHTVS FNNVS FNNPSO FNNPSOGSA FNNGSA

4 mean 2.46929 × 10−2 1.74843 × 10−1 2.82043 × 10−1 2.73659 × 10−1 4.82205 × 10−1

std. dev. 4.74911 × 10−2 1.51402 × 10−1 9.26122 × 10−2 8.93695 × 10−2 1.73568 × 10−2

best 7.55448 × 10−21 1.39264 × 10−14 1.12847 × 10−1 1.24014 × 10−1 4.24011 × 10−1

worst 1.60879 × 10−1 4.58333 × 10−1 4.18578 × 10−1 4.57686 × 10−1 5.04945 × 10−1

5 mean 9.63464 × 10−3 1.26501 × 10−1 2.75948 × 10−1 2.38619 × 10−1 4.82409 × 10−1

std. dev. 3.28141 × 10−2 1.30249 × 10−1 7.29964 × 10−2 7.01424 × 10−2 1.95679 × 10−2

best 6.62840 × 10−39 5.06917 × 10−21 9.35993 × 10−2 1.27838 × 10−1 3.94271 × 10−1

worst 1.74005 × 10−1 3.75015 × 10−1 4.18856 × 10−1 4.29496 × 10−1 5.01850 × 10−1

Mathematics 2022, 10, 3263 15 of 19

Table A1. Cont.

Hidden Nodes Parameters FNNHTVS FNNVS FNNPSO FNNPSOGSA FNNGSA

6 mean 1.07093 × 10−2 1.63833 × 10−1 2.53330 × 10−1 2.35092 × 10−1 4.78239 × 10−1

std. dev. 2.93566 × 10−2 1.46849 × 10−1 9.22590 × 10−2 8.21892 × 10−2 2.08078 × 10−2

best 8.82973 × 10−27 5.81165 × 10−16 5.41118 × 10−2 1.12504 × 10−1 4.12376 × 10−1

worst 1.25001 × 10−1 4.16674 × 10−1 3.85710 × 10−1 4.10193 × 10−1 5.02324 × 10−1

7 mean 3.89732 × 10−4 1.52462 × 10−1 2.59321 × 10−1 2.13170 × 10−1 4.73091 × 10−1

std. dev. 1.94526 × 10−3 1.48291 × 10−1 7.65263 × 10−2 8.89791 × 10−2 2.78423 × 10−2

best 3.08697 × 10−43 7.01922 × 10−24 1.30899 × 10−2 6.36175 × 10−2 4.03514 × 10−1

worst 1.06678 × 10−2 5.00000 × 10−1 4.33768 × 10−1 4.52949 × 10−1 5.01753 × 10−1

8 mean 1.55137 × 10−2 1.03572 × 10−1 2.76456 × 10−1 2.16024 × 10−1 4.73142 × 10−1

std. dev. 4.06209 × 10−2 1.16576 × 10−1 1.03673 × 10−1 8.54150 × 10−2 1.92504 × 10−2

best 1.62182 × 10−39 3.26241 × 10−31 3.50026 × 10−2 7.82187 × 10−2 4.30022 × 10−1

worst 1.25328 × 10−1 3.75000 × 10−1 4.20465 × 10−1 4.10480 × 10−1 5.08010 × 10−1

9 mean 8.33333 × 10−3 1.41648 × 10−1 2.87803 × 10−1 2.14414 × 10−1 4.62800 × 10−1

std. dev. 3.17135 × 10−2 1.26004 × 10−1 8.33543 × 10−2 7.56429 × 10−2 3.88811 × 10−2

best 3.14792 × 10−40 4.13176 × 10−19 1.44202 × 10−1 7.93862 × 10−2 3.85171 × 10−1

worst 1.25000 × 10−1 3.75000 × 10−1 4.33781 × 10−1 3.66044 × 10−1 5.15740 × 10−1

10 mean 1.66667 × 10−2 1.63635 × 10−1 2.59155 × 10−1 2.24921 × 10−1 4.49624 × 10−1

std. dev. 4.32182 × 10−2 1.04256 × 10−1 9.58570 × 10−2 6.07222 × 10−2 3.93542 × 10−2

best 4.47502 × 10−48 2.34936 × 10−16 5.34658 × 10−2 7.80592 × 10−2 3.52046 × 10−1

worst 1.25000 × 10−1 3.75000 × 10−1 4.06478 × 10−1 3.48740 × 10−1 5.09670 × 10−1

12 mean 1.71400 × 10−2 1.00002 × 10−1 2.37016 × 10−1 2.02146 × 10−1 4.58024 × 10−1

std. dev. 4.31070 × 10−2 1.10837 × 10−1 8.66082 × 10−2 8.98497 × 10−2 3.15063 × 10−2

best 1.19825 × 10−62 6.10052 × 10−25 2.31919 × 10−2 7.19333 × 10−2 3.84548 × 10−1

worst 1.25000 × 10−1 3.75000 × 10−1 4.03867 × 10−1 3.95908 × 10−1 5.13763 × 10−1

15 mean 8.33333 × 10−3 1.37322 × 10−1 2.75541 × 10−1 1.63485 × 10−1 4.39196 × 10−1

std. dev. 3.17135 × 10−2 1.14827 × 10−1 8.07514 × 10−2 7.68703 × 10−2 4.77070 × 10−2

best 1.89087 × 10−75 9.42598 × 10−24 7.19125 × 10−2 2.77272 × 10−2 3.30466 × 10−1

worst 1.25000 × 10−1 3.75000 × 10−1 4.42468 × 10−1 3.38089 × 10−1 5.07388 × 10−1

20 mean 4.16667 × 10−3 1.70834 × 10−1 2.34259 × 10−1 2.49060 × 10−1 4.93816 × 10−1

std. dev. 2.28218 × 10−2 8.97992 × 10−2 8.78904 × 10−2 1.58705 × 10−1 1.58475 × 10−1

best 9.27099× 10−100 3.63070 × 10−29 5.42893 × 10−2 6.75910 × 10−4 1.09362 × 10−1

worst 1.25000 × 10−1 2.50000 × 10−1 4.37647 × 10−1 5.03318 × 10−1 8.68272 × 10−1

30 mean 8.41417 × 10−73 1.91668 × 10−1 2.69017 × 10−1 3.28764 × 10−1 5.57519 × 10−1

std. dev. 4.60821 × 10−72 1.34282 × 10−1 8.80375 × 10−2 1.54711 × 10−1 8.00067 × 10−2

best 1.69134× 10−166 8.16898 × 10−38 4.92869 × 10−2 7.18583 × 10−5 3.75444 × 10−1

worst 2.52403 × 10−71 5.00000 × 10−1 4.18743 × 10−1 6.25000 × 10−1 6.93499 × 10−1

Table A2. Statistical results (MSE) in the iris classification problem.

Hidden Nodes Parameters FNNHTVS FNNVS FNNPSO FNNPSOGSA FNNGSA

4 mean 1.14862 × 10−1 1.68751 × 10−1 2.01325 × 10−1 2.15957 × 10−1 4.64779 × 10−1

std. dev. 1.06685 × 10−1 1.50803 × 10−1 5.22724 × 10−2 3.53812 × 10−2 5.46828 × 10−2

best 2.99539 × 10−2 1.33366 × 10−2 8.45694 × 10−2 1.46577 × 10−1 3.85026 × 10−1

worst 3.65792 × 10−1 3.86443 × 10−1 3.10293 × 10−1 2.79219 × 10−1 6.06090 × 10−1

5 mean 6.34653 × 10−2 1.62361 × 10−1 1.84219 × 10−1 1.92374 × 10−1 4.34723 × 10−1

std. dev. 4.37378 × 10−2 1.43383 × 10−1 5.23417 × 10−2 4.11192 × 10−2 3.80232 × 10−2

best 2.64633 × 10−2 1.86090 × 10−2 8.53060 × 10−2 1.04880 × 10−1 3.79576 × 10−1

worst 2.45174 × 10−1 3.66705 × 10−1 2.72920 × 10−1 2.80629 × 10−1 5.14518 × 10−1

6 mean 4.68511 × 10−2 1.36568 × 10−1 1.81852 × 10−1 1.84580 × 10−1 4.27138 × 10−1

std. dev. 1.91529 × 10−2 1.41366 × 10−1 4.42480 × 10−2 4.06917 × 10−2 5.56950 × 10−2

best 2.63022 × 10−2 1.35111 × 10−2 9.05435 × 10−2 9.49799 × 10−2 3.05662 × 10−1

worst 1.20172 × 10−1 4.73654 × 10−1 2.70677 × 10−1 2.52811 × 10−1 5.67574 × 10−1

Mathematics 2022, 10, 3263 16 of 19

Table A2. Cont.

Hidden Nodes Parameters FNNHTVS FNNVS FNNPSO FNNPSOGSA FNNGSA

7 mean 5.64944 × 10−2 1.16451 × 10−1 1.92708 × 10−1 1.81135 × 10−1 4.10110 × 10−1

std. dev. 6.35361 × 10−2 1.27068 × 10−1 5.36873 × 10−2 4.98007 × 10−2 6.73658 × 10−2

best 1.33333 × 10−2 1.62844 × 10−2 1.15527 × 10−1 9.28957 × 10−2 2.99464 × 10−1

worst 3.46725 × 10−1 3.56866 × 10−1 3.25583 × 10−1 2.90122 × 10−1 5.91297 × 10−1

8 mean 7.25993 × 10−2 1.13436 × 10−1 1.60370 × 10−1 1.60365 × 10−1 4.09623 × 10−1

std. dev. 6.10813 × 10−2 1.09866 × 10−1 5.21421 × 10−2 3.76046 × 10−2 5.45519 × 10−2

best 2.15981 × 10−2 2.29368 × 10−2 6.82389 × 10−2 9.08569 × 10−2 3.31659 × 10−1

worst 2.50296 × 10−1 3.58895 × 10−1 2.64006 × 10−1 2.29685 × 10−1 5.58969 × 10−1

9 mean 3.94528 × 10−2 1.53900 × 10−1 1.48810 × 10−1 1.75455 × 10−1 3.71082 × 10−1

std. dev. 1.30927 × 10−2 1.30269 × 10−1 3.95891 × 10−2 4.77214 × 10−2 4.59631 × 10−2

best 1.98988 × 10−2 2.62890 × 10−2 7.89208 × 10−2 1.02002 × 10−1 2.87191 × 10−1

worst 7.31698 × 10−2 3.73252 × 10−1 2.53782 × 10−1 2.80107 × 10−1 4.96640 × 10−1

10 mean 3.51741 × 10−2 1.34166 × 10−1 1.52510 × 10−1 1.75090 × 10−1 3.96100 × 10−1

std. dev. 1.04808 × 10−2 1.20707 × 10−1 4.31790 × 10−2 3.58333 × 10−2 5.75770 × 10−2

best 1.33428 × 10−2 2.55888 × 10−2 7.93357 × 10−2 9.93091 × 10−2 2.97023 × 10−1

worst 6.02462 × 10−2 3.67249 × 10−1 2.64466 × 10−1 2.39029 × 10−1 4.91150 × 10−1

12 mean 3.74717 × 10−2 1.35911 × 10−1 1.47051 × 10−1 1.93487 × 10−1 3.85262 × 10−1

std. dev. 1.29253 × 10−2 1.18291 × 10−1 3.77622 × 10−2 1.31807 × 10−1 6.21025 × 10−2

best 1.33333 × 10−2 2.05661 × 10−2 6.78784 × 10−2 9.12593 × 10−2 3.05040 × 10−1

worst 8.38928 × 10−2 3.53335 × 10−1 2.06790 × 10−1 8.24107 × 10−1 5.65557 × 10−1

15 mean 6.38422 × 10−2 1.08019 × 10−1 1.48758 × 10−1 2.39809 × 10−1 4.09646 × 10−1

std. dev. 7.72433 × 10−2 1.14276 × 10−1 3.74622 × 10−2 1.95200 × 10−1 1.21881 × 10−1

best 1.29753 × 10−2 2.38645 × 10−2 7.14960 × 10−2 9.19578 × 10−2 2.74557 × 10−1

worst 3.40175 × 10−1 3.80079 × 10−1 1.99074 × 10−1 8.06625 × 10−1 7.41139 × 10−1

20 mean 7.53001 × 10−2 1.25018 × 10−1 1.25229 × 10−1 3.11545 × 10−1 6.59167 × 10−1

std. dev. 9.31963 × 10−2 1.21136 × 10−1 3.22619 × 10−2 2.06710 × 10−1 2.66077 × 10−1

best 2.46229 × 10−2 1.34936 × 10−2 5.50465 × 10−2 8.49606 × 10−2 2.01427 × 10−1

worst 3.47971 × 10−1 3.60454 × 10−1 1.80171 × 10−1 8.14597 × 10−1 6.21821 × 10−1

30 mean 1.99517 × 10−1 1.07584 × 10−1 1.19432 × 10−1 3.16707 × 10−1 8.10926 × 10−1

std. dev. 1.42793 × 10−1 9.60862 × 10−2 3.23971 × 10−2 1.66360 × 10−1 2.33804 × 10−1

best 2.00044 × 10−2 2.13355 × 10−2 7.04566 × 10−2 5.27357 × 10−2 4.77002 × 10−1

worst 3.45483 × 10−1 3.79904 × 10−1 1.73480 × 10−1 7.35598 × 10−1 6.53800 × 10−1

Table A3. Statistical results (MSE) in the wine recognition problem.

Hidden Nodes Parameters FNNHTVS FNNVS FNNPSO FNNPSOGSA FNNGSA

4 mean 1.94378 × 10−2 1.33566 × 10−1 1.69763 × 10−1 1.65540 × 10−1 4.61577 × 10−1

std. dev. 1.28846 × 10−2 1.03747 × 10−1 6.20304 × 10−2 4.76383 × 10−2 7.87211 × 10−2

best 2.73226 × 10−5 1.67689 × 10−2 8.40273 × 10−2 8.71521 × 10−2 2.62065 × 10−1

worst 5.78721 × 10−2 4.12618 × 10−1 3.45308 × 10−1 2.74366 × 10−1 5.76831 × 10−1

5 mean 1.18868 × 10−2 1.51479 × 10−1 1.49253 × 10−1 1.51786 × 10−1 4.30638 × 10−1

std. dev. 6.50078 × 10−3 1.13153 × 10−1 3.75319 × 10−2 4.80765 × 10−2 4.73713 × 10−2

best 4.08510 × 10−9 2.13987 × 10−2 6.83132 × 10−2 6.21954 × 10−2 3.49284 × 10−1

worst 2.80562 × 10−2 4.49282 × 10−1 2.24855 × 10−1 2.95900 × 10−1 5.23850 × 10−1

6 mean 1.46168 × 10−2 1.58700 × 10−1 1.30736 × 10−1 1.36542 × 10−1 4.10015 × 10−1

std. dev. 8.51222 × 10−3 1.21009 × 10−1 4.24100 × 10−2 3.87619 × 10−2 6.41373 × 10−2

best 1.58983 × 10−8 8.33856 × 10−3 4.28716 × 10−2 6.82425 × 10−2 2.59599 × 10−1

worst 2.80899 × 10−2 4.71227 × 10−1 2.29977 × 10−1 2.34809 × 10−1 5.50772 × 10−1

7 mean 1.00025 × 10−2 1.33992 × 10−1 1.30839 × 10−1 1.38147 × 10−1 4.19058 × 10−1

std. dev. 7.39580 × 10−3 1.12228 × 10−1 4.53306 × 10−2 4.37701 × 10−2 5.85164 × 10−2

best 1.66979 × 10−11 1.72366 × 10−2 6.74613 × 10−2 7.40539 × 10−2 2.59164 × 10−1

worst 2.24719 × 10−2 4.18049 × 10−1 2.24881 × 10−1 2.73788 × 10−1 5.32682 × 10−1

Mathematics 2022, 10, 3263 17 of 19

Table A3. Cont.

Hidden Nodes Parameters FNNHTVS FNNVS FNNPSO FNNPSOGSA FNNGSA

8 mean 4.20276 × 10−3 1.96334 × 10−1 1.22014 × 10−1 1.40364 × 10−1 4.11930 × 10−1

std. dev. 4.49867 × 10−3 1.15859 × 10−1 3.97087 × 10−2 5.15103 × 10−2 5.71548 × 10−2

best 4.04669 × 10−14 6.40472 × 10−2 7.04695 × 10−2 7.81411 × 10−2 3.08821 × 10−1

worst 1.21787 × 10−2 4.66286 × 10−1 2.49579 × 10−1 2.96196 × 10−1 5.38821 × 10−1

9 mean 2.99296 × 10−3 1.63649 × 10−1 1.12534 × 10−1 1.16186 × 10−1 3.79386 × 10−1

std. dev. 4.25057 × 10−3 1.20513 × 10−1 3.08861 × 10−2 3.59304 × 10−2 6.44611 × 10−2

best 2.47483 × 10−13 3.36361 × 10−2 4.83561 × 10−2 4.40372 × 10−2 2.34178 × 10−1

worst 1.12372 × 10−2 5.22962 × 10−1 1.71889 × 10−1 2.15566 × 10−1 4.71524 × 10−1

10 mean 2.25964 × 10−3 1.83726 × 10−1 1.03152 × 10−1 1.26672 × 10−1 3.92796 × 10−1

std. dev. 3.55391 × 10−3 1.24834 × 10−1 4.53593 × 10−2 3.83574 × 10−2 6.46792 × 10−2

best 4.29008 × 10−16 4.16381 × 10−2 5.09519 × 10−2 6.44176 × 10−2 2.62258 × 10−1

worst 1.12508 × 10−2 4.76774 × 10−1 2.06652 × 10−1 2.32131 × 10−1 5.06974 × 10−1

12 mean 2.13262 × 10−3 1.95910 × 10−1 1.04961 × 10−1 1.40683 × 10−1 3.70757 × 10−1

std. dev. 3.30063 × 10−3 1.16776 × 10−1 2.62366 × 10−2 5.58901 × 10−2 5.98702 × 10−2

best 8.17277 × 10−16 4.49510 × 10−2 5.94720 × 10−2 6.41966 × 10−2 2.25114 × 10−1

worst 1.12401 × 10−2 4.44748 × 10−1 1.52097 × 10−1 3.04571 × 10−1 4.95184 × 10−1

15 mean 1.87675 × 10−3 1.63760 × 10−1 8.06230 × 10−2 1.52749 × 10−1 3.61846 × 10−1

std. dev. 3.19606 × 10−3 1.02461 × 10−1 1.85006 × 10−2 9.47948 × 10−2 8.58804 × 10−2

best 1.48717 × 10−16 4.51008 × 10−2 4.98801 × 10−2 7.40337 × 10−2 2.03846 × 10−1

worst 1.12360 × 10−2 4.49571 × 10−1 1.18488 × 10−1 4.52816 × 10−1 5.57647 × 10−1

20 mean 3.76476 × 10−4 1.59726 × 10−1 7.97941 × 10−2 1.42076 × 10−1 3.76138 × 10−1

std. dev. 1.42621 × 10−3 9.16628 × 10−2 4.62824 × 10−2 6.59667 × 10−2 1.11050 × 10−1

best 2.01689 × 10−23 5.06107 × 10−2 4.01168 × 10−2 8.13262 × 10−2 2.30746 × 10−1

worst 5.62821 × 10−3 4.21890 × 10−1 2.99984 × 10−1 3.89202 × 10−1 7.29064 × 10−1

30 mean 7.44123 × 10−22 1.91386 × 10−1 6.83553 × 10−2 2.25535 × 10−1 3.70193 × 10−1

std. dev. 3.29131 × 10−21 9.77874 × 10−2 5.69610 × 10−2 1.94427 × 10−1 1.79224 × 10−1

best 1.48816 × 10−56 4.49687 × 10−2 2.95764 × 10−2 6.16741 × 10−2 1.71175 × 10−1

worst 1.75528 × 10−20 4.15806 × 10−1 3.58487 × 10−1 7.66503 × 10−1 9.70961 × 10−1

Table A4. Statistical results (MSE) in the seed classification problem.

Hidden Nodes Parameters FNNHTVS FNNVS FNNPSO FNNPSOGSA FNNGSA

4 mean 1.10847 × 10−1 1.93308 × 10−1 2.01770 × 10−1 1.86016 × 10−1 4.07302 × 10−1

std. dev. 1.60338 × 10−2 1.18671 × 10−1 4.48398 × 10−2 3.99702 × 10−2 3.94880 × 10−2

best 8.31405 × 10−2 7.88864 × 10−2 1.03638 × 10−1 1.22263 × 10−1 3.45558 × 10−1

worst 1.42066 × 10−1 3.94932 × 10−1 2.67137 × 10−1 2.90377 × 10−1 5.33628 × 10−1

5 mean 1.01320 × 10−1 2.07712 × 10−1 1.81230 × 10−1 1.73523 × 10−1 4.09495 × 10−1

std. dev. 1.59207 × 10−2 1.22636 × 10−1 4.81278 × 10−2 3.93328 × 10−2 5.45169 × 10−2

best 7.20300 × 10−2 5.82352 × 10−2 1.14616 × 10−1 1.09551 × 10−1 3.07478 × 10−1

worst 1.49775 × 10−1 3.99913 × 10−1 3.01366 × 10−1 2.72784 × 10−1 5.48163 × 10−1

6 mean 9.36586 × 10−2 1.66201 × 10−1 1.65856 × 10−1 1.71439 × 10−1 3.94956 × 10−1

std. dev. 1.08448 × 10−2 1.01809 × 10−1 3.00229 × 10−2 5.10343 × 10−2 4.75287 × 10−2

best 7.62807 × 10−2 5.50233 × 10−2 8.90293 × 10−2 1.23650 × 10−1 3.08159 × 10−1

worst 1.16848 × 10−1 4.01519 × 10−1 2.18201 × 10−1 4.04750 × 10−1 5.14334 × 10−1

7 mean 8.91858 × 10−2 1.67699 × 10−1 1.55629 × 10−1 1.67584 × 10−1 3.79103 × 10−1

std. dev. 1.24263 × 10−2 1.05127 × 10−1 2.79420 × 10−2 4.43436 × 10−2 5.27818 × 10−2

best 6.09093 × 10−2 5.65455 × 10−2 9.05990 × 10−2 1.14863 × 10−1 2.94214 × 10−1

worst 1.22892 × 10−1 3.96726 × 10−1 1.96405 × 10−1 3.50567 × 10−1 5.37897 × 10−1

8 mean 9.18808 × 10−2 1.78536 × 10−1 1.53213 × 10−1 1.51797 × 10−1 3.70108 × 10−1

std. dev. 1.26865 × 10−2 1.14783 × 10−1 2.21297 × 10−2 2.61319 × 10−2 4.10571 × 10−2

best 6.11826 × 10−2 5.72383 × 10−2 1.03633 × 10−1 1.13652 × 10−1 2.90596 × 10−1

worst 1.09795 × 10−1 3.95296 × 10−1 2.01519 × 10−1 2.40753 × 10−1 4.33540 × 10−1

Mathematics 2022, 10, 3263 18 of 19

Table A4. Cont.

Hidden Nodes Parameters FNNHTVS FNNVS FNNPSO FNNPSOGSA FNNGSA

9 mean 8.58805 × 10−2 1.79317 × 10−1 1.56830 × 10−1 1.60936 × 10−1 3.53928 × 10−1

std. dev. 6.93764 × 10−3 1.05511 × 10−1 3.33739 × 10−2 2.82649 × 10−2 6.73966 × 10−2

best 7.43803 × 10−2 7.50251 × 10−2 1.02041 × 10−1 1.14364 × 10−1 1.70935 × 10−1

worst 1.00271 × 10−1 4.48567 × 10−1 2.21748 × 10−1 2.38765 × 10−1 4.84104 × 10−1

10 mean 8.58320 × 10−2 1.39362 × 10−1 1.49952 × 10−1 1.67026 × 10−1 3.71755 × 10−1

std. dev. 1.13822 × 10−2 6.70709 × 10−2 2.61584 × 10−2 4.86881 × 10−2 6.20682 × 10−2

best 5.55225 × 10−2 6.66799 × 10−2 1.02490 × 10−1 1.20878 × 10−1 2.68974 × 10−1

worst 1.07147 × 10−1 3.86976 × 10−1 2.28392 × 10−1 3.69949 × 10−1 5.88624 × 10−1

12 mean 7.69695 × 10−2 1.72056 × 10−1 1.31553 × 10−1 1.77467 × 10−1 3.52560 × 10−1

std. dev. 8.74892 × 10−3 8.54826 × 10−2 2.64553 × 10−2 9.03774 × 10−2 7.04322 × 10−2

best 6.23604 × 10−2 7.98103 × 10−2 9.64765 × 10−2 1.03684 × 10−1 2.45908 × 10−1

worst 9.13157 × 10−2 3.90539 × 10−1 2.11989 × 10−1 4.09575 × 10−1 5.68246 × 10−1

15 mean 7.42578 × 10−2 1.70866 × 10−1 1.25953 × 10−1 1.48903 × 10−1 3.71133 × 10−1

std. dev. 8.84990 × 10−3 9.90537 × 10−2 2.27677 × 10−2 5.71889 × 10−2 8.20515 × 10−2

best 6.19053 × 10−2 8.61301 × 10−2 8.98466 × 10−2 9.61550 × 10−2 2.50839 × 10−1

worst 1.00014 × 10−1 4.08016 × 10−1 1.67739 × 10−1 4.04558 × 10−1 5.57981 × 10−1

20 mean 7.64729 × 10−2 1.66421 × 10−1 1.16223 × 10−1 2.21587 × 10−1 4.08647 × 10−1

std. dev. 8.87865 × 10−3 9.34156 × 10−2 1.98504 × 10−2 1.70788 × 10−1 1.91840 × 10−1

best 5.76150 × 10−2 6.33511 × 10−2 7.22399 × 10−2 1.01568 × 10−1 2.04698 × 10−1

worst 9.27819 × 10−2 4.85761 × 10−1 1.83814 × 10−1 7.32398 × 10−1 9.24442 × 10−1

30 mean 7.45181 × 10−2 1.99154 × 10−1 1.20852 × 10−1 3.32331 × 10−1 8.27154 × 10−1

std. dev. 8.67849 × 10−3 1.01211 × 10−1 5.55258 × 10−2 2.83933 × 10−1 2.21347 × 10−1

best 5.78553 × 10−2 9.16919 × 10−2 7.69777 × 10−2 8.98902 × 10−2 4.31377 × 10−1

worst 9.52382 × 10−2 3.80953 × 10−1 3.95592 × 10−1 8.36375 × 10−1 8.74650 × 10−1

References
1. Faris, H.; Aljarah, I.; Mirjalili, S. Training feedforward neural networks using multi-verse optimizer for binary classification

problems. Appl. Intell. 2016, 45, 322–332. [CrossRef]
2. Coban, M.; Tezcan, S.S. Detection and classification of short-circuit faults on a transmission line using current signal. Bull. Pol.

Acad. Sci. Tech. Sci. 2021, 69, 1–9.
3. Almeida, A.R.; Almeida, O.M.; Junior, B.F.; Barreto, L.H.; Barros, A.K. ICA feature extraction for the location and classification of

faults in high-voltage transmission lines. Electr. Power Syst. Res. 2017, 148, 254–263. [CrossRef]
4. Fernandez-Blanco, E.; Rivero, D.; Pazos, A. EEG signal processing with separable convolutional neural network for automatic

scoring of sleeping stage. Neurocomputing 2020, 410, 220–228. [CrossRef]
5. Nardo, F.D.; Morbidoni, C.; Cucchiarelli, A.; Fioretti, S. Influence of EMG-signal processing and experimental set-up on prediction

of gait events by neural network. Biomed. Signal Process Control. 2021, 63, 102232. [CrossRef]
6. Ravesh, N.R.; Ramezani, N.; Ahmadi, I.; Nouri, H. A hybrid artificial neural network and wavelet packet transform approach for

fault location in hybrid transmission lines. Electr. Power Syst. Res. 2022, 204, 107721. [CrossRef]
7. Gashteroodkhani, O.A.; Majidi, M.; Etezadi-Amoli, M.; Nematollahi, A.F.; Vahidi, B. A hybrid SVM-TT transform-based method

for fault location in hybrid transmission lines with underground cables. Electr. Power Syst. Res. 2019, 170, 205–214. [CrossRef]
8. Duarte Soares, L.; de Souza Queiroz, A.; López, G.P.; Carreño-Franco, E.M.; López-Lezama, J.M.; Muñoz-Galeano, N. BiGRU-CNN

Neural Network Applied to Electric Energy Theft Detection. Electronics 2022, 11, 693. [CrossRef]
9. Arin, E.; Ozbayoglu, A.M. Deep learning based hybrid computational intelligence models for options pricing. Comput. Econ.

2020, 59, 39–58. [CrossRef]
10. Li, S.; Fan, Z. Evaluation of urban green space landscape planning scheme based on PSO-BP neural network model. Alex. Eng. J.

2022, 61, 7141–7153. [CrossRef]
11. Mao, X.; Song, S.; Ding, F. Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO

with Levy flight. J. Energy Storage 2022, 49, 104139. [CrossRef]
12. Singh, M.P.; Singh, G. Two phase learning technique in modular neural network for pattern classification of handwritten Hindi

alphabets. Mach. Learn. Appl. 2021, 6, 100174. [CrossRef]
13. Sağ, T.; Jalil, Z.A.J. Vortex search optimization algorithm for training of feed-forward neural network. Int. J. Mach. Learn. 2021,

12, 1517–1544. [CrossRef]
14. Mirjalili, S.; Hashim, S.Z.M.; Sardroudi, H.M. Training feedforward neural networks using hybrid particle swarm optimization

and gravitational search algorithm. Appl. Math. Comput 2012, 218, 11125–11137. [CrossRef]

http://doi.org/10.1007/s10489-016-0767-1
http://dx.doi.org/10.1016/j.epsr.2017.03.030
http://dx.doi.org/10.1016/j.neucom.2020.05.085
http://dx.doi.org/10.1016/j.bspc.2020.102232
http://dx.doi.org/10.1016/j.epsr.2021.107721
http://dx.doi.org/10.1016/j.epsr.2019.01.023
http://dx.doi.org/10.3390/electronics11050693
http://dx.doi.org/10.1007/s10614-020-10063-9
http://dx.doi.org/10.1016/j.aej.2021.12.057
http://dx.doi.org/10.1016/j.est.2022.104139
http://dx.doi.org/10.1016/j.mlwa.2021.100174
http://dx.doi.org/10.1007/s13042-020-01252-x
http://dx.doi.org/10.1016/j.amc.2012.04.069

Mathematics 2022, 10, 3263 19 of 19

15. Pashaei, E.; Pashaei, E. Training feedforward neural network using enhanced black hole algorithm: A case study on COVID-19
related ACE2 Gene expression classification. Arab. J. Sci. Eng . 2021, 46, 3807–3828. [CrossRef] [PubMed]

16. Hassanpour, M.; Vaferi, B.; Masoumi, M.E. Estimation of pool boiling heat transfer coefficient of alumina water-based nanofluids
by various artificial intelligence (AI) approaches. Appl. Therm. Eng. 2018, 128, 1208–1222. [CrossRef]

17. Yves Chauvin, D.E.R. Backpropagation Theory, Architectures, and Applications; Psychology Press: London, UK, 1995.
18. Robbins, H.; Monro, S. A stochastic approximation method. Ann. Math. Stat. 1951, 22, 400 – 407. [CrossRef]
19. van der Smagt, P.P. Minimisation methods for training feedforward neural networks. Neural. Netw. 1994, 7, 1–11. [CrossRef]
20. Hagan, M.T.; Menhaj, M.B. Training Feedforward networks with the Marquardt Algorithm. IEEE Trans. Neural Netw. 1994,

5, 989–993. [CrossRef]
21. Cortés-Caicedo, B.; Molina-Martin, F.; Grisales-Noreña, L.F.; Montoya, O.D.; Hernández, J.C. Optimal design of PV Systems in

electrical distribution networks by minimizing the annual equivalent operative costs through the discrete-continuous vortex
search algorithm. Sensors 2022, 22, 851. [CrossRef]

22. Martínez-Gil, J.F.; Moyano-García, N.A.; Montoya, O.D.; Alarcon-Villamil, J.A. Optimal Selection of conductors in three-phase
distribution networks using a discrete version of the vortex search algorithm. Computation 2021, 9, 80. [CrossRef]

23. Ozturk, C.; Karaboga, D. Hybrid Artificial Bee Colony algorithm for neural network training. In Proceedings of the CEC 2011,
New Orleans, LA, USA, 5–8 June 2011; pp. 84–88.

24. Heidari, A.A.; Faris, H.; Aljarah, I.; Mirjalili, S. An efficient hybrid multilayer perceptron neural network with grasshopper
optimization. Soft Comput. 2019, 23, 7941–7958. [CrossRef]

25. Gülcü, Ş. Training of the feed forward artificial neural networks using dragonfly algorithm. Appl. Soft Comput. 2022, 124, 109023.
[CrossRef]

26. Aljarah, I.; Faris, H.; Mirjalili, S. Optimizing connection weights in neural networks using the whale optimization algorithm. Soft
Comput. 2018, 22, 1–15. [CrossRef]

27. Lari, N.S.; Abadeh, M.S. Training artificial neural network by krill-herd algorithm. In Proceedings of the ITAIC 2014, Chongqing,
China, 20–21 December 2014; pp. 63–67.

28. Yi, J.-h.; Xu, W.-h.; Chen, Y.-t. Novel Back Propagation Optimization by Cuckoo Search Algorithm. Sci. World J. 2014, 2014, 878262.
[CrossRef]

29. Wu, H.; Zhou, Y.; Luo, Q.; Basset, M.A. Training feedforward neural networks using symbiotic organisms search algorithm.
Comput. Intell. Neurosci. 2016, 2016, 9063065. [CrossRef]

30. Zhang, J.R.; Zhang, J.; Lok, T.M.; Lyu, M.R. A hybrid particle swarm optimization–back-propagation algorithm for feedforward
neural network training. Appl. Math. Comput. 2007, 185, 1026–1037. [CrossRef]

31. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Let a biogeography-based optimizer train your Multi-Layer Perceptron. Inf. Sci. 2014,
269, 188–209. [CrossRef]

32. Saka, M.; Çoban, M.; Eke, I.; Tezcan, S.S.; Taplamacioğlu, M.C. A novel hybrid global optimization algorithm having training
strategy: Hybrid Taguchi-vortex search algorithm. Turk. J. Elec. Eng. Comp. Sci. 2021, 29, 1908–1928. [CrossRef]

33. Dogan, B.; Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm. Inf. Sci. 2015,
293, 125–145. [CrossRef]

34. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95, Perth, Australia, 27 November–1 December
1995; Volume 4, pp. 1942–1948.

35. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
36. Lawrence, J. Introduction to Neural Networks: Design, Theory, and Applications, 5th ed.; California Scientific Software: New York, NY,

USA, 1994.
37. Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: http://archive.ics.uci.edu/ml (accessed on 11 July 2022) .
38. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]
39. Charytanowicz, M.; Niewczas, J.; Kulczycki, P.; Kowalski, P.A.; Łukasik, S.; Zak, S. Complete gradient clustering algorithm for

features analysis of X-Ray images. Adv. Intell. Syst. Comput. 2010, 69, 15–24.
40. Malathi, V.; Marimuthu, N.S.; Baskar, S. Intelligent approaches using support vector machine and extreme learning machine for

transmission line protection. Neurocomputing 2010, 73, 2160–2167. [CrossRef]
41. Ekici, S. Support Vector Machines for classification and locating faults on transmission lines. Appl. Soft Comput. 2012, 12,

1650–1658. [CrossRef]
42. Mukherjee, A.; Chatterjee, K.; Kundu, P.K.; Das, A. Application of Poincaré analogous time-split signal-based statistical correlation

for transmission line fault classification. Electr. Eng. 2022, 4, 1057–1075. [CrossRef]

http://dx.doi.org/10.1007/s13369-020-05217-8
http://www.ncbi.nlm.nih.gov/pubmed/33520590
http://dx.doi.org/10.1016/j.applthermaleng.2017.09.066
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1016/0893-6080(94)90052-3
http://dx.doi.org/10.1109/72.329697
http://dx.doi.org/10.3390/s22030851
http://dx.doi.org/10.3390/computation9070080
http://dx.doi.org/10.1007/s00500-018-3424-2
http://dx.doi.org/10.1016/j.asoc.2022.109023
http://dx.doi.org/10.1007/s00500-016-2442-1
http://dx.doi.org/10.1155/2014/878262
http://dx.doi.org/10.1155/2016/9063065
http://dx.doi.org/10.1016/j.amc.2006.07.025
http://dx.doi.org/10.1016/j.ins.2014.01.038
http://dx.doi.org/10.3906/elk-2004-193
http://dx.doi.org/10.1016/j.ins.2014.08.053
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.neucom.2010.02.001
http://dx.doi.org/10.1016/j.asoc.2012.02.011
http://dx.doi.org/10.1007/s00202-021-01369-4

	Introduction
	Basic Principles
	Feed-Forward Neural Network
	HTVS Algorithm
	FNN Training Using HTVS

	Validation of the FNNHTVS via Benchmark Datasets
	3-Bit Parity Problem
	Iris Classification Problem
	Wine Recognition Problem
	Seed Classification Problem

	Performance Evaluation in Fault Classification
	Conclusions
	Appendix A
	References

