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Abstract: As an important direction of topology management and infrastructure construction in
Internet of Vehicles (IoV), the problem of roadside unit deployment has been discussed a lot. Consid-
ering the problem of communication occlusion caused by mobile vehicles, a novel multi-objective
optimization problem of roadside unit deployment under the constraints of target road coverage and
communication reliability is proposed in this paper. Firstly, the traffic flow model of the vehicle is
introduced, and the channel model considering the occlusion of a mobile vehicle is proposed by a
practical two-ray model and knife-edge diffraction model. Then, on the basis of analyzing the diffi-
culty of the problem, an Improved Artificial Bee Colony algorithm based on Neighborhood Ranking
(NR-IABC) and a Greedy Heuristic (GH) algorithm are proposed to approximately solve the problem.
The NR-IABC algorithm applies the “Neighborhood Ranking” method to reduce the search domain,
and then to further reduce the solution time. In order to avoid a local optimum, the sensitivity and
pheromone are used as the selection strategy to replace the traditional roulette selection method in the
NR-IABC algorithm. In addition, the mutual attraction between bees is involved in the neighborhood
search of the following bees, and a new nectar source is generated according to the reverse learning
strategy to replace the worst nectar source at the end of each iteration. Finally, results of comparative
simulations based on real-life datasets show that the NR-IABC-based solution can always deploy
fewer RSUs, and thus is more cost-effective compared with the GH-based solution.

Keywords: internet of vehicles network; deployment of roadside units; channel occlusion; artificial
bee colony algorithm; greedy heuristic algorithm

MSC: 94A40

1. Introduction

Internet of Vehicles (IoV) refers to the realization of a comprehensive network con-
nection of vehicle-to-everything (V2X) with the help of a new generation of information
and communication technology, such as Vehicular Ad Hoc Network (VANET). It can im-
prove the intelligence level and autonomous driving ability of vehicles, thus improving
traffic efficiency, building new formats of transportation services, and providing intelligent,
comfortable, and efficient comprehensive services for users [1]. Vehicles in an IoV system
need to exchange information about environments, traffic, and other vehicles in different
actual application scenarios, such as smart ports, urban roads, highways, and so on [2].
Basically, an IoV system has three components: On-Board Units (OBUs) mounted on each
vehicle, Roadside Units (RSUs) placed along roads, and the communication channel [3].
The OBU is used to collect and transmit information related to vehicle status, safety, etc.
The RSU is fixed and deployed on the roadside for data forwarding and network main-
tenance. At present, a lot of research efforts related to IoV focus on the fields of network
topology management and optimization, efficient routing technology and information
security, etc. [4]. Among them, network topology management and optimization involve
network deployment, network performance management, network fault management, etc.,
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and are the initial work for the IoV system design and implementation. The RSU is the
main infrastructure of the IoV system, and thus RSU deployment is an important direction
of IoV network topology management and optimization. Specifically, the RSU deployment
problem involves optimizing the number and location of RSUs under the constraints of
different application scenarios and service quality to minimize the cost of IoV infrastructure.
However, the RSU deployment process in real-life scenarios will face the challenges of
dynamic occlusion of traffic flow, radio frequency interference, unreliable wireless channel,
geographic layout, and so on [5]. Furthermore, the dynamic traffic flow consists of various
metal vehicles, and thus forms intermittent occlusion of the wireless channel. Consider-
ing the universality and complexity of the occlusion caused by traffic flow, it is practical
and challenging to study the RSU deployment problem under this constraint, which is
rare in existing work. Moreover, the RSU deployment problem under the constraints of
key service quality such as communication reliability, network coverage, communication
delay [6], and throughput is a kind of multi-constrained optimization problem, and after
the challenges brought by the superimposed application scenarios, the problem becomes
more challenging.

Much of the literature on RSU deployment strategies ignores the impact of obstacles
on communication, and assumes an ideal communication environment or even a one-
dimensional scene to propose the theoretical framework of RSU deployment [7]. Based
on these efforts, many scholars further consider the occlusion effect of static objects, such
as buildings, trees, and large infrastructure, on communication links [8–10]. However,
rare work considers the occlusion of mobile vehicles as obstacles [11,12]. Modeling the
mobile vehicle as an obstacle is necessary, which can attenuate or even block the signal.
Especially in an environment with high traffic flow, such as city roads, the distance between
vehicles is relatively close, and the metal shielding of the signal is strengthened. Moreover,
the changeable traffic flow aggravates the instability of communication between the RSU
and mobile vehicles, and has a nonlinear correlation, which subverts the existing RSU
deployment scheme based on a deterministic RSU coverage model. Therefore, we introduce
the occlusion factor of dense traffic flow, propose a channel model under changeable traffic
flow, and finally propose a practical RSU deployment strategy based on a controllable
linearization error and heuristic algorithm to insure the network reliability in this paper.
We summarize the contributions as follows:

(1) A novel channel model considering the dynamic traffic flow as the obstacles in V2X
communication is proposed according to Huygens–Fresnel principle.

(2) A multi-constraint RSU deployment problem considering the traffic flow, deploy-
ment budget, and reliable communication is proposed, then its NP-hardness and rationality
of discretization error are both proved, and two approximate solutions are proposed based
on greedy heuristic and artificial bee colony algorithm.

(3) The defects of high randomness, local optimum, and slow convergence speed of
the original ABC algorithm are improved by introducing the “Neighborhood Ranking”
method, selection strategy adjustment of nectar, and optimization of position iteration.

(4) Numerical analysis based on extensive simulations verifies the accuracy, scalability,
and efficiency of the two approximate solutions.

The rest of this paper is organized as follows. In Section 2, we present the related
work. Section 3 introduces the relevant channel model and formulation of our prob-
lem. Next, we propose two solutions in Section 4. Analysis of the simulation results is
presented in Section 5. Finally, Section 6 summarizes this work and clarifies the future
research directions.

2. Related Work

Although there is no existing RSU deployment scheme for our proposed scenario, the
efforts of some scholars have inspired our work. In [8], Yu et al. focused on balancing the
two objectives of efficiency and coverage and establishing an RSU deployment strategy
based on traffic demand. Specifically, this model optimizes both the average data delivery
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delay in VANETs and the number of vehicles covered by RSUs. In [13], Anbalagan et al.
proposed a memetic-based RSU (M-RSU) layout algorithm to reduce communication delay
and increase the coverage area between IoV devices through an optimum RSU deployment.
In addition to the M-RSU algorithm, they also proposed an intrusion detection system (IDS)
based on distributed machine learning (DML), which can prevent catastrophic security
failures in software-defined (SD) IoV networks. In [4], Alheeti et al. proposed a new
distributed roadside unit to improve the performance and connectivity of vehicles. This
method is mainly based on K-means to find the best location for each roadside unit. In
addition, this method supports dynamic movement, and each vehicle has long-term connec-
tivity. In detail, the system can adapt to different locations and achieve a high connection
rate with a low error rate while reducing the cost. In [14], Liang et al. studied the location
optimization of an RSU for information transmission under random traffic conditions, and
proposed a genetic algorithm (GA) combined with mixed integer linear programming (GA-
MILP) to solve the model. In [15], Selvakumari et al. proposed Chew’s Second Delaunay
Triangulation Refinement-based Optimal RSUs Deployment Scheme (CSDTR-ORDS) to
ensure the maximum connectivity of vehicle to infrastructure (V2I) communication. The
proposed CSDTR-ORDS is a reliable scheme for placing RSU requirements in convex maps
and setting the transmission range to each individual RSU, so that each map location can
certainly be covered by at least one RSU even in the case of multiple obstacles. In [9],
Shi et al. tried to find better RSU deployment (RSUD) candidate locations in some grid
networks with equal length streets to minimize the average reporting time of emergency
messages in V2X networks. They proposed a message dissemination model for RSUD
with the V2X network and a center-rule-based neighborhood search algorithm (CNSA).
In [16], Guerna et al. propose a new bio-inspired RSU placement system called ant colony
optimization system for RSU deployment in VANET (AC-RDV). Through graph-based
modeling, a new description of RSU deployment problem is proposed, that is, maximizing
intersection coverage. The number of RSU intersections that ensure the maximum network
connectivity is found. In [6], Ahmed et al. studied the problem of placing RSUs on roads
similar to highways, and proposed an integer linear programming model with the goal
of minimizing network delay to describe the network under consideration. However, the
above models regard vehicles as mutually independent dimensionless entities, which ig-
nores the interference caused by environmental factors on V2X communication. Obviously,
the impact of static or dynamic obstacles on communication reliability is inevitable in a real
scene, and then these efforts are not practical.

To solve this problem, some literature further considers the effect of static obstacles on
communication. In [17], Lytaev et al. are devoted to the study of radio wave propagation
modeling in an urban environment. They applied the three-dimensional bi-directional
parabolic equation (PE) method to specific problems for the first time. Buildings and
other obstacles are modeled by impervious (fully conductive) cuboids. It can simulate
the harmonic radiation source with an arbitrary pattern. In [18], Li et al. introduced the
measurement and analysis of propagation channels in V2I scenarios. First, they proposed a
method based on deterministic geometry. According to the environmental characteristics of
roadside trees, V2I links are divided into three types. Secondly, for each link, they studied
the large-scale fading effect on the V2I channel, including the path loss index and shadow
component. Subsequently, they verified the empirical path loss model by using a large
number of measurements and two classical channel models. Finally, they also analyzed
small-scale fading effects, including the fading depth and distance-dependent Ricean K-
Factor. In [19], Kang Kim et al. proposed a neural evolutionary adaptive beamforming
scheme based on enhanced topology to control the radiation pattern of the antenna array,
so as to mitigate the impact of shadows in urban V2V communication at intersections.
In [20], Eshteiwi et al. study the performance of V2V cooperative wireless communication
based on full-duplex Amplify and Forward (AF) relay over Nakagami-m fading channels.
They consider independent and not necessarily identically distributed (i.n.i.d) Nakagami-
m fading channels and derive new exact and asymptotic outage probabilities for exact
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equivalent and approximate signal-to-interference-plus-noise ratio (SINR), respectively.
Furthermore, a lower bound on the symbol error rate of the considered system is derived.
The results demonstrate the significant impact of the considered interference and blocking
on the system performance. This highlights the importance of considering these phenomena
in performance evaluation in order to assess the practical limitations of V2V cooperative
wireless communication. In [21], Hoque et al. provide experimental test data and analysis
to quantify the effects of relative vehicle speeds, height differences between vehicles, and
internal obstacles on V2V communication range and on-side traffic reliability in urban
and highway environments, and further discuss how these results can adversely affect the
design parameters of safety-critical applications by considering a V2V application “Safe
Traffic Advisory” on a two-lane rural highway. In [22], He et al. show the measurements
and model the propagation channel, where the bus acts as both a shading object and a
relay between two passenger cars. They analyzed the effects of the bus location and car
separation distance on path loss, shadowing, small-scale fading, delay spread, and cross-
correlation. By using the Akaike information criterion and the Kolmogorov–Smirnov test,
the Nakagami distribution was found to describe the statistics of small-scale fading well.
The distance dependence of path loss is analyzed and a stochastic model is established.
However, the experiment only considered the impact of the school bus as an obstacle,
and the shadow effect caused by the closed metal body such as a truck and trailer will
be more obvious. In [23], Abbas et al. proposed a shadow fading model based on real
measurements in urban and highway scenes. The measured data are divided into three
categories in the study: line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles,
and non-line-of-sight (NLOS) due to buildings. When obstacles protrude into the signal
path in the Fresnel zone, the deflected signals are out of phase with the direct signal,
and then the direct signal can be attenuated or even blocked completely. Therefore, the
channel model based on the Huygens–Fresnel principle is more practical compared with
those channel models without considering the effect of deflected signal, and is involved in
this paper. These efforts effectively expand the field of theory and application, but none
of them can be applied to our problem in two aspects. First, we consider the moving
traffic flow as a dynamic obstacle, which increases the nonlinearity of the communication
channel. Second, a multi-objective optimization problem for RSU deployment constrained
by dynamic obstacles, deployment budget, and communication reliability subverts the
existing RSU deployment scheme based on the deterministic RSU coverage model, and the
research on its problem characteristics and solutions needs to be proposed.

3. Relevant Models and Problem Formulation
3.1. The Traffic Flow Model

Because it is difficult to accurately analyze the channel model under mixed traffic
flow, the most serious occlusion of traffic flow as dynamic obstacles of wireless channels is
adopted in this paper when the traffic flow is formed all by container trucks. We introduce
a two-lane road scenario as shown in Figure 1, which is normal on urban city roads, smart
ports, or highways. The road is busy with a large number of trucks. Furthermore, the
dimension of the container truck is adopted for normalization. Because an RSU has higher
transmission power and receptive sensitivity than that of an OBU, the downlink from an
RSU to OBU is much more reliable than the uplink from an OBU to RSU. Therefore, when a
mobile truck is covered by an RSU in this paper, the reliability of the uplink from the OBU
to the RSU must meet the pre-set conditions, which means that the reliability of the uplink
is used to evaluate the coverage of the OBU by the RSU in this paper.

We suppose the trucks are all driving along the middle line of the lane because the
width of the lane is negligible relative to the transmission distance between the RSU and
the OBU. The parameters and the variables used in the problem statement are summarized
in Table 1.
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Figure 1. Model of traffic flow under the fading channel condition.

Table 1. Parameters and variables used in the problem statement.

Parameters Description

l The length of the container truck
w The width of the container truck
h The height of the container truck
H The height of the top of the RSU from the ground
b0 The height of the antenna of the OBU from the ground
s0 The width of the road
γ The arrival rate of container trucks
λ Wavelength
f Frequency
τ A minimum sensitivity threshold of the received signal
Ds The transmitting power of the OBU
Dr The received power of the RSU
Variables Description
d0 A continuous variable. The distance from the bottom of the RSU to the curb
α A continuous variable. The angle between AB and A’B

θ
A continuous variable. The elevation angle between the antenna of the
OBU and the top of the RSU

J A continuous variable. The attenuation due to diffraction

PL A continuous variable. The attenuation under the free-space path loss
condition

LOSSNLOS A continuous variable. The total attenuation under the NLOS condition
LOSSLOS A continuous variable. The total attenuation under the LOS condition
PNLOS A continuous variable. The probability of the NLOS condition
PLOS A continuous variable. The probability of the LOS condition

PNLOS
nloss

A continuous variable. Whether the signal packet is transmitted
successfully under the NLOS condition

PLOS
nloss

A continuous variable. Whether the signal packet is transmitted
successfully under the LOS condition

Pnloss
A continuous variable. The probability of successful signal packet
transmission
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In the above scenario, the arrival process of vehicles to a road can be modeled as a
Poisson process. Then, the probability P(N = k) that there are k trucks in the road segment
of length L is as follows [24]:

P(N = k) =

(
γL)k

k!
e−λL (1)

where γ is the average arrival rate of the Poisson process, and is also equal to the traffic
flow density.

The distance x between trucks refers to the distance from the rear of the preceding
truck to the front of the following truck, as shown in Figure 1. For any two adjacent trucks,
there are no other trucks in the middle. Then, the spacing probability density function
(PDF) of any adjacent two trucks is given by:

fx(x) = γe−γx, x ≥ 0 (2)

3.2. Channel Model
3.2.1. Preliminary Statements

There are different propagation mechanisms for the propagation model of V2I com-
munication, usually divided into path loss (related to transmission distance), large-scale
fading (including but not limited to shadows from objects significantly larger than the car-
rier wavelength), and small-scale fading (variations caused by multipath and/or Doppler
propagation) [11]. Path loss is the expected (average) loss of received power at a certain
distance. Signals from OBU can reach RSU through multiple propagation paths or mul-
tipath components (MPCs), which have different amplitudes and phases. Changes in
signal amplitude due to constructive or destructive interference from different MPCs are
classified as small-scale fading. Eventually, obstacles in the propagation path of one or
more MPCs cause a lot of attenuation, which is an effect known as shading. Shadows can
cause massive attenuation, not only on the LOS component, but also on other major MPCs.
Moreover, it is reported that, in the absence of LOS, most of the power is received by single
bounce reflections from physical objects [15]. Therefore, for real-world simulations and
performance evaluations, it is important to describe the channel parameters as LOS and
NLOS conditions, respectively, which is also adopted in this paper.

3.2.2. Probability of LOS and NLOS

Considering that the effects of static obstacles on channel propagation are additive,
and this additivity will not increase the difficulty of our proposed model. Therefore, we
omit the effects of static obstacles such as buildings and trees, etc., and only consider the
effect of a mobile truck as an obstacle on signal propagation, and also assume that the
ground is flat. When studying the propagation of radio waves between the OBU and RSU,
the intermediate space can be subdivided into a cluster of concentric Fresnel ellipsoids.
From the perspective of electromagnetic wave propagation, any obstacle that hinders the
first Fresnel ellipsoid may affect the propagation of the signal [22]. As a practical rule, when
the intrusion area of obstacles is less than 60% of the first Fresnel ellipsoid, the diffraction
phenomena can be ignored, and the communication link is in a free space, which is a LOS
link. Otherwise, it is an NLOS link [25]. The illustration of the attenuation effect of a mobile
truck on a communication link is shown in Figure 2.
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Figure 2. The illustration of the attenuation effect of a mobile truck on a communication link.

The radius of the First Fresnel ellipsoid between A (the position of the top point of
OBU when the line connecting the OBU and RSU is perpendicular to the middle line of the
road) and B (the top point of RSU) is given by [26]:

R1 = 550
[

d1d2
(d1+d2) f

] 1
2 (3)

where f is the frequency (MHz), d1 and d2 are the distances (km) between the A and B at
the point Q where the radius (m) of the first Fresnel ellipsoid is calculated.

The calculation of the probability of a link in LOS or NLOS condition is based on the
size and position of the truck. The container truck is represented as a cuboid closed metal
diffracting body in our calculation for simplicity. Then, the elevation angle between A and
B is θ, and its trigonometric values are:

sinθ =
H − h + 1√

(H + h− 1)2 + (1.5s0 + d0)
2

(4)

cosθ =
1.5S0 + d0√

(H + h− 1)2 + (1.5s0 + d0)
2

(5)

Suppose the position of the top of OBU at any time is A’, then the distance between A
and A’ is M. The angle between AB and A’B is α, then its trigonometric values are given
as follows:

cosα =
3
2 S0√

(M)2 +
( 3

2 S0
)2

(6)

sin α =
M√

(M)2 +
( 3

2 S0
)2

(7)

Next, an ellipsoid E occupying the 60% of the first Fresnel ellipsoid is constructed
with A’B and 0.6R1 as the focal length and minor axis length, respectively, as shown by
the orange ellipsoid in Figure 2. The blue dotted outline is the range of the first Fresnel
ellipsoid. The parameters of the orange ellipsoid are as follows:

c1 =

√( 3
2 s0
)2

+ (H − h)2

2
(8)
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b1 = 0.6R1 = 550
[

nd1d2

(d1 + d2) f

] 1
2
= 550

[
c1

2

5900× 2c1

] 1
2

(9)

a1 =

√
(b1)

2 + (c1)
2 (10)

where a1, b1, and c1 are the length of major axis, the length of minor axis, and the half of
the focal length of the E, respectively.

Then, we assume the midpoint Q of the major axis of the E to be the origin, the minor
axis of the E to be the x-axis, the major axis of the E to be the y-axis, and the z-axis to be
perpendicular and upward to the xQy plane. Then, the space rectangular coordinate is
established in Figure 2. The standardized equation of E is as follows:

x2

a1
2 +

y2

b1
2 +

z2

c1
2 = 1 (11)

Line l is the line passing through the geometric center of the truck. We use the distance
between the intersection points of the line l and the surface of E as the length of traffic
intrusion in the E. Suppose the coordinates of the two intersection points to be A+(x+, y+,
z+), A−(x-, y-, z-), the direction vector of the line l is (cosα, sin α, 0) and the line l passes
through the point Q (x0, y0, z0). Then, the coordinates of Q are calculated as follows:

x0 = 0

y0 = d0−0.5S0
2cosθ∗cosα −

(
S0

3
2 S0+d0

(H − h− 1) + h
2 − 1

)
sinθ

z0 =

(
S0

3
2 S0+l0

(H − h− 1) + h
2 − 1

)
cosθ

(12)

The point direction form equation of line l is:

x− x0

cosα
=

y− y0

sinα
=

z− z0

0
= t (13)

Substituting Equation (12) into Equation (13), we obtain:

x = t·cosα

y = t·sinα + d0−0.5S0
2cosθ∗cosα −

(
S0

1.5s0+d0
(H − h− 1) + h

2 − 1
)

sin θ

z =
(

S0
1.5s0+d0

(H − h− 1) + h
2 − 1

)
cosθ

x2

a1
2 +

y2

b1
2 +

z2

c1
2 = 1

(14)

The solution of Equation (14) is t+, t−, and the length of A+A− is:

d =

√
(y+ − y−)

2 + (x+ − x−)
2 = |t+ − t−| (15)

Combined with the truck spacing probability density function (PDF) in Equation (2),
the probability of NLOS is obtained:

PNLOS =
∫ d

0
γe−γxdx (16)

In addition, the probability of LOS is:

PLOS = 1− PNLOS (17)

3.2.3. Path Loss under LOS and NLOS Conditions

For the two different types of communication links LOS and NLOS, we propose a
propagation model, respectively. For the condition of LOS, we use the two-ray model
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composed of a straight-propagating path and a ground-reflected path in the free-space
path loss condition [27]. Then, the total attenuation of the signal under LOS condition is
expressed as follows [28]:

PL =

(
λ

4π

)2∣∣∣∣ e−jKrd

rd
+ ζ

e−jKrr

rr

∣∣∣∣2 (18)

where rd is the direct distance from OBU to RSU, rr is the distance reflected through the
ground, λ is the wavelength, K is the number of waves, and ζ is the reflection coefficient [25].
A vertically polarized antenna model is adopted, and then the ζ can be calculated as:

ζ =
sinθ1 − 1

ε

√
ε− cos2θ1

sinθ1 +
1
ε

√
ε + cos2θ1

(19)

where θ1 is the angle of incidence of the reflected ray on the ground, and ε is the
relative permittivity.

For the condition of NLOS, the attenuation is mainly due to the diffraction of electro-
magnetic waves. The attenuation due to diffraction depends on many factors, such as the
carrier frequency, the height, material, and amount of the obstacle in the link between RSU
and OBU. A verified knife-edge diffraction model is used to represent this attenuation for
two reasons [12]. First, since the 5.9 GHz (5.85–5.925 GHz) frequency band or part thereof
is adopted internationally as a globally or regionally harmonized dedicated frequency
band for ITS by ITU-R Recommendations, f is considered to be a typical value of 5.9 GHz
in this paper. Then, λ can be calculated as approximately 0.05 m with λ = c/ f , where c
is the wave speed of electromagnetic (3× 108 m/s). Therefore, λ is significantly smaller
than the size (about 8.5 m) of the truck. Second, this verified knife-edge diffraction model
involving the effect of relative locations and size of the vehicle is practical. Furthermore,
the approximation of this attenuation J calculated by knife-edge diffraction model can be
expressed as follows [22]:

J =

6.9 + 20log10

[√
(v− 0.1)2 + 1 + v− 0, 1

]
, v ≥ −0.78

0, v ≤ −0.78
(20)

where the calculation process of intermediate parameter v is as follows:

v = h

√
2
λ

(
1
r1

+
1
r2

)
(21)

where h is the height of the top of the obstacle above the line connecting TX and RX . r1 and
r2 are the distances from the top of the obstacle to TX and RX , respectively.

Then, the total attenuation LOSSNLOS under NLOS condition is the sum of PL and J.
Furthermore, the total attenuation LOSSLOS under LOS condition contains only PL.

LOSSNLOS = PL + J
LOSSLOS = PL

(22)

3.2.4. Angular Range for Successful Transmission of Signal Packets

The received power Dr of RSU under NLOS (LOS) condition can be calculated
as follows:

Dr = Ds − LOSSNLOS
Dr = Ds − LOSSLOS

(23)

where DS is the transmitting power of OBU.
As the transmission distance and the occlusion ratio increase, the probability of suc-

cessful transmission decreases. Therefore, only vehicles in a specific area may receive
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messages successfully from the deployed RSU. Specifically, this specific area is named as
the coverage area of the RSU. It should be pointed out that the coverage area of an RSU is
different from the transmission area of the RSU, and the transmission area of the RSU is a
circular area limited by its transmission distance in the free-space path loss condition.

To calculate the service area of an RSU, a minimum sensitivity threshold τ of the
received signal strength is introduced based on the proof in [12]. Then, the binary parameter
P NLOS

nloss (P LOS
nloss) for the transmission under the NLOS (LOS) condition can be calculated

as follows:

P NLOS
nloss =

{
0, LOSSNLOS > Ds − τ
1, LOSSNLOS ≤ Ds − τ

P LOS
nloss =

{
0, LOSSLOS > Ds − τ
1, LOSSLOS ≤ Ds − τ

(24)

Because the curve of LOSSNLOS(LOSSLOS) exhibits discrete, non-linear, fluctuating
rising distributions with increasing angle, in order to calculate PNLOS

nloss (PLOS
nloss), we find the

angle value α1 corresponding to the point where the total attenuation LOSSNLOS(LOSSLOS)
is closest to (Ds − τ) dBm in the attenuation curve. So, when α ∈ [0, α1), PNLOS

nloss (PLOS
nloss) = 1,

otherwise, PNLOS
nloss (PLOS

nloss) = 0. Then, the total probability of successful packet transmission
Pnloss is calculated as follows:

Pnloss = PNLOS·PNLOS
nloss + PLOS·PLOS

nloss (25)

As a general rule in signal propagation, when the signal packet loss rate exceeds a
limiting value, the signal becomes useless [17]. Therefore, a reliability lower bound σ is
introduced to constrain Pnloss( Pnloss ≥ σ ). When Pnloss ≥ σ, its value is supposed to be 1,
and the rest of the values are set to be 0.

According to Equations (2), (14) and (24), the calculation of Pnloss highly depends on
the value of γ, α, Ds, and d0. Specifically, the Pnloss decreases with the growth of γ, α, and d0,
and it increases with the growth of Ds. Furthermore, γ, α, and Ds are the preset parameter
in the practice deployment, d0 depends on the location of RSU and is the solution variable
for the subsequent optimization problem. Therefore, the angular range that an RSU can
successfully cover can be solved when the γ, Ds, and d0 are given, and the solution process
is as follows: find α1 based on Equation (25), and Pnloss = 1 holds when 0 ≤ α ≤ α2, and
then the angular range that an RSU can successfully cover is [0, α2], α2 ∈ [0, π

2 ), when γ, Ds,
and d0 are fixed.

3.3. Discretization Method and Error Analysis of Coverage Area

In order to cover the whole road, the main factor is that the candidate positions for
trucks in the target coverage area are infinite, making the deployment of the RSU tricky.
Obviously, the number of candidate positions is infinite (i.e., the solution space of the
problem is infinite, leading to very high computational complexity). Furthermore, the
proposed channel model increases the nonlinearity of the objective function in the above
problem. As proved in [29], the one-dimensional RSU deployment problem is NP-hard.
Therefore, as an extended problem of [29], we discretize the road to approximately solve
the problem. The discretization strategy is as follows: from one side of the road, each road
of length δ is discretized as one segment, and the last segment is still discretized as one
segment when its length is less than δ, and the central point (CP) of a segment is used to
represents the whole segment (the proof will be given in Section 4.1).

After discretization, the probability of successful packet transmission at CP represents
that of each point within a segment. However, this representation will cause a discretization
error µ:

µ =
Max(∆Pnloss )

PCP
nloss

(26)
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where PCP
nloss is the probability of successful packet transmission at CP, the Max(∆Pnloss)

is the maximum ∆Pnloss = Ppi
nloss − PCP

nloss, Ppi
nloss is the probability of successful packet

transmission at any point pi, and pi belongs to a segment.
According to Equations (14), (16) and (26), µ tends to be a maximum within a unit

step increment when α = 0◦, and it will be further affected by the value of d0. As shown in
Figure 1, the CP of segment O1-O2 is point A. Normally, µ ≤ ε holds, and the maximum
segment length δmax can be calculated when µ = ε, and ε is an empirical numerical value in
actual working conditions. Then, the transmission success rate Pnloss under NLOS condition
is analyzed:

Pnloss = PNLOS·PNLOS
nloss (27)

Pnloss = PNLOS holds when P NLOS
nloss = 1. According to the geometric relationship, α

can be calculated as:

α = actan
(

δ

1.5s0 + d0

)
(28)

According to Equation (16), d = d′ holds when OBU is at A, the probability of NLOS
is as follows:

P′NLOS =
∫ d′

0
fx(x)dx = 1− e−γd′ (29)

When OBU is at O1, d = d′′ holds when OBU is at O1, the probability of NLOS is
as follows:

P′′NLOS =
∫ d′′

0
fx(x)dx = 1− e−γd′′ (30)

Therefore, the error is:

µ =
P′′NLOS − P′NLOS

P′NLOS
=

1− e−γ(d′′−d′)

e−γd′ − 1
(31)

According to Equations (16) and (26), when d0 is 0, the change in δ per unit length has
the most serious impact on µ. Therefore, we discuss the influence of δ on the error µ when
d0 = 0 satisfies. For example, when ε = 0.05, δmax ≈ 2.4. Therefore, when 0 ≤ δ ≤ 2.4, µ is
within a reasonable range.

3.4. Problem Formulation

Based on the above models, we formulate the RSU deployment (RSUD) as a multi-
objective optimization problem with the constraints of minimum deployment budget,
coverage of target area, and communication reliability, as follows:

minN

subject to :
N
∑

i=1
pi = 1

Ps
nloss ≥ σ, ∀s ∈ P

(32)

where N represents the total number of the deployed RSUs, Ci represents the number of
covered segments by ith deployed RSU, pi represents the coverage ratio for each RSU, and
pi =

Ci
|P| , P represents the set of all segments, s is a segment, and s ∈ P.

3.5. Hardness Analysis

The proposed RSUD problem is similar to the well-known Geometric Set Cover (GSC)
problem [29]. First, we assume that each RSU can cover an angle of (0, 2π) within the target
area. Therefore, the problem becomes a conventional linear disc covering problem, that is,
the GSC problem. Furthermore, the set of all CP is the coverage target. The GSC problem
is a special case of the set covering the (GC) problem, which is known as NP-Hard. As a
result, the proposed RSUD problem is NP-Hard.
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4. Solutions

In this section, we firstly propose two approximate solutions to the above problem,
namely the Greedy Heuristic (GH) algorithm and Improved Artificial Bee Colony algo-
rithm based on Neighborhood Ranking (NR-IABC). Next, the algorithm details and time
complexities of these two solutions are presented.

4.1. Search Domain Adjustment-Neighborhood Ranking

According to Equations (16) and (25), the successful signal packet transmission de-
creases with the growth of the distance between the RSU and target point or segment.
Therefore, a suitable neighborhood ranking domain for each CP should be found to deploy
an RSU.

We use two variables to describe the coverage of a road segment by an RSU: one
is the angular range for successful transmission of signal packets, and the other is the
conservative coverage radius R. Furthermore, when a CP point of any road segment is
within the angular range for successful transmission of signal packets, and the Euclidean
distance between the CP and the RSU is less than or equal to R, we consider the CP to be
covered by this RSU. First, R0 is the minimum value of the maximum reliable coverage
distance of an RSU at any angle α (α∈[0, α2]). Specifically, for a fixed RSU, d0 is a fixed
value, and then the maximum reliable coverage distance increases with the growth of α
according to Equations (14) and (16). Therefore, R0 equals the maximum reliable coverage
distance when α = 0. As shown in Figure 1, to ensure the coverage of a segment (O1-O2)
by an RSU, an intuitive method is to ensure the coverage of the furthest point O1(O2) by
the RSU, which means that the distance between O1(O2) and the RSU is R0. Under this
condition, the distance between the RSU and the CP of O1-O2 is the conservative coverage
radius R, and R is calculated as:

R =

√
R2

0 −
(

δ

2

)2
(33)

As a result, a circle with a CP as the center and 2R as the radius is built, which is
the neighborhood ranking domain for each CP, which can ensure that any adjacent CPs
(within the same neighborhood ranking domain) share one RSU to save the number of
deployed RSUs. Next, all CPs are ranked in a descending order according to the number
of neighboring other CPs within the neighborhood ranking domain. Finally, the two
approximate algorithms can be solved based on the descending order.

4.2. Greedy Heuristic Solution

In the GH solution, the RSU deployment area is discretized into square grids with
length g. It should be pointed out that the accuracy and time complexity of the GH solution
will increase with the reduction in g [30]. The granularity mainly affects the accuracy and
time of the calculation. Z represents the set of all discrete RSU candidate positions in
the deployment area. Furthermore, the center point of each grid is used to represent the
position of the candidate RSU. We assume that there is only one truck in each grid at the
same time.

The process of the GH solution is shown in Algorithm 1: First, discretize target
coverage roads and RSU deployment areas into grids. Second, sort all CPs of road seg-
ments in descending order according to the number of neighbor CPs within the neigh-
borhood ranking domain. We assume that the circle with R as the radius and CP as the
center is the RSU search domain of the CP. Then, the RSU for each CP should be de-
ployed within the RSU search domain of that CP, and the RSU for CP with the largest
number of neighbor CPs should be preferentially deployed. Before deploying a new
RSU, each CP should be checked whether it has been covered by the deployed RSUs.
Then, when deploying a new RSU, the location with the highest coverage pi within
the search domain should be chosen. The deployment process will be terminated un-
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til all CPs are covered. The pseudocode of the GH algorithm is shown in Algorithm 1:

Algorithm 1 GH algorithm

Input: CPs, Z
Output: The deployment set W of RSUs
1: Calculate R;
2: Sort all CPs in descending order according to the number of CPs within the
neighborhood ranking domain;
3: for i = 1:|CPs| do
4: Find uncovered CPs;
5: for j = 1:Zi
6: select a candidate RSU location r∈Zi that maximizes pi;
7: W←W∪{r};
8: end for
9: end for
10: return W

For the GH algorithm, the time complexity of discretization is O
(
|CPs|2 + |Z|2

)
and

the complexity of neighborhood ranking of all road segments and deployment area is
O
(
|CPs|2

)
. Then, in each deployment of RSU, the number of candidate locations needs to

be checked |Zi| times to calculate the maximum pi, and |Zi| ≤ |Z|, and the time complexity
to calculate pi is O

(
|CPs|2

)
. Therefore, the time complexity to deploy RSUs for all CPs is

O
(
|CPs|2 · |Z|

)
. Finally, the time complexity of Algorithm 1 is:

O = O
(
|CPs|2 + |Z|2

)
+ O

(
|CPs|2

)
+ O

(
|CPs|2 · |Z|

)
= O

(
|CPs|2 + |Z|2

)
+ O

(
|CPs|2 · |Z|

)
(34)

According to Equation (34), the time complexity of the GH algorithm highly depends
on the discretization granularity g and δ, when the problem scenarios are fixed.

4.3. Improved Artificial Bee Colony Algorithm based on the Neighborhood Ranking Solution

When inappropriate discretization granularity is used, the solution of GH tends to
a local optimum. The swarm intelligence optimization algorithm such as the artificial
bee colony (ABC) algorithm mainly seeks the optimal solution by imitating the intelligent
honey-collecting activities of the bee colony, through the role transformation and coopera-
tion principles between bees. The traditional ABC algorithm has some disadvantages: first,
too large a search domain results in a long solution time. Second, it has strong randomness
due to the roulette selection method and it falls easily into a local optimum. Third, the
influence of all leading bees on the process of the following bee’s neighborhood search
is not considered. Fourth, the worst solution produced at the end of each generation
leads to slower convergence during iterations. Therefore, this paper makes the following
improvements from four aspects—search domain adjustment (explained in Section 4.1),
selecting methods, introducing mutual gravitational coefficients, and replacement of the
worst honey source. Therefore, we propose the NR-IABC algorithm, which has good
generalization performance:

(1) The adjustment of the select method.
The roulette selection method in the traditional ABC algorithm will reduce the diver-

sity of the population and cause the phenomenon of excessive convergence. According
to [31], we consider using the combination of sensitivity and pheromone to carry out the
process of selecting nectar sources for the following bees. The process can be divided into
the following four steps:

Step 1: Calculate the fitness value of SN nectar sources f iti, i = 1, 2, . . . , SN
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Step 2: Calculate the pheromone of the nectar source O(i):

O(i) =

{ f iti− f itmin
f itmax− f itmin

, f itmax 6= f itmin;

0, others
(35)

Step 3: Randomly generate the sensitivity of the ith following bee S(i) ∼ U(0, 1).
Step 4: If the sensitivity S(i) of the ith following bee is less than the pheromone O(i)

of the ith nectar source, perform a neighborhood search to generate a new nectar source
(new solution) vi. Then judge its fitness value: if it is better, replace the original nectar with
the new nectar; if S(i) > O(i), the following bee follows the lead bee, and the position of
the nectar source remains unchanged.

(2) The introduction of the mutual gravitation.
In the ABC algorithm, the following bee can only randomly select a nectar source

found by the lead bee to complete the neighborhood search, thus narrowing the search area
of the follower bee and leading to a local optimum. Therefore, considering the introduction
of the gravitational force [32] between the follower bees and the leading bees, the following
interaction strategy is given. Newton’s formula for universal gravitation is as follows:

F12 = G
m1m2

r2
21

→
r 21 (36)

where F12 represents the gravitational force between two objects, G is the gravitational
constant, m1 and m2 are the mass of the two objects, r21 represents the distance between
two objects, and

→
r 21 represents the following unit vector.

→
r 21 =

r2 − r1

|r2 − r1|
(37)

m1 is replaced by the fitness value F(xi) of the ith leading honey source, m2 is replaced
by the fitness value F(xk) of the kth leading honey source. Let there be a total of SN leading
bees, that is, k = 1, 2, . . . , SN, and k 6= i.

Fik = G
F(xi)·F(xk)

(xk − xi)
2 ·

xk − xi
|xk − xi|

(38)

Fikj
= G

F(xi)·F(xk)(
xkj − xij

)2 ·
xkj − xij∣∣∣xkj − xij

∣∣∣ (39)

Then, the formula in the algorithm that follows the honey source update becomes:

vij = xij + Fikj

(
xij − xkj

)
(40)

To ensure FiR ∈ [0, 1], FiR can be standardized to F̃ik:

Total(Fik) =
SN

∑
k=1
k 6=i

[
G

F(xi)·F(xk)

(xk − xi)
2

]
(41)

F̃ik =

∣∣∣∣G F(xi)·F(xk)

(xk−xi)
2 · xk−xi
|xk−xi |

∣∣∣∣
Total(Fik)

(42)

The leading and following bees update the nectar source as follows:

vij = xij + Rij

(
xij − xkj

)
(43)
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Substitute Equation (42) to Equation (43), and we obtain:

vij = xij +
SN

∑
k=1
k 6=i

F̃ikj

(
xij − xkj

)
(44)

The following bees generate a new nectar source when neighborhood searching ac-
cording to Equation (44).

(3) Replacement of the worst honey source.
Because the ABC algorithm tends to rely on the worst nectar source of the current

generation to reduce the new nectar source according to Equations (43) and (44), which
is not conducive to obtaining the optimal result. Correspondingly, it also has a negative
influence on the convergence speed of the algorithm. Therefore, we consider replacing the
worst nectar source with the newly generated nectar source [33], which has mathematically
shown that the reverse learning strategy is a better estimate of the original candidate
solution. This method can be expressed as follows:

After each iteration, the position of the worst honey source is denoted as xi, and
represents the position of the newly generated honey source to x′i , xij is the jth component
of xi, and the jth component x′ij of x′i is calculated as follows:

x′ij = xijL + xijU − rand(0, 1)·xij (45)

where xijL represents lower bound of the jth component of xi, xijU represents upper bound
of the jth component of xi, that is, xijL ≤ xij ≤ xijU , j ∈ {1, 2, . . . , d}. If x′ij > xijU , x′ij = xijU ;
if x′ij < xijL , x′ij = xijL .

For each component of the worst nectar source, Equation (45) is used to update the
new nectar source. If the new nectar source is better, it is used to replace the original
nectar source.

The process of the NR-IABC solution is shown in Algorithm 2: First, discretize the
target coverage roads and RSU deployment areas into grids. Second, sort all CPs of
road segments in descending order according to the number of neighbor CPs within the
neighborhood ranking domain. Before deploying a new RSU, each CP should be checked
whether it has been covered by the deployed RSUs. Then, we preferentially use the NR-
IABC algorithm to deploy a new RSU within the search domain of the CP that has the
largest number of neighbor CPs at each iteration. This avoids low coverage with bees
located near the center of the area, allowing each RSU to maximize its coverage. The
deployment process will be terminated until all CPs are covered.

The process of the NR-IABC algorithm is as follows:
Step 1: Algorithm initialization. Including the size of initialized population, control

parameter limit, the maximum iteration number MaxIt, training set trail is initialized to
zero vector, the maximum element of trail TR, and randomly generate SN initial solutions
xi, i = 1, 2, . . . , SN, according to Equation (46):

xj
i = xj

min + rand(0, 1)
(

xj
max − xj

min

)
(46)

Next, calculate the fitness value of function Fitness( ) for each solution (Fitness( ) is a
function that calculates the proportion of covered CPs to the total CPs);

Step 2: The leading bee constructs a new solution vi according to Equation (43), and
then finds its fitness value; if the fitness value of vi is better than that of xi, then xi is replaced
by vi, so that vi is regarded as the best solution so far; otherwise, remain xi, corresponding
to the ith element of the trail + 1;

Step 3: Calculate all fitness values of xi, and calculate the pheromone O(i) of the ith
nectar source according to Equation (35);

Step 4: The following bees select the nectar source by combining the sensitivity
with the pheromone, and randomly generate the sensitivity of the ith follower bee with
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S(i) ∼ U(0, 1)(U(0, 1) means the random variable follows a uniform distribution on (0, 1)).
If S(i) ≤ O(i), then a new solution vi is generated according to Equation (44). Moreover, if
the fitness value of vi is better than that of xi, xi is replaced by vi and the corresponding
element is reset to 0; otherwise, it remains unchanged, corresponding to the ith element of
the trail + 1; if S(i) > O(i), then follow the lead bee, and the position of the nectar source
remains unchanged, that is, keep xi unchanged;

Step 5: Observe each element of the trail, record the largest element value, and check
if any solutions need to be discarded. If a solution is not updated after more than limit
iterations; that is, the maximum element value is greater than limit; then, the scouting bee
generates a new solution xi according to Equation (46) to replace the maximum element of
the trail. Then, the corresponding component of trail is set to 0;

Step 6: Find the worst solution, and update it according to Equation (45) for each
component; then, a new solution xi

′ is obtained, and calculate its fitness value. If the fitness
value of xi

′ is better than xi, replace xi with xi
′, and set the corresponding component of

trail to 0; otherwise, keep xi unchanged;
Step 7: When an iteration ends, record the best solution obtained by the search process;
Step 8: Check whether the conditions for the end of the loop are satisfied. If so, output

the optimal solution; if not, jump back to step 2.
The pseudocode of the NR-IABC algorithm is shown in Algorithm 2:

Algorithm 2 NR-IABC algorithm

Input: CPs, Z
Output: The deployment set W of RSUs
1: Calculate R;
2: Sort all CPs in descending order according to the number of CPs within the
neighborhood ranking domain;
3: for i = 1:|CPs| do
4: Find uncovered CPs;
5: While the number of iterations Ite≤MaxIt do
6: Randomly generated initial solution xi ∈ Z with Equation (46);
7: Update xi with vi constructed by Equation (43), otherwise the ith element
of trail + 1;
8: Calculate O(i) with Equation (35);
9: S(i) ∼ U(0, 1);
10: if S(i) ≤ O(i)
11: Update xi with vi constructed by Equation (44) and the ith element of trail set to 0,
otherwise the ith element of trail + 1;
12: end if
13: if TR > limit
14: Update TR with a new solution xi generated by the scouting bee with
Equation (46) and the ith element of trail set to 0;
15: end if
16: Update the worst solution xi with xi

′ constructed by Equation (45) and the
ith element of trail set to 0;
17: Ite = Ite + 1;
18: Update all |CPs|;
19: W←W∪{xi };
20: end while
21: end for
22: return W

For the NR-IABC algorithm, the time complexity of discretization is O
(
|CPs|2

)
and

the complexity of neighborhood ranking of all road segments and deployment area is
O
(
|CPs|2

)
. Then, in each deployment of RSU, the deployment of all RSUs is implemented

in MaxIt iterations, and all nPop bees update M0 in each iteration. Furthermore, the fitness
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value of each bee can be calculated in O(MaxIt). Finally, the update of all nectar sources
in each iteration can be performed in O(MaxIt). Therefore, the time complexity to deploy
RSUs for all CPs is O(MaxIt · (M0 · nPop ·MaxIt + MaxIt)). Finally, the time complexity
of Algorithm 2 is:

O = O
(
|CPs|2

)
+ O

(
|CPs|2

)
+ O(MaxIt · (M0 · nPop ·MaxIt + MaxIt)) = O

(
|CPs|2

)
+ O

(
M0 · nPop ·MaxIt2) (47)

5. Numerical Results
5.1. Simulation Settings

In order to determine a reasonable range for simulation parameters, we refer to real-life
datasets. First, two different real-life datasets are chosen—central city in London and an
industrial area in Manchester—as target locations for RSU deployments. Additionally, these
two scenarios are obviously different because the central city in London has a higher traffic
flow density than that in Manchester. Second, we intercept two rectangle road networks
in the above scenarios, because the rectangle road network is common in a real-life road
layout. OpenStreetMap is applied to provide the geometry data of the maps as shown
in Figure 3a,b. The side lengths of these two sub-regions marked with red squares are
178 m for London and 234 m for Manchester, respectively. The number of vehicles that
travel past the count point on an average day of the year (by direction of travel) is used to
represent traffic flow density, and is quoted from the British Highway Traffic Flow Data
Set [34]. The traffic flow densities from the dataset range from 0 to 2.3 vehicles/s and the
heights of different vehicles (bus, truck, taxi, etc.) range from 1.4 to 4.2 m. Considering
the possible installation positions of the OBU on the vehicle (inside the vehicle or on the
top), the height range of the antenna in the simulations is set within [1,7]. Moreover,
the traffic flow density in an area is set as the highest traffic flow density of the four
surrounding roads, and this redundancy set can simplify the solution process and achieve
an optimal RSU deployment result satisfying model constraints. Furthermore, the traffic
flow densities of these two areas are 1.2 vehicles/s for London and 0.07 vehicles/s for
Manchester, respectively. Eventually, the simulation scenarios of London and Manchester
are generated by the vehicular traffic generator package of SUMO as shown in Figure 3c,d,
which uses a collision-free car-following model to determine the speeds and the positions
of the vehicles.

Next, we evaluate the performance of the proposed RSU deployment strategies pro-
posed in Section 3 via simulation. The middle square area is the deployment area of RSU,
and the deployment position for RSU is limited within this area. The four roads that are
distributed around the deployment area consist of two-lane roads, and they are considered
to be the coverage area. First, the coverage area and deployment area are both discretized.
Combined with the scale of the above real scenario, the side length of the middle RSU
deployment area is set to 200 m in our experiments to simplify the calculation. The de-
ployment area of RSU is divided into grid set Z with side length L, and |Z| = (L/g)2. The
width of the four roads is 2s0 meters and the length of them is L + 3s0 meters. The lanes
away from the deployment area are divided into grid set CPs with length δ and width s0,
and |CPs| = 4× [(L + 3s0)/δ]. The value of s0 refers to the shape file of the major road
network [34], which is 3.5 m. As an extension of 3.3, it should be pointed out that if there
is a remainder when dividing L by g, the grids with a side length less than g should be
regarded as a separate grid.

According to the parameters of the common commercial V2X model, the set of Ds is
within [3, 68] dBm, and a typical value of Ds is set to 23 dBm refers to the product brochure
of automotive grade C-V2X module (C-V2X AG15) [12,35]. The minimum sensitivity
threshold τ is set when the modulation method of the V2X signal is QPSK and its data
rate is 9 Mb/s with a communication frequency of 5.9 GHz [18]. Since the actual working
condition needs to satisfy the requirement of the packet loss ratio, we assume that if
the delivery packet loss ratio exceeds a certain threshold (usually given as 10% in actual
working conditions), the message will become useless, so the threshold σ for the probability
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of successful transmission of signal packets is σ = 1− 10% = 90% [5]. In addition, we
assume that the RSU is fixed on the top of roadside equipment with a height of 5.5 m
according to the test report in [18], and only one RSU can be placed at the center of
a candidate location in Z. Each RSU and OBU is equipped with a vertically polarized
antenna, and has unified transmit power. The software used for the simulation is MATLAB
R2016a. All simulation parameters are summarized in Table 2.

Figure 3. Two different maps and their simulation scenarios using real-life datasets: (a) map
for London; (b) map for Manchester; (c) simulation scenario for London; (d) simulation scenario
for Manchester.

Table 2. Simulation parameters.

Parameters Values

l 8.5 (m)
w 2.5 (m)
h 4 (m)
H 5.5 (m)
b0 0.5~7 (m)
s0 3.5 (m)
γ 10−6 ∼ 10 (vehicles/s)
λ 0.05 (m)
f 5.9 (GHz)
τ −80 (dBm)
Ds 3~68 (dBm)
L 200 (m)
MaxIt 20
nPop 40
K 126
ε 15
σ 90%
δ 2
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5.2. Numerical Results
5.2.1. An Illustration of Deployment Results

Figure 4 shows an illustration of the deployment results of the two algorithms when
b0 is 1 and 2 under the same condition of Ds = 23 and λ = 0.1, respectively. The deployment
result when b0 = 1 is shown in Figure 4a,b, where it is observed that the number (8) of
the RSUs deployed by NR-IABC is less than that (11) by GH. The deployment result when
b0 = 2 is shown in Figure 4c,d, it can be observed that the number (18) of RSUs deployed
by NR-IABC is less than that (21) by GH, which indicates that the NR-IABC algorithm is
cost-effective. Furthermore, according to Equations (14) and (24), b0, λ, and Ds can all affect
the deployment results. Therefore, to quantify the impact of the above parameters, we
further present a set of experiments to compare the GH algorithm and NR-IABC algorithm.

Figure 4. An illustration of system deployment diagram: (a) b0 = 1, GH; (b) b0 = 1, NR-IABC;
(c) b0 = 2, GH; (d) b0 = 2, NR-IABC.

5.2.2. The Impact of Antenna Height

To illustrate the effect of b0 on the RSUD problem, b0 is set to be 0.5~7 m, respectively.
The impact of b0 under two different conditions (γ = 0.1, Ds = 23; γ = 0.1, Ds = 33) is shown
in Figure 5. It can be observed that the number of RSUs deployed by GH and NR-IABC
decreases with the growth of b0 when b0 ≤ 4 and the decreasing trend of deployed RSUs
gradually slows down with the growth of b0. However, NR-IABC outperforms GH in all
cases because fewer RSUs are deployed by NR-IABC, which can generally save 10% to 15%.
The reason is that occlusion occurs when the height of the connection line between the top
of the RSU and the OBU is less than 4 m, which requires the deployment of more RSUs to
eliminate the impact of occlusion. When b0 > 4, NR-IABC and GH gradually maintain a
stable value with the increase in b0. It indicates that the transmission of the signal is not
affected, which corresponds to the LOS condition. Therefore, only one RSU can cover all of
the target roads. The results show that to avoid the effect of truck occlusion, the antenna of
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the OBU should be raised or the RSU should be deployed at a high position to ensure that
the connection between the OBU and the RSU is above the top of the truck as an obstacle.

Figure 5. The impact of different b0 under two different conditions: (a) γ = 0.1, Ds = 23; (b) γ = 0.1,
Ds = 33.

5.2.3. The Impact of Traffic Density

In order to study the effect of γ, we set γ to be 10−6 ∼ 10 vehicles/s, respectively. The
impact of γ under two different conditions (b0 = 2, Ds = 23; b0 = 3, Ds = 23) is shown in
Figure 6. It is obvious that the number of deployed RSUs does not change when γ is less
than 0.001, which indicates that occlusion hardly occurs. The gap between them gradually
maintains a stable value when γ > 0.1, which indicates that the probability of the occlusion
has reached the upper limit. According to Equation (25), if ∃α = α0, α0 ∈ [0, π

2 ) makes
PNLOS

nloss = 1, then Pnloss = PNLOS + PLOS = 1 constantly holds when α ∈ [0, α0), which
indicates the RSUs can cover [0, α0) and the coverage range is not affected by γ, that is,
the condition of γ > 0.1. In addition, the number of RSUs deployed by NR-IABC has a
faster growth rate than GH with the growth of γ when 0.001 ≤ γ ≤ 0.1 and this effect
becomes stronger with the increase in γ. If ∀α ∈ [0, π

2 ), PNLOS
nloss = 0 constantly satisfies,

it can be deduced that Pnloss = PLOS · PLOS
nloss = PLOS and PLOS is highly influenced by γ,

which corresponds to the condition of 0.001 ≤ γ ≤ 0.1. Basically, Pnloss is also limited by
σ. Furthermore, Pnloss can only be affected by γ if both of the following conditions are
satisfied: one is the value of d0 is proper so that PLOS ≥ 0.9 always holds and the other is
that PNLOS

nloss = 0 constantly holds when α ∈ [0, π
2 ). For further analysis, regardless of the

value of d0, PLOS < 0.9 constantly established when γ > 0.1. Therefore, Pnloss at this time
may not be affected by γ. When γ ≤ 0.1, if d0 > 10 is satisfied, Pnloss may be affected by
γ. In the NR-IABC algorithm, RSUs always tend to be deployed close to the roadside (d0
is always less than 10), but in the GH algorithm, d0 depends on the discrete granularity g,
and a larger g can lead to a greater impact. In conclusion, γ has a significant impact on the
result of the GH algorithm, while NR-IABC is slightly affected by γ.
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Figure 6. The impact of different traffic density under two conditions: (a) b0 = 2, Ds = 23; (b) b0 = 3,
Ds = 23.

5.2.4. The Impact of Transmitting Power

The impact of Ds under two different conditions (b0 = 3, γ = 0.1; b0 = 3.5, γ = 0.1) is
shown in Figure 7. Results in Figure 7a,b both show that the number of deployed RSUs
by GH or NR-IABC reduces with the growth of Ds, but NR-IABC outperforms GH in all
cases, which can generally save 10% to 15%. The decreasing trend of deployed RSUs by the
two algorithms gradually slows down with the growth of Ds, and they both maintain a
fixed value when Ds exceeds an upper limit. As an example, we only analyze the results in
Figure 7a. Basically, when the value of Ds is small enough as Ds < −30dBm, the RSUs have
no coverage for the road. Then, we set d0 = 0 under this condition, which corresponds to
the smallest value of LOSSNLOS, then Pnloss = 0 is always established for all CPs. Obviously,
the target road cannot be covered no matter how many RSUs are deployed. Moreover, when
the value of Ds is large enough as Ds > 40dBm, only one RSU can cover all of the angle
range within a road. Similarly, we set d0 = 200 under this condition, which corresponds to
the largest value of LOSSNLOS, then Pnloss = 1 is always established for all CPs. Therefore,
only one RSU is needed to cover the whole road under the condition of Ds > 40dBm.

Figure 7. The impact of different transmit power under two conditions: (a) b0 = 3, γ = 0.1; (b) b0 = 3.5,
γ = 0.1.
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5.2.5. The Efficiency of Two Algorithms

We compared the solution efficiency of GH and NR-IABC under two different param-
eters in Figure 8. In Figure 8a, it can be observed that the solving time of GH increases
significantly with the reduction in discrete granularity. In general, GH does have a faster
solution speed than NR-IABC at a large discrete granularity, but a large discrete granularity
will lead to the loss of precision. From Figure 8b, we can observe that the solving time by
both two algorithms gradually increases with the growth of γ when γ is less than 0.1, and
it tends to a stable value of 10 when γ is larger than 0.1. Combining the results of Figure 8,
the solution efficiency of the two algorithms is comparable, but in the solution of large-scale
problems, the NR-IABC algorithm has more advantages than the GH algorithm.

Figure 8. Time comparison between GH and NR-IABC under two different parameters: (a) discrete
granularity (γ = 0.1); (b) arrival rate of the trucks (g = 20).

6. Conclusions

In this paper, a novel multi-objective optimization problem of roadside unit deploy-
ment under the constraints of target road coverage and communication reliability is pro-
posed, and the influence of communication blocking caused by mobile vehicles on wireless
communication is involved. By analyzing the NP-hardness of the problem, an Improved
Artificial Bee Colony algorithm based on Neighborhood Ranking (NR-IABC) and a Greedy
Heuristic (GH) algorithm are proposed to approximately solve the problem. Moreover,
some methods, such as the “Neighborhood Ranking” method, combining the sensitivity
and pheromone as the selection strategy, applying the mutual gravitation parameter to
the interaction strategy, and replacing the worst nectar using the reverse learning method,
are adopted to reduce the defects of strong randomness, where it is easy to fall into the
local optimum and slow convergence speed of traditional Artificial Bee Colony algorithm.
Then, real-life datasets are used to verify the scalability and efficiency of our proposed
solutions. By comparative simulations on the key parameters, such as density of traffic
flow, antenna height of OBU, and transmit power of OBU, the NR-IABC-based solution can
always deploy fewer RSUs (usually 10~15%) and, thus, is more cost-effective compared
with the GH based solution.

In the future, two aspects as an extension of this paper can be explored: First, we
intend to test our approach on large-scale urban environments based on realistic traffic
traces to further verify the performance of the proposed models and algorithms. Second,
we will consider using intermediate obstacle vehicles or vehicles parked near buildings as
relays, which can improve the utilization of resources and further reduce the deployment
cost of RSUs.



Mathematics 2022, 10, 3282 23 of 24

Author Contributions: M.F. and H.Y. formulated the problems and proposed the research framework;
M.F. conceived the methodologies and designed the experiments; M.F. and I.U. performed the
experiments; H.Y. and I.U. contributed to the reviewing and editing of the paper. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Commission of Shanghai Munici-
pality (No. 18510745100).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mahmood, D.A.; Horváth, G. Analysis of the Message Propagation Speed in VANET with Disconnected RSUs. Mathematics 2020,

8, 782. [CrossRef]
2. Zhou, H.B.; Xu, W.C.; Chen, J.C.; Wang, W. Evolutionary V2X Technologies Toward the Internet of Vehicles: Challenges and

Opportunities. Proc. IEEE 2020, 108, 308–323. [CrossRef]
3. Quy, V.K.; Nam, V.H.; Linh, D.M.; Ban, N.T.; Han, N.D. Communication Solutions for Vehicle Ad-hoc Network in Smart Cities

Environment: A Comprehensive Survey. Wirel. Pers. Commun. 2022, 122, 2791–2815. [CrossRef]
4. Alheeti, K.; Alaloosy, A.; Khalaf, H.; Alzahrani, A.; Al_Dosary, D. An Optimal Distribution of RSU for Improving Self-Driving

Vehicle Connectivity. Comput. Mater. Contin. 2022, 70, 3311–3319. [CrossRef]
5. Maglogiannis, V.; Naudts, D.; Hadiwardoyo, S.; van den Akker, D.; Marquez-Barja, J.; Moerman, I. Experimental V2X Evaluation

for C-V2X and ITS-G5 Technologies in a Real-Life Highway Environment. IEEE Trans. Netw. Serv. Manag. 2022, 19, 1521–1538.
[CrossRef]

6. Ahmed, Z.; Naz, S.; Ahmed, J. Minimizing transmission delays in vehicular ad hoc networks by optimized placement of road-side
unit. Wirel. Networks 2020, 26, 2905–2914. [CrossRef]

7. Gao, Z.G.; Wu, H.-C.; Cai, S.B.; Tan, G.Z. Tight Approximation Ratios of Two Greedy Algorithms for Optimal RSU Deployment in
One-Dimensional VANETs. IEEE Trans. Veh. Technol. 2021, 70, 3–17. [CrossRef]

8. Yu, H.Y.; Liu, R.K.; Li, Z.H.; Ren, Y.L.; Jiang, H. An RSU Deployment Strategy Based on Traffic Demand in Vehicular Ad Hoc
Networks (VANETs). IEEE Internet Things J. 2022, 9, 6496–6505. [CrossRef]

9. Shi, Y.J.; Lv, L.L.; Yu, H.; Yu, L.J.; Zhang, Z.H. A Center-Rule-Based Neighborhood Search Algorithm for Roadside Units
Deployment in Emergency Scenarios. Mathematics 2020, 8, 1734. [CrossRef]

10. Ghorai, C.; Banerjee, I. A constrained Delaunay Triangulation based RSUs deployment strategy to cover a convex region with
obstacles for maximizing communications probability between V2I. Veh. Commun. 2018, 13, 89–103. [CrossRef]

11. Boban, M.; Barros, J.; Tonguz, O.K. Geometry-Based Vehicle-to-Vehicle Channel Modeling for Large-Scale Simulation. IEEE Trans.
Veh. Technol. 2014, 63, 4146–4164. [CrossRef]

12. Boban, M.; Vinhoza, T.T.V.; Ferreira, M.; Barros, J.; Tonguz, O.K. Impact of Vehicles as Obstacles in Vehicular Ad Hoc Networks.
IEEE J. Sel. Areas Commun. 2011, 29, 15–28. [CrossRef]

13. Anbalagan, S.; Bashir, A.K.; Raja, G.; Dhanasekaran, P.; Vijayaraghavan, G.; Tariq, U.; Guizani, M. Machine-Learning-Based
Efficient and Secure RSU Placement Mechanism for Software-Defined-IoV. IEEE Internet Things J. 2021, 8, 13950–13957. [CrossRef]

14. Liang, Y.Y.; Ma, N.; Li, X.; Hu, J. Stochastic Roadside Unit Location Optimization for Information Propagation in the Internet of
Vehicles. IEEE Internet Things J. 2021, 8, 13316–13327. [CrossRef]

15. Selvakumari, P.; Sheela, D.; Chinnasamy, A. Chew’s Second Delaunay Triangulation Refinement Scheme for Optimal RSUs
Deployment to Ensure Maximum Connectivity in Vehicle to Infrastructure Communication. Wirel. Pers. Commun. 2022, 123,
375–405. [CrossRef]

16. Guerna, A.; Bitam, S.; Calafate, C.T. AC-RDV: A novel ant colony system for roadside units deployment in vehicular ad hoc
networks. Peer-to-Peer Netw. Appl. 2021, 14, 627–643. [CrossRef]

17. Lytaev, M.; Borisov, E.; Vladyko, A. V2I Propagation Loss Predictions in Simplified Urban Environment: A Two-Way Parabolic
Equation Approach. Electronics 2020, 9, 2011. [CrossRef]

18. Li, W.; Hu, X.Y.; Gao, J.; Zhao, L.; Jiang, T. Measurements and Analysis of Propagation Channels in Vehicle-to-Infrastructure
Scenarios. IEEE Trans. Veh. Technol. 2020, 69, 3550–3561. [CrossRef]

19. Kim, H.K.; Becerra, R.; Bolufé, S.; Azurdia-Meza, C.A.; Montejo-Sánchez, S.; Zabala-Blanco, D. Neuroevolution-Based Adaptive
Antenna Array Beamforming Scheme to Improve the V2V Communication Performance at Intersections. Sensors 2021, 21, 2956.
[CrossRef]

20. Eshteiwi, K.; Kaddoum, G.; Selim, B.; Gagnon, F. Impact of Co-Channel Interference and Vehicles as Obstacles on Full-Duplex
V2V Cooperative Wireless Network. IEEE Trans. Veh. Technol. 2020, 69, 7503–7517. [CrossRef]

21. Hoque, M.A.; Rios-Torres, J.; Arvin, R.; Khattak, A.; Ahmed, S. The extent of reliability for vehicle-to-vehicle communication in
safety critical applications: An experimental study. J. Intell. Transp. Syst. 2020, 24, 264–278. [CrossRef]

22. He, R.S.; Molisch, A.F.; Tufvesson, F.; Zhong, Z.D.; Ai, B.; Zhang, T.T. Vehicle-to-Vehicle Propagation Models with Large Vehicle
Obstructions. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2237–2248. [CrossRef]

23. Abbas, T.; Sjöberg, K.; Karedal, J.; Tufvesson, F. A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network
Simulations. Int. J. Antennas Propag. 2015, 2015, 1–12. [CrossRef]

http://doi.org/10.3390/math8050782
http://doi.org/10.1109/JPROC.2019.2961937
http://doi.org/10.1007/s11277-021-09030-w
http://doi.org/10.32604/cmc.2022.019773
http://doi.org/10.1109/TNSM.2021.3129348
http://doi.org/10.1007/s11276-019-02198-x
http://doi.org/10.1109/TVT.2020.3045693
http://doi.org/10.1109/JIOT.2021.3111048
http://doi.org/10.3390/math8101734
http://doi.org/10.1016/j.vehcom.2018.07.002
http://doi.org/10.1109/TVT.2014.2317803
http://doi.org/10.1109/JSAC.2011.110103
http://doi.org/10.1109/JIOT.2021.3069642
http://doi.org/10.1109/JIOT.2021.3065411
http://doi.org/10.1007/s11277-021-09136-1
http://doi.org/10.1007/s12083-020-01011-3
http://doi.org/10.3390/electronics9122011
http://doi.org/10.1109/TVT.2020.2972150
http://doi.org/10.3390/s21092956
http://doi.org/10.1109/TVT.2020.2993508
http://doi.org/10.1080/15472450.2020.1721289
http://doi.org/10.1109/TITS.2014.2311514
http://doi.org/10.1155/2015/190607


Mathematics 2022, 10, 3282 24 of 24

24. Yang, L.; Wang, Y.B.; Yao, Z.H. A New Vehicle Arrival Prediction Model for Adaptive Signal Control in a Connected Vehicle
Environment. IEEE Access 2020, 8, 112104–112112. [CrossRef]

25. Hmamouche, Y.; Benjillali, M.; Saoudi, S. Fresnel Line-of-Sight Probability with Applications in Airborne Platform-Assisted
Communications. IEEE Trans. Veh. Technol. 2022, 71, 5060–5072. [CrossRef]

26. Braga, A.D.; Da Cruz, H.A.O.; Eras, L.E.C.; Araujo, J.P.L.; Neto, M.C.A.; Silva, D.K.N.; Cavalcante, G.P.S. Radio Propagation
Models Based on Machine Learning Using Geometric Parameters for a Mixed City-River Path. IEEE Access 2020, 8, 146395–146407.
[CrossRef]

27. Lopez-Benitez, M.; Zhang, J.Y. Comments and Corrections to “New Results on the Fluctuating Two-Ray Model with Arbitrary
Fading Parameters and Its Applications”. IEEE Trans. Veh. Technol. 2021, 70, 1938–1940. [CrossRef]

28. Al-Absi, M.A.; Al-Absi, A.A.; Lee, H.J. Varied density of vehicles under city, highway and rural environments in V2V communi-
cation. Int. J. Sens. Networks 2020, 33, 148–158. [CrossRef]

29. Gao, Z.G.; Chen, D.J.; Cai, S.B.; Wu, H.-C. Optimal and Greedy Algorithms for the One-Dimensional RSU Deployment Problem
with New Model. IEEE Trans. Veh. Technol. 2018, 67, 7643–7657. [CrossRef]

30. Yao, H.Q.; Zheng, C.Q.; Fu, X.W.; Yang, Y.S.; Ungurean, I. Charger and receiver deployment with delay constraint in mobile
wireless rechargeable sensor networks. Ad Hoc Netw. 2022, 126, 102756. [CrossRef]

31. Wang, H.; Wang, W.J.; Xiao, S.Y.; Cui, Z.H.; Xu, M.Y.; Zhou, X.Y. Improving artificial Bee colony algorithm using a new
neighborhood selection mechanism. Inf. Sci. 2020, 527, 227–240. [CrossRef]

32. Saeed, M.H.; Wang, F.Z.; Salem, S.; Khan, Y.A.; Kalwar, B.A.; Fars, A. Two-stage intelligent planning with improved artificial bee
colony algorithm for a microgrid by considering the uncertainty of renewable sources. Energy Rep. 2021, 7, 8912–8928. [CrossRef]

33. Lin, P.; Wang, A.M.; Zhang, L.; Wu, J.; Sun, G.; Liu, L.L.; Lu, L. An improved cuckoo search with reverse learning and invasive
weed operators for suppressing sidelobe level of antenna arrays. Int. J. Numer. Model. Electron. Netw. Devices Fields 2021, 34, e2829.
[CrossRef]

34. Road Traffic Statistics. Available online: https://roadtraffic.dft.gov.uk/downloads (accessed on 20 August 2022).
35. Product Brochure of the Automotive Module (C-V2X AG15). Available online: https://www.quectel.com/product/c-v2x-ag15

(accessed on 20 August 2022).

http://doi.org/10.1109/ACCESS.2020.3002943
http://doi.org/10.1109/TVT.2022.3151461
http://doi.org/10.1109/ACCESS.2020.3012661
http://doi.org/10.1109/TVT.2021.3053103
http://doi.org/10.1504/IJSNET.2020.108560
http://doi.org/10.1109/TVT.2018.2837033
http://doi.org/10.1016/j.adhoc.2021.102756
http://doi.org/10.1016/j.ins.2020.03.064
http://doi.org/10.1016/j.egyr.2021.10.123
http://doi.org/10.1002/jnm.2829
https://roadtraffic.dft.gov.uk/downloads
https://www.quectel.com/product/c-v2x-ag15

	Introduction 
	Related Work 
	Relevant Models and Problem Formulation 
	The Traffic Flow Model 
	Channel Model 
	Preliminary Statements 
	Probability of LOS and NLOS 
	Path Loss under LOS and NLOS Conditions 
	Angular Range for Successful Transmission of Signal Packets 

	Discretization Method and Error Analysis of Coverage Area 
	Problem Formulation 
	Hardness Analysis 

	Solutions 
	Search Domain Adjustment-Neighborhood Ranking 
	Greedy Heuristic Solution 
	Improved Artificial Bee Colony Algorithm based on the Neighborhood Ranking Solution 

	Numerical Results 
	Simulation Settings 
	Numerical Results 
	An Illustration of Deployment Results 
	The Impact of Antenna Height 
	The Impact of Traffic Density 
	The Impact of Transmitting Power 
	The Efficiency of Two Algorithms 


	Conclusions 
	References

