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Abstract: Modelling of sound propagation in porous media generally requires the knowledge of
several transport properties of the materials. In this study, a three-parameter analytical model that
links microstructure properties of sintered metal fibre materials and non-acoustical parameters of the
JCAL model is used and modified, and two heuristic approaches based on the established model for
inverse acoustic characterisation of fibrous metal felts are developed. The geometric microstructure of
sintered fibrous metals is simplified to derive the relationship between pores and fibre diameters. The
new set of transport parameters in the modified three-parameter model can cover two controllable
parameters during the fabrication process of fibrous metals. With two known transport parameters,
six sintered specimens are characterised using a deterministic algorithm, and a satisfactory result is
achieved in fitting the normalised surface impedance measured by an acoustic measurement system.
Moreover, the forward evaluation shows that our modified three-parameter theoretical model is
capable of yielding accurate results for the sintered metal fibre materials. A numerical investigation
of the complete inverse acoustic characterisation of fibrous metals by a global non-deterministic
algorithm indicates that inversion from two porous material properties is preferable to the normalised
surface impedance.

Keywords: sintered metal fibre materials; inverse problem; heuristic optimisation; microstructure-
based acoustic model

MSC: 74J05

1. Introduction

Sintered metal fibre felts, typically fabricated using micron-sized FeCrAl fibres, are a
new engineering material. Compared with conventional fibrous materials, e.g., glass fibre
and polyester, sintered metal fibre materials possess not only excellent sound absorption
ability, but also exhibit many functional properties: good mechanical properties, high
thermal stability, easy processability, and long-life, etc. [1–3]. Therefore, sintered metal fibre
materials are particularly suitable for applying noise reduction and vibration control under
extreme conditions, such as high pressure and temperature [4].

In order to give a physical basis to the description of the macroscopic acoustic be-
haviour of porous media, a variety of semi-phenomenological models involving several
physical parameters have been presented, such as the Delany–Bazley–Miki model (one
parameter) [5,6], the Johnson–Champoux–Allard (JCA) model (five parameters) [7–9], the
Johnson–Champoux–Allard–Lafarge (JCAL) model (six parameters) [7,8,10], the Johnson–
Champoux–Allard–Pride–Lafarge (JCAPL) model (eight parameters) [7,8,10,11] and the
Biot’s theory [12,13]. Apart from the direct use of these models to predict sound propagation
in porous media [14–20], the inverse acoustic characterisation from the acoustical properties
of materials is also of great interest for its practical values in engineering application [21],

Mathematics 2022, 10, 3264. https://doi.org/10.3390/math10183264 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10183264
https://doi.org/10.3390/math10183264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7822-5029
https://orcid.org/0000-0001-6899-2649
https://orcid.org/0000-0001-5911-8554
https://doi.org/10.3390/math10183264
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10183264?type=check_update&version=1


Mathematics 2022, 10, 3264 2 of 20

e.g., inverse design of fibrous metals for achieving high absorption at desired frequencies.
Hence, the modelling of sound propagation in sintered metal fibre materials requires the
known set of several transport properties, such as porosity, permeability, and characteristic
length [22]. To estimate these properties, many methods for characterisation of porous
media have been developed, three main of which include: direct, indirect, and inverse
methods. Direct methods are based on various experiments, which can directly obtain
a set of properties, e.g., porosity, static air flow resistivity, tortuosity, two characteristic
lengths, and two permeabilities [23–26]. Such approaches provide the most accurate and
reliable measured parameters among the three methods while suffering the disadvantage
of the huge cost and the complex experiment procedures. For indirect methods, based on
equivalent fluid models assume, the equivalent density and equivalent bulk modulus of
porous media obtained from several different methods of impedance tube measurement
are used to analyse the transport properties of porous materials [27–30].

As an alternative solution to another two methods for obtaining the physical parame-
ters from materials, inverse methods transform the physical problem into a mathematical
optimisation problem, which directly estimates transport parameters from acoustical prop-
erties measured by impedance tube. Previous existing studies on the inverse characterisa-
tion of porous media can be divided into two categories: deterministic or non-deterministic
parametric inversion methods and statistical inversion methods. The first relies on local or
global optimisation algorithms in fitting the curves of acoustical properties from impedance
tube or ultrasonic measurements Atalla and Panneton [31] proposed an inverse characterisa-
tion method based on normalised surface impedance and yielded three of five JCA transport
parameters by using a differential evolution algorithm Dauchez and Yvars [32] employed
the constraint satisfaction problem approach to an inverse procedure for recovering all five
parameters of the JCA model from the density and bulk modulus of the equivalent fluid.
Furthermore, Dossi et al. [33] proposed an inverse calculation of the elastic parameters of
polyurethane foams by fitting measured specific acoustic impedance from samples with
different thicknesses. The statistical inversion methods, capable of taking into account
knowledge of uncertainty of measurement process and prior information, have been devel-
oped to estimate uncertainty for the pore parameter values Chazot et al. [34] introduced
a Bayesian approach for evaluating eight properties of Biot’s model with a measurement
in a standing wave tube and returning probabilistic data such as the confidence interval
of all parameters Niskanen et al. [35] and Cuenca et al. [36] proposed a deterministic and
statistical framework for inverse characterisation, in which the minimum obtained by the
least-squares method was validated using the information given by the statistical inversion
and uncertainties in the estimations could be quantified.

Most existing works on the inverse calculation of transport parameters employed the
JCA/JCAL or Biot-JCA model [12,13]. The first two are based on equivalent fluid models
assume, while the latter one considers the solid phase of porous media as an elastic material.
For sintered metal fibre felts, the frame of this material can be assumed motionless in all
frequency ranges due to its quite low decoupling frequency and barely visible resonance
behaviour. Thus, the equivalent fluid description for fibrous metals is employed in this
study. Some researchers suggested that the classical parametrisation of the acoustical
behaviour of certain types of porous media is somewhat redundant [36,37]. Additionally,
all the above-mentioned methods can suffer from the accuracy of the experiment and the ill
condition of the inverse problem, respectively.

For that purpose, in this study, we develop two heuristic approaches using a modified
three-parameter analytical model to investigate the inverse acoustic characterisation of
sintered metal fibre materials. First, the three-parameter analytical model for the non-
acoustical properties based on the JCAL model is provided and modified based on the
average pore size approximation according to the microstructure characteristics of the
fibrous metals. Then, the normalised surface impedance of six samples is measured by
a classic two-microphone impedance tube measurement. The proposed modified model
is validated through the curve fitting with a single parameter estimation of measured
data using a local optimisation algorithm. The theoretical model established is employed
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to examine the difference between the values recovered from surface impedance and
those from two porous material properties with a global optimisation algorithm in the
numerical investigation.

This paper is organised as follows. First, Section 2 presents the three-parameter
analytical model and derives the geometric relationship between pores and fibre diameters
according to the simplified microstructure of sintered fibrous metals. The measurement set-
up based on a two-microphone configuration is outlined in Section 3. Section 4 describes the
observation model of measurements along with the two representative heuristic approaches.
Next, Section 5 presents the verification of the theoretical model and numerical investigation
with two heuristic methods. Section 6 concludes this study and discusses related future
work aspects.

2. Acoustic Modelling of the Sintered Fibrous Metals
2.1. Three-Parameter Analytical Model

The well-established Johnson–Champoux–Allard–Lafarge (JCAL) model for sound prop-
agation in porous media proposed by Champoux, Allard, and Lafarge relies on six transport
parameters: porosity φ, flow resistivity σ, tortuosity α∞, viscous characteristic length Λ, ther-
mal characteristic length Λ

′
and static thermal permeability k

′
0. It has been shown that the

popular six-parameter model can be simplified, and the use of three parameters in the JCAL
model is enough for some types of porous media. In our study, a three-parameter analytical
model based on the JCAL model proposed by Horoshenkov et al. [37] is adopted. The choice
of using this model instead of others is motivated by the following three reasons:

1. This theoretical model links three pore parameters of porous media to six non-
acoustical parameters in the JCAL model, which lay the groundwork for the study of
using customisable morphological parameters of real fibrous metals replacement to
the transport parameters that are difficult to measure;

2. The JCAL model, which introduces corrections to the bulk modulus thermal behaviour
at low frequencies that is not captured by the JCA model, its robustness has been
validated by many studies.

3. Halving the number of variables can significantly reduce the complexity of the inverse
characterisation problem, thus reducing uncertainty and consumption of time in
computation during the inversion procedure.

As previously discussed, with the skeleton of sintered metal fibre materials being
far heavier than air, the frame can be almost motionless for large ranges of acoustical
frequencies. In other words, fibrous metals can be assumed as an equivalent fluid with an
equivalent effective density ρeq(ω) and equivalent bulk modulus Keq(ω) used to describe
the macroscopic acoustical behaviour of the material. Based on the six transport parameters
presented previously, the expressions of ρeq(ω) and Keq used for the JCAL model are given
by [7,8,10]:

ρeq(ω) =
α∞ρ0

φ

[
1 +

σφ

jωρ0α∞

√
1 + j

4α2
∞ηρ0ω

σ2Λ2φ2

]
(1)

Keq(ω) =
γP0/φ

γ− (γ− 1)

[
1− j φκ

k′0Cpρ0ω

√
1 + j 4k′20 Cpρ0ω

κΛ′2φ2

]−1 (2)

where j =
√
−1, ρ0 is the density of air, α∞ is the tortuosity, φ is the porosity, σ is the flow

resistivity, η is the dynamic viscosity of the fluid, γ is the specific heat ratio, k
′
0 is the static

thermal permeability, Λ is the viscous characteristic length, Λ
′

is the thermal characteristic
length, P0 is the quiescent pressure, κ is the thermal conductivity, Cp is the specific heat.

The shape of pores in the majority of realistic porous materials is variable, and the size
normally obeys a particular statistical distribution. For sintered metal fibre material, based
on the prior assumptions of log-normal distribution of pore size, the five of six transport
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parameters in Equations (1) and (2) can be expressed via three pore parameters using the
three-parameter model: the porosity φ, average pore size s and standard deviation in the
pore size σs, which are given, respectively, as follows [37]:

Λ = s̄e−5/2(σs log 2)2
, (3)

Λ′ = s̄e3/2(σs log 2)2
, (4)

k′0 =
s̄2φ

8α∞
e6(σs log 2)2

, (5)

α∞ = e4(σs log 2)2
, (6)

σ =
8ηα∞

s̄2φ
e6(σs log 2)2

. (7)

Under the assumption of an equivalent fluid model, the specific characteristic impedance
Zc and the complex wave number kc of fibrous metal materials can be calculated as [22]:

Zc =

√
ρeq(w)Keq(w)

ρ0c0
, (8)

kc = w

√
ρeq(w)

Keq(w)
. (9)

where c0 is the sound velocity in the air.

2.2. Average Pore Size Approximation

As a kind of fibrous material, the commonly used non-acoustical parameters to char-
acterise the sintered metal fibre felts are porosity φ and fibre diameter d. These two
parameters can be precisely controlled during the fabrication process of fibrous metals.
This section aims to link porosity φ and fibre diameter d to the average pore size s that is
not a controllable parameter during the manufacturing process. The purpose is to obtain
the quantitative relation among three geometrical parameters.

The 3D digital model of a fibrous metal felt reconstructed by Micro-computed tomog-
raphy (micro-CT) [38] is displayed in Figure 1. As shown in Figure 1a, the composition of
the real fibrous metals is twisted metal fibres which are connected by the sintered points
after the sintering process. The front view of the slice image in the red square plane is
illustrated in Figure 1a is provided in Figure 2a. A thin slice thickness along the x axis is
made, thus, the fibre orientation can be observed intuitively in this 3D slice image. Fibres
are randomly positioned and horizontal obliquely to the image plane. Combined with
Figures 1b,c and 2a, it can be seen that the intersecting fibres lie in the x-y plane parallel to
the surface of fibrous metal felts. In order to build relations between geometrical param-
eters, a cell method proposed by Tarnow [39,40] is used. A Voronoi-based segmentation
is performed on the 2D slice image after the binary process, as shown in Figure 2b. Each
oval fibre cross-section is surrounded by a so-called Voronoi polygon. It is constructed by
drawing perpendicular bisectors passing through the midpoints between each centre and
the nearest neighbour centres. These lines intersect and form the Voronoi polygons. The
distance between one centre and the nearest neighbour centre can be regarded as the pore
size. It has been demonstrated that any Voronoi polygon is necessarily convex. Since sound
normally incidents on the surface of felts, we consider a simplified model that the fibres
are all parallel and regularly placed and in the same diameter, as shown schematically
in Figure 2c, the sound wave incident perpendicularly passes all cylindrical fibres, i.e.,
parallel to the z axis. In this case, the irregular Voronoi polygons displayed in Figure 2b can



Mathematics 2022, 10, 3264 5 of 20

be approximated to regular hexagons. The distance between the centre of one cylindrical
fibre and any nearest neighbour fibre is equal to the average pore size s. For simplicity,
each ideal hexagonal Voronoi region is approximated by an inscribed circle having the
approximate area. The porosity of one unit cell in the parallel cylindrical fibres array is
identical to that of the macroscopical homogeneous sintered metal fibrous material. Then
the equivalent porosity of the randomly distributed fibres can be given by

φ =
π(s/2)2 − π(d/2)2

π(s/2)2 , (10)

where the porosity φ and the fibre diameter d are assumed known, thus the average pore
size s can be eventually represented as

s =
d√

1− φ
. (11)

By substituting Equation (11) into Equations (3)–(7), the transport parameters of the
JCAL model can be calculated by a new set of parameters in modified three-parameter
model, i.e., the porosity φ, fibre diameter d and standard deviation in the pore size σs,
as follows:

Λ =
de−5/2(σs log 2)2√

1− φ
, (12)

Λ′ =
de3/2(σs log 2)2√

1− φ
, (13)

k′0 =
d2φ

8α∞(1− φ)
e6(σs log 2)2

, (14)

α∞ = e4(σs log 2)2
, (15)

σ =
8ηα∞(1− φ)

d2φ
e6(σs log 2)2

. (16)

z
y x

(a) Isometric view

y

x
(b) Top view

z

x
(c) Side view

Figure 1. 3D geometrical model of sintered metal fibre materials based on micro-CT image recon-
struction. The red square plane in (a) denotes a slice of the micro CT scan. (b) Top view of the model
in x-y plane. (c) Right view of the model in x-z plane.
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(a) (b)

y

z

z

y x

(c)

Figure 2. (a) Front view of the 3D micro CT slice image at the position shown in the isometric view of
the 3D model. (b) Voronoi diagram of the 2D slice image. (c) Array of parallel cylindrical fibres with
ideal hexagonal Voronoi regions.

3. Measurement Configuration

The impedance tube is an acoustic measurement system for determining the sound
absorption coefficient, the sound reflection coefficient, and the surface impedance of mate-
rials in the laboratory on the basis of the transfer function method according to ISO 10534-2
Standard [41].

For testing the surface impedance of our prepared fibrous metal felt samples, a custom-
built impedance tube with a 50 mm × 50 mm square cross-section is designed. The data-
acquisition module (m+p VibPilot) system includes two microphones (G.R.A.S. 46BD)
inserted into a hole in the tube. As shown in Figure 3a, s is the distance between the micro-
phones, and l is the distance between the surface of the felt being tested and the nearest
microphone, which are equal to 50 mm. The measurements are made in the frequency
range of 200 Hz to 3150 Hz.

Loudspeaker

Test
sample

s l

m+p VibPilot

m+p Analyzer software

Rigid wallMic. 1 Mic. 2

(a)

s l

Loudspeaker

Microphones

Sintered specimen

(b)

Figure 3. Acoustic measurement system used for measuring the normalised surface impedance
of the prepared sintered specimens. (a) Schematic of the classic two-microphone impedance tube.
(b) Realistic facility used in our test.
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Overall, the sound pressure in the tube produced by the loudspeaker is measured
by the microphones, and the sound reflection coefficient R is calculated via the transfer
function method. Based on the obtained reflection coefficient R, the sound absorption
coefficient α and surface impedance Zs can be calculated as [22]:

α = 1− |R|2, (17)

Zs =
1 + R
1− R

Z0. (18)

where Z0 = ρ0c0 is the impedance of air.
With the rigid frame assumption, the characteristic impedance Zc and the complex

wave number kc are the fundamental acoustic properties of the rigid backing fibrous
materials that can completely characterise their acoustical behaviour. In this case, the
measured surface impedance Zs can also be expressed by Zc and kc as [22]:

Zs = −jZc cot (kct), (19)

where t is the test sample thickness corresponding to the measured surface impedance Zs.

4. Inverse Characterisation
4.1. Observation Model

The observational model is an error model representing the additive random noise and
the uncertainty of the measurements using the impedance tube. In general, the experimental
observational model can be described as:

y = h(θ, ξ) + ε, (20)

where y = [Zmeas
s ] or [Zmeas

c , kmeas
c ] corresponding to the measurement procedures, h(θ, ξ)

is the modified three-parameter model based on the JCAL model derived in Section 2, θ is
a set of unknown transport parameters [φ, d, σs], ξ consists of the known environmental
conditions (e.g., specific heat ratio γ, quiescent pressure P0) and the measured thickness
of felt samples t, and ε is the unknown factor may result from media inhomogeneity,
measurement error and so on. Here, we consider the white Gaussian noise from the electric
signal as the only source of the unknown factor ε.

4.2. Heuristic Approaches

For the purpose of estimating θ from a given y, two representative heuristic algorithms
are performed. Based on the number of unknown transport parameters, inverse problems
can be grouped into two categories: single-parameter and multi-parameter inversion.

In general, the porosity φ and fibre diameter d are the given parameters for one
sintered metal fibre felt. For our modified three-parameter model, this means that only one
parameter is unknown, which is the standard deviation in the pore size σs. Therefore, the
minimisation problem reduces to a single parameter estimation, which can be solved by a
local optimisation algorithm.

As a non-gradient method, the Nelder—Mead Method has been successfully imple-
mented in some similar nonlinear optimisation schemes [42]. Here, the standard deviation
σs is recovered from the surface impedance Zs. The objective function is formed as:

min
θ

F(ω; θ) = min
θ

[
1

N f

fu

∑
f= fl

‖Zmeas
s (ω)− Zmodel

s (ω; σs)‖
]

(21)

where ω is the angular frequency, N f is the number of frequency points, fl is the lower
frequency, and fu is the upper frequency.
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During the inversion, the frequency range f ∈ [500, 2500] at intervals of 50 Hz, the
standard deviation σs ∈ [0, 1], the starting point is set to 0.5, and the maximum number of
iterations is set to 500.

In the case of totally unknown parameters of one fibrous metal sample, a global opti-
misation algorithm for inversion is proposed. The genetic algorithm (GA) is a non-gradient
method inspired by the process of natural selection, which is the class of evolutionary
algorithms [43]. Unlike the Nelder—Mead simplex algorithm, which can only find a local
optimum close to the starting point, however, GA is capable of finding generally good
global solutions, and no starting point is required, which makes GA easier to implement.

In this case, to study the effect of the choice of initial acoustical properties for inversion,
[φ, d, σs] are recovered from the surface impedance [Zmeas

s ] and the fundamental acoustic
properties [Zmeas

c , kmeas
c ], respectively.

The flow of GA is illustrated in Figure 4. Three transport parameters [φ, d, σs] (sum-
marised in Table 1) are encoded as chromosomes and optimised by GA. The GA optimi-
sation process starts from a population of individuals randomly generated in constraints,
which is called initialisation. The next step is to generate another two generation popula-
tions of solutions through crossover and mutation, respectively. The crossover probability
is basically set to 0.95, and the mutation probability is 0.1 for two inversion problems. To
avoid producing a solution that is not physically reasonable, constraints are also employed
in the process of crossover and mutation. A portion of the existing population is selected
by rating the fitness of each solution to breed the next generation. Elitist selection is intro-
duced here to guarantee that the solution quality will not decrease from one generation
to the next [44]. The fitness function for recovering [φ, d, σs] from [Zmeas

s ] is analogous to
Equation (21), which can be given by

min
θ

F(ω; θ) = min
θ

[
1

N f

fu

∑
f= fl

∥∥∥∥∥Zmeas
s (ω)− Zmodel

s (ω; σs)

Zmeas
s (ω)

∥∥∥∥∥
]

(22)

for inversion from [Zmeas
c , kmeas

c ], the fitness function can be written as:

min
θ

F(ω; θ) = min
θ

[
1

N f

fu

∑
f= fl

(∥∥∥∥∥Zmeas
c (ω)− Zmodel

c (ω; φ, d, σs)

Zmeas
c (ω)

∥∥∥∥∥
+

∥∥∥∥∥ kmeas
c (ω)− kmodel

c (ω; φ, d, σs)

kmeas
c (ω)

∥∥∥∥∥
)] (23)

Considering the characteristic impedance and the complex wave number may have
different contributions to the fitness function, the fitness function is formed as a sum of
the error percentage of Zc and kc to make sure two complex properties can be minimised
simultaneously and equally.

.

.

.

Fitness evaluation

Initial population

Termination?

Selection

No

Yes

Optimal solution

Genetic opreation

CrossoverMutation

Figure 4. Outline of the genetic algorithm.
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Table 1. Range values of the transport parameters set in GA.

φ d (µm) σs

(0.5, 1) (5, 105) (0.1, 0.6)

To increase the chance of searching the global minimum, the initial population size
and the maximum number of iterations are both set to 200, and each inversion procedure
will run several times due to the initial population of GA being randomly generated.

5. Results and Discussion
5.1. Theoretical Model Verification

The proposed theoretical model for sintered metal fibre materials presented in Section 2
has been validated with a set of independent experiment data. Six fibrous metal samples
with 50 mm × 50 mm square cross-section are used to test the sound absorption property
using the acoustic measurement system performed in Section 3. The porosity φ and fibre
diameter d of each sintered specimen are listed in Table 2. The thickness is averaged
from five sample points located around and in the centre of the specimen by using a
spiral micrometer. These six sintered specimens, generally, can be grouped into two
categories: samples 1–3 with gradient porosity and sample 4–6 with gradient thickness.
Furthermore, the only variable between samples 2 and 5 is the fibre diameter if the slight
difference in thickness is neglected. Note that samples 4–6 are cut from one complete
fibrous metal material.

Table 2. Physical parameters of six sintered metal fibre materials.

Sample Number φ (%) d (µm) Thickness (mm)

1 95 22 17.77
2 90 22 19.26
3 85 22 19.52
4 90 40 29.54
5 90 40 19.86
6 90 40 9.89

Based on the prior assumption of the log-normal distribution of pore size, the standard
deviation in the pore size σs is the only unknown parameter that is difficult to measure
directly. For this sake, the Nelder—Mead simplex algorithm stated in Section 4.2 is per-
formed to fit the measured surface impedance Zs curves of six felt samples. The fitting
of experimental measurements by minimising the objective function (Equation (21)) is
illustrated in Figure 5. Following the inverse characterisation results of six felt samples, it
can be seen that the real and imaginary parts of the measured Zs are generally fitted well
by the algorithm using the theoretical model. The optimal parameter σs recovered from the
inversion process for each sample is summarised in Table 3.
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Figure 5. Fitting for the measured normalised surface impedance of six felt samples, (a) Sample 1,
(b) Sample 2, (c) Sample 3, (d) Sample 4, (e) Sample 5, (f) Sample 6.

Table 3. Optimal standard deviation obtained from the inverse characterisation on the six felt samples

Sample
Number 1 2 3 4 5 6

Optimal σs 0.4502 0.4697 0.4961 0.4486 0.4431 0.5112

In order to avoid the possibility of mistaking a local minimum for a global minimum
by the algorithm, the evolution of the objective function minima in the function of the
standard deviation σs related to all samples is displayed in Figure 6. Visually, only one
minimum exists in the objective function for σs values ranging from 0 to 1. Therefore, the
transport parameter σs recovered from experimental Zs by the Nelder—Mead simplex
algorithm can be confirmed as a global minimum.
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Figure 6. Minimum of the objective function for six inversion processes, (a) Sample 1, (b) Sample 2,
(c) Sample 3, (d) Sample 4, (e) Sample 5, (f) Sample 6.

As previously derived in the theoretical model, the five of six transport parameters in
the JCAL model can be expressed via three pore parameters, using Equations (12)–(16). The
complete set of non-acoustical parameters in the JCAL model for these samples, calculated
by two known physical parameters [φ, d] and the identified parameter σs based on the
modified three-parameter model, are summarised in Table 4. The estimated values of five
parameters seem sensible in their ranges, respectively, compared with those of fibrous felts
reported in other literature. By comparing the transport parameters of each sintered felt
sample in Tables 3 and 4, the standard deviation σs of samples 1–3 increases gradually with
the decrease in the porosity. For the comparison between samples 2 and 5, fibre diameter d is
inversely proportional to the standard deviation σs. As for samples 4–6, a good coincidence
between samples 4 and 5 is observed, while sample 6 has apparent discrepancies with
non-acoustical parameters in the other two samples. This may attribute to inhomogeneity
across the complete sintered metal fibre materials incurred by manufacturing defects. In
summary, the value of standard deviation σs range from 0.4 to 0.5 and be insensitive to
the changes of the other two parameters. It is noted that the tortuosity of a fibrous metal
(defined in Equation (7)) with the log-normal distributed pore size depends only on the
standard deviation σs.
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Table 4. Results of the non-acoustical parameters in the JCAL model for six felt samples.

Sample
Number φ

σ
(N·s·m−4)

α∞ Λ (µm) Λ
′

(µm) k
′
0 (µm2)

1 0.95 41,954.06 1.48 77.13 113.86 13041.30
2 0.90 96,559.47 1.53 53.37 81.56 27060.14
3 0.85 173,335.58 1.60 42.27 67.83 41938.14
4 0.90 26,613.63 1.47 99.33 146.24 8339.47
5 0.90 25,989.77 1.46 99.92 145.72 8379.13
6 0.90 35,521.69 1.65 92.41 152.71 7871.56

Moreover, a forward evaluation for the sound absorption coefficient using the JCAL
model, which is calculated by six non-acoustical parameter [φ, σ, α∞, Λ, Λ

′
, k
′
0] listed in

Table 4, are compared with the measured data, as shown in Figure 7. The predicted sound
absorption coefficient matches well with the measured curve for each felt sample.
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Figure 7. Comparison of the measured sound absorption coefficient and theoretical one calculated by
six non-acoustical parameters based on the JCAL model for six sintered felt samples, (a) Sample 1,
(b) Sample 2, (c) Sample 3, (d) Sample 4, (e) Sample 5, (f) Sample 6.
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Since the fit and predicted curves are both in good agreement with the measured
normalised surface impedance and sound absorption coefficient, respectively, the prior
assumption on the log-normal distribution of pore size in these fibrous metal felts is verified.
Overall, results have shown that our modified three-parameter theoretical model is capable
of yielding accurate results for the sintered metal fibre materials.

5.2. Numerical Investigation

In a further analysis, the theoretical acoustical data generated from the established
modified model is used to study the difference between two inverse problems: recovering
the transport parameters from surface impedance Zs and two porous material proper-
ties [Zc, kc], respectively. According to the Equations (8), (9) and (19), surface impedance
Zs can be expressed by two porous material properties [Zc, kc] with the known material
thickness. For the purpose of analysing the complexity of two inverse problems, nu-
merical parameters are adopted. In order to take both generality and particularity into
consideration, three instead of one set of randomly generated transport parameters (listed
in Table 5) and the corresponding acoustical data are selected. The GA presented in
Section 4.2 is applied for characterising these three generated samples owing to its power
for multi-parameter identification.

Table 5. Randomly generated physical parameters of fibrous metal felts for numerical investigation.

Generated
Sample φ d (µm) σs Thickness (mm)

A 0.9074 95.5792 0.1635 46.1019
B 0.6535 57.4824 0.4076 34.5052
C 0.6977 15.0724 0.2074 35.1952

Due to the nature of the non-deterministic algorithm, the GA is continuously run three
times with the initial population that is randomly generated within the range values in
Table 1. The optimal parameters obtained in each run for two inverse problems are sum-
marised in Table 6, and the relative errors between the theoretical and optimal parameters
are given together for intuitive understanding. The best fitness values of each run are also
provided as a reference. The iterative process of GA takes approximately 2.8 s on a Intelr

CoreTM i7-9700 processor for each run.
As shown in Table 6, the same transport parameter obtained in any two trials for

the same input parameters differs from each other. Meanwhile, the variation trend of the
error relative to the theoretical value is also irregular. Actually, as a typical population-
based global search meta-heuristic, the GA is capable of identifying near-optimal solutions
among the local optimums but cannot guarantee that a global optimal solution can be
found. In comparison, local search-based strategies such as the Newton—Raphson Method
and Nelder—Mead simplex algorithm (presented in Section 4.2) are dependent on initial
guesses and easily plunge into the local optimum. This is an important factor in the choice
of GA to compare the complexity of two inverse problems.
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Table 6. Transport parameters identified using GA from the surface impedance Zs and two acoustic
properties [Zc, kc] with relative errors between the theoretical and optimal values. The mean relative
errors for each input parameter are given in boldface.

Generated
Sample

Input
Parameters Number φ± Error (%) d (µm)± Error

(%) σs ± Error (%) Fitness Value

A Zs #1 0.9156 (+0.91) 90.9148 (−4.88) 0.1654 (+1.14) 0.0074
#2 0.9123 (+0.55) 92.8670 (−2.84) 0.1653 (+1.11) 0.0045
#3 0.9241 (+1.84) 86.2075 (−9.81) 0.1692 (+3.50) 0.0151

Mean 0.9173 (+1.09) 89.9964 (−5.84) 0.1666 (+1.90)
[Zc, kc] #1 0.9074 (+0.001) 95.6981 (+0.12) 0.1640 (+0.28) 3.2359× 10−4

#2 0.9113 (+0.43) 94.3968 (−1.24) 0.1761 (+7.69) 0.0035
#3 0.9166 (+1.02) 92.5786 (−3.14) 0.1912 (+16.93) 0.0083

Mean 0.9118 (+0.48) 94.2245 (−1.42) 0.1771 (+8.32)
B Zs #1 0.6344 (−2.93) 60.2355 (+4.79) 0.4067 (−0.22) 0.0149

#2 0.6960 (+6.50) 54.7718 (−4.72) 0.4350 (+6.73) 0.0233
#3 0.6492 (−0.66) 63.8648 (+11.10) 0.4476 (+9.83) 0.0260

Mean 0.6599 (+0.97) 59.6240 (−3.73) 0.4298 (+5.44)
[Zc, kc] #1 0.6545 (+0.14) 55.8480 (−2.84) 0.3934 (−3.48) 0.0120

#2 0.6508 (−0.41) 55.5301 (−3.40) 0.3875 (−4.93) 0.0130
#3 0.6483 (−0.80) 56.9729 (−0.89) 0.3963 (−2.77) 0.0065

Mean 0.6512 (−0.35) 56.1170 (−2.38) 0.3924 (−3.73)

C Zs #1 0.8859 (+26.97) 13.4143
(−11.00) 0.5449 (+162.71) 0.0117

#2 0.8081 (+15.83) 15.8471 (+5.14) 0.4688 (+126.00) 0.0089
#3 0.7293 (+4.53) 15.2246 (+1.01) 0.2976 (+43.48) 0.0020

Mean 0.8078 (+15.78) 14.8287 (−1.62) 0.4371 (+110.75)
[Zc, kc] #1 0.7048 (+1.02) 19.0428 (+26.34) 0.3826 (+84.43) 0.0162

#2 0.7031 (+0.77) 16.1080 (+6.87) 0.2747 (+32.41) 0.0084
#3 0.7012 (+0.50) 13.9150 (−7.68) 0.1122 (−45.92) 0.0064

Mean 0.7030 (+0.76) 16.3553 (+8.51) 0.2565 (+23.67)

For ease of comparison, the mean relative errors of transport parameters identified
from two input parameters are illustrated in Figure 8 for three generated samples, respec-
tively. In terms of comparing the effect of input parameters upon the inversion of transport
parameters in one generated sample, inversion from [Zc, kc] shows lower errors than the
Zs. For these two inverse problems, variations in the input parameters lead to differences
in the fitness function. The best fitness value in each trial is very close to the optimal
solution (F(ω; θ) = 0) while always being unequal at our limited attempts, which means
the fitness functions may have multiple near-optimal solutions that are sufficiently close
to the optimum. The optimisation algorithm seems to be easier to get stuck at a locally
optimal value in inverse characterisation from Zs than from [Zc, kc]. The nearest optimal
solution searched by the GA appeared at trial #1 in inversion from [Zc, kc] of sample A,
whose porosity with 0.001% error can be regarded as an exact value. Meanwhile, it is
noted that the relative error of porosity is found to be generally lower than the other two
parameters in comparing each transport parameter. Additionally, the identified results
recovered from two input parameters of sample C are visibly inferior to the other two
samples, especially for the standard deviation σs.
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Figure 8. Comparison of the mean relative error of transport parameters identified from the sur-
face impedance Zs and two acoustic properties [Zc, kc] for three generated samples, (a) Sample A,
(b) Sample B, (c) Sample A.

For further investigating the causes of error in searching the global minima, sample C
is selected as a typical one to examine the difference in characteristics of fitness function
between using Zs and [Zc, kc] as input parameters to determine three transport parameters
[φ, d, σs]. As illustrated in Figures 9–11, the three-dimensional (3D) profiles of the fitness
function are performed by fixing one of three parameters and varying the other two.
Due to the fact that the objective and near-optimal solutions of functions distribute in a
narrow region close to 0, which could hardly be identified on a 3D surface, the logarithmic
transformation is performed for two fitness functions to amplify the differences in number
and characteristics of local minimums. Moreover, a two-dimensional (2D) cross section
is plotted at Log(Fitness) = −2, i.e., fitness value equals to 0.01. The section derived
from this plane intersecting the curved surface is the so-called contour, which is plotted
on the 2D projection plane of function. According to the Equations (22) and (23), fitness
functions of GA are measured by the normalised mean error (NME). Thus, the 3D surface
under the drawn 2D cross-section is composed of the solutions with the NME of ±1%.
Correspondingly, the local and global minimums are located in the area composed of axes
and contour lines on the 2D projection plane.

Considering the mean relative error of identified porosity in sample C is significantly
lower than the other two parameters, a detailed analysis is performed with a theoretical
value and two fixed porosity values selected from (0.70, 0.88) obtained in six trials, as
shown in Figure 9. The range values of fibre diameter are also narrowed to (5, 25) based
on the results of six trials. It can be clearly seen that every sampling surface has at least
one valley, which means there are an amount of equal and unequal local optimums for
both two fitness functions. The depth of a valley measures the degree of closeness between
the local and global minimum. Note that the global minima are both F(ω; θ) = 0 for two
inversion problems, which means the logarithm of global minima actually goes to negative
infinity as sampling space increases. A combination of prominence and the number of
valleys directly leads to the difficulty in achieving global optimisation. The lots of comb-like
valleys in Figure 9a–c and e would lead the search algorithm to converge to a wrong optimal
point and hard to jump from the local optimal position. Conversely, global optimisation
techniques could generally avoid the smooth valleys displayed in Figure 9d,f.
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(a) φt = 0.69, inversion from Zs. (b) φt = 0.69, inversion from (Zc, kc).

(c) φ = 0.75, inversion from Zs. (d) φ = 0.75, inversion from (Zc, kc).

(e) φ = 0.85, inversion from Zs. (f) φ = 0.85, inversion from (Zc, kc).

Figure 9. 3D profile of the logarithm of fitness function versus the fibre diameter d and standard
deviation σs with the fixed porosity φ, and 2D projection along d− σs plane with contour plot at
Log(Fitness) = −2. (a,c,e) Varying different porosity to investigate inverse characterisation from the
surface impedance Zs. (b,d,f) Varying different porosity to investigate inverse characterisation from
two porous material properties [Zc, kc].
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(a) (b)

Figure 10. 3D profile of the logarithm of fitness function versus the porosity φ and standard devi-
ation σs with the fixed fibre diameter d, and 2D projection along φ− σs plane with contour plot at
Log(Fitness) = −2, (a) dt = 15.07, inversion from Zs, (b) dt = 15.07, inversion from (Zc, kc).

(a) (b)

Figure 11. 3D profile of the logarithm of fitness function versus the porosity φ and fibre diameter
d with the fixed standard deviation σs, and 2D projection along φ− d plane with contour plot at
Log(Fitness) = −2, (a) σt

s = 0.21, inversion from Zs, (b) σt
s = 0.21, inversion from (Zc, kc).

Visually, fitness function using Zs as input parameters shows a complex search space
which has numerous minimum “traps” in Figure 9c,e, while function with [Zc, kc] shows a
relatively smooth search space with fewer minimum “traps” in Figure 9d,f. This explains
the reason why the relative errors of the identified porosity recovered from Zs are apparently
higher than those from [Zc, kc] in general, even though part of the identified parameters
inversion from Zs is a little better than those from [Zc, kc].

The surfaces presented in Figure 9a,b show the common feature that both have lots of
comb-like valleys. In other words, there are multiple sets of near-optimal solutions [d, σs]
around the theoretical value of porosity, which interprets the cause of significant errors in
the fibre diameter d and standard deviation σs recovered from both two inversion problem.

Further, another two 3D profiles of the fitness function are also provided by letting
d and σs to be constant, respectively, as shown in Figures 10 and 11. In comparison of (a)
and (b) in these two figures, overall, the valleys in the fitness function using [Zc, kc] as
input parameters have fewer numbers and more concentrated distribution than those in
the function with Zs. Especially, only one minimum, i.e., optimal solution, can be found
in Figure 11b. This in turn explains the intrinsic cause of the larger error in searching the
standard deviation. Overall, one can conclude from the comparison of Figures 9–11 hori-
zontally that the fixing of one value in [d, σs] can largely improve the optimisation quality
and efficiency, or the difficulty in determining fibre diameter and standard deviation from
Zs or [Zc, kc] is obviously higher than in determining porosity. Actually, global optimisation
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of the fitness function is processed on all three parameters simultaneously, which means
the search space is far more complicated than the 3D surface shown in Figures 9–11. The
combination of these factors results in the complexity of inverse characterisation from
acoustical data and deviations of objective variables to a different degree. In general,
the multiple execution results of GA and the detailed investigation of sample C for two
inverse problems both indicate that inversion from two porous material properties [Zc, kc]
is preferable to surface impedance Zs.

6. Conclusions

In this study, two heuristic approaches are, respectively, performed to validate the pro-
posed modified three-parameter model by impedance tube measurement and investigate
the effects of two input acoustical parameters on the inverse characterisation of sintered
metal fibre materials. A new set of transport parameters in the modified three-parameter
model based on the JCAL model for the acoustical properties of porous media is provided.
A satisfactory result is achieved in fitting the normalised surface impedance measured by
an acoustic measurement system for six sintered specimens with varying porosity, fibre
diameter, and thickness. With the established modified model, a numerical investigation
is performed to study the difference between recovering all three transport parameters
from surface impedance and from two porous material properties. The several execution
results of GA and further analysis of two fitness functions indicate that the search space
in inversion from surface impedance is more complex than that from the characteristic
impedance and the complex wave number.

Differing from the previous works on direct, indirect, or inverse methods based on the
five or six-parameter acoustical model, our modified three-parameter model and inverse
characterisation method realise effective and accurate inverse acoustic characterisation of
sintered metal fibre materials. The accuracy of our modified three-parameter theoretical
model is validated by experiments. Based on the proposed modified three-parameter
model, the sintered metal fibre materials with two known customised microstructure
parameters can be accurately characterised using a local optimisation algorithm. Complete
inverse acoustic characterisation of fibrous metals from the characteristic impedance and
the complex wave number is proved to be more accurate than from the normalised surface
impedance by a global optimisation algorithm. Our future work will concentrate on
developing new methods to improve accuracy for inverse characterising various porous
materials based on this modified three-parameter model.
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