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Abstract: The subject of convex analysis and integral inequalities represents a comprehensive and
absorbing field of research within the field of mathematical interpretation. In recent times, the
strategies of convex theory and integral inequalities have become the subject of intensive research
at historical and contemporary times because of their applications in various branches of sciences.
In this work, we reveal the idea of a new version of generalized harmonic convexity i.e., an m–
polynomial p–harmonic s–type convex function. We discuss this new idea by employing some
examples and demonstrating some interesting algebraic properties. Furthermore, this work leads us
to establish some new generalized Hermite–Hadamard- and generalized Ostrowski-type integral
identities. Additionally, employing Hölder’s inequality and the power-mean inequality, we present
some refinements of the H–H (Hermite–Hadamard) inequality and Ostrowski inequalities. Finally,
we investigate some applications to special means involving the established results. These new results
yield us some generalizations of the prior results in the literature. We believe that the methodology
and concept examined in this paper will further inspire interested researchers.

Keywords: Hermite–Hadamard inequality; Hölder’s inequality; convex function; harmonic convex
function; m–polynomial harmonic convex function; s–type convex function

MSC: 26A51; 26A33; 26D10

1. Introduction

During the last century, the notion of convexity and its generalizations have emerged
as an interesting field of pure and applied mathematics. This theory plays a crucial
and consequential role in applied mathematics, especially in control theory, optimization
theory, nonlinear programming and functional analysis. In economics, this theory plays a
fundamental role in equilibrium and duality theory. The concept of a convex function is
expressed as follows:

A real valued function Q : I ⊆ R → R (set of real numbers) is said to be convex iff
the following inequality is satisfied (see [1])

Q(ωκ1 + (1−ω)κ2) ≤ ωQ(κ1) + (1−ω)Q(κ2), (1)
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for all κ1,κ2 ∈ I, ω ∈ [0, 1].
Let Q : I ⊆ R→ R be a convex function with κ1 < κ2 and κ1,κ2 ∈ I. Then the H–H

inequality is expressed as follows: (see [2]):

Q
(
κ1 +κ2

2

)
≤ 1

κ2 −κ1

∫ κ2

κ1

Q(x)dx ≤ Q(κ1) + Q(κ2)

2
. (2)

The study of inequality theory gives a huge system for managing symmetrical aspects
in real-life circumstances. The well-known features of integral inequalities have a strong
chance to manage consistent issues with high capability. This manuscript contributes to a
captivating association of integral calculus, special functions and convex functions. The
authors foster a novel methodology for examining another class of convex function which
is known as an m–polynomial p–harmonic s–type convex function.

Several mathematicians have put their insight into this field, presenting new versions
of different types of inequalities with convex sets and convex functions. It is seen that
the modern and amazing view point on convexity always provides ideas and fruitful
applications in every field and branch of pure and applied mathematics. Among all the
inequalities, most extensively used are H–H (Hermite–Hadamard)-type and Ostrowski-
type inequalities. These inequalities involving convex functions play a consequential and
fundamental role in mathematical analysis as well as in other areas of pure and applied
mathematics. Thus, convex analysis and inequalities have been referred to as an absorbing
field for the mathematicians due their wide applications in different branches of sciences.
The reader can refer to [3–8]. Recently, Toplu et al. [9], investigated a generalized form
of convexity called n–polynomial convex function and obtained a corresponding H–H
inequality.

Harmonic mean is used to define the harmonic convex set. In 2003, the concept of
harmonic set was introduced by Shi [10] and consequently, Anderson et al. [11] and Noor
et al. [12] introduced harmonic and p–harmonic convex functions, respectively. Noor [13]
generalized the class of n–polynomial convex function, called an n–polynomial harmonic
convex function. Recently, İşcan et al. [14] introduced s–type and n–polynomial s–type
convex functions.

The focal length f is one-half of the harmonic mean of the distances of the image v
and object u from the lens. The thin lens equation is presented as

1
f
=

1
u
+

1
v
=

u + v
uv

=⇒ f =
1
2
H(u, v)

As far as the importance of harmonic mean is concerned, in [15], the authors have
examined its significant role in Asian investment opportunities. Curiously, harmonic means
have been applied in electric circuits to determine the overall resistance of electrical resistors
connected in parallel. That, the absolute obstruction/resistance of several resistors is only
half of the harmonic mean of all of the resistors. For instance, in the event that X and Y are
the resistances offered by two resistors, then the final resistance is given by the equation:

1
RTotal

=
1
X +

1
Y =

X + Y
XY =⇒ R =

1
2
H(X ,Y)

In 1938, A. Ostrowski presented an inequality, the Ostrowski inequality, to the world
of mathematics. This inequality has an extraordinary range of applications in likelihood,
mathematical coordination, and numerical investigation. In the present scenario, nobody
can disregard and reject its significance and meaning.

As of late, various extensions and generalizations of Ostrowski’s inequality utilizing
various strategies are composed by many scientists. For instance, Alomari et al. [16] em-
ployed s–convex function to get Ostrowski-type disparities. Consequently, Ardic et al. [17]
used GA–convex and GG–convex functions. Budak and Sarikaya [18] likewise obtained
some weighted Ostrowski-type inequalities for differentiable convex functions. Iscan [19]
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acquired some Ostrowski type inequalities utilizing the class of harmonically s–convex
functions. Mohsin et al. [20] got new variants of Ostrowski-type inequalities utilizing
harmonically h–convex functions.

The motivation of this work reverberates in all aspects of this article. This paper has
numerous reasons. Our first aim is to present the idea of the m-polynomial p-harmonic
s–type convex functions. Considering two identities, we determined a few H–H type
inequalities involving notable integral inequalities such as Hölder’s inequality and power-
mean inequality. The second fundamental goal is to gather the results from our discoveries
for special means such as arithmetic mean, geometric mean and harmonic mean.

The paper is coordinated as follows. In Section 2, we review some essential and
principal definitions related to the new convex function. In Section 3, we give the definition
of m-polynomial p-harmonic s–type convex functions and explain their algebraic properties
and formulate some examples. In Section 4, a H–H-type inequality employing the newly
introduced harmonic convexity is presented. In Section 5, we build up the H–H type
inequalities for differentiable functions as refinements. In Section 6, we present one new
identity and, employing this, some Ostrowski-type inequalities for the aforementioned
strategy are established. In Section 7, we present the applications of our outcomes to
special means.

Before we start, we need the following necessary known definitions and literature
references. Throughout the paper, for brevity we have used “poly” for polynomial and
H–H for Hermite–Hadamard.

2. Preliminaries

For the sake of completeness, it will be better to explore and investigate the preliminary
section due to the number of definitions. In this section, we will discuss some known
concepts and definitions which we need in our investigation in further sections. We begin
by introducing harmonic convex functions, p-harmonic convex functions and s-type convex
functions. We conclude this section with recalling the m-polynomial convex function, which
will be required in our studies.

Definition 1 ([21]). A function Q : I = [κ1,κ2] ⊆ R \ {0} → R is said to be harmonic
convex, if

Q
(

κ1κ2

ωκ2 + (1−ω)κ1

)
≤ ωQ(κ1) + (1−ω)Q(κ2), (3)

holds for all κ1,κ2 ∈ I and ω ∈ [0, 1].

Definition 2 ([22]). A function Q : I = [κ1,κ2] ⊆ R \ {0} → R is said to be p–harmonic
convex, if

Q
[ κp

1κ
p
2

ωκp
2 + (1−ω)κp

1

] 1
p

≤ ωQ(κ1) + (1−ω)Q(κ2), (4)

holds for all κ1,κ2 ∈ I and ω ∈ [0, 1].

Note that if we choose ω = 1
2 in (4), we get the following Jensen p–harmonic con-

vex function.

Q
[

2κp
1κ

p
2

κp
1 +κp

2

] 1
p

≤ Q(κ1) + Q(κ2)

2
,

holds for all κ1,κ2 ∈ I.
If we choose (p = 1), then p–harmonic convex functions reduce to classical harmonic

convex functions.

Definition 3 ([14]). A function Q : I→ R, is said to be an s–type convex function if

Q(ωκ1 + (1−ω)κ2) ≤ [1− s(1−ω)]Q(κ1) + [1− sω]Q(κ2), (5)
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holds ∀ κ1,κ2 ∈ I, s ∈ [0, 1] and ω ∈ [0, 1].

Definition 4 ([9]). A nonnegative function Q : I → R is called m–poly convex function if for
every κ1,κ2 ∈ I, m ∈ N and ω ∈ (0, 1], if

Q(ωκ1 + (1−ω)κ2) ≤
1
m

m

∑
j=1

[
1− (1−ω)j

]
Q(κ1) +

1
m

m

∑
j=1

[
1−ω j

]
Q(κ2). (6)

Now, we recall the hypergeometric function [23], which is defined by Euler in integral
form:

2F1(a, b, c, z) =
1

β(b, c− b)

∫ 1

0
ωb−1(1−ω)c−b−1(1− zω)−adω, c > b > 0, |z| < 1.

3. New m–Poly p–Harmonic s–Type Convex Function and Its Properties

The concept of harmonic convexity and its applications have been intensively in-
vestigated for a long time by many researchers in numerous disciplines, and attention
to this subject has grown tremendously. By making use of the concept of the harmonic
convexity and integral inequalities, various estimations and refinements of them have been
introduced, and authors have gained numerous perspectives in many research directions
such as economics, probability, statistics, engineering and physics.

The objective goal of this section is to introduce a new family of harmonic convexity,
namely m–poly p–harmonic s–type convex functions, and to discuss some of its algebraic
properties. Further to enhance the quality and utility of this paper, we add lemmas and
some interesting and amazing propositions. Some examples pertaining to this newly
introduced idea are investigated.

Definition 5. A nonnegative real-valued function Q : I ⊆ (0,+∞)→ [0,+∞) is called m–poly
p–harmonic s–type convex, if

Q
[ κp

1κ
p
2

ωκp
2 + (1−ω)κp

1

] 1
p

≤ 1
m

m

∑
j=1

[1− (s(1−ω))j]Q(κ1) +
1
m

m

∑
j=1

[1− (sω)j]Q(κ2), (7)

holds for every κ1,κ2 ∈ I, m ∈ N, s ∈ [0, 1] and ω ∈ [0, 1].

Remark 1. (i) Choosing m = 1 in Definition 5, we obtain the following new definition for a
p–harmonically s–type convex function:

Q
[ κp

1κ
p
2

ωκp
2 + (1−ω)κp

1

] 1
p

≤ [1− (s(1−ω))]Q(κ1) + [1− sω]Q(κ2). (8)

(ii) Choosing p = 1 in Definition 5, we obtain new definition about m–poly harmonically s–type
convex function:

Q
[

κ1κ2

ωκ2 + (1−ω)κ1

]
≤ 1

m

m

∑
j=1

[1− (s(1−ω))j]Q(κ1) +
1
m

m

∑
j=1

[1− (sω)j]Q(κ2). (9)

(iii) When we put p = −1, Definition 5, yields the definition of an m–poly s–type convex function,
which is defined by İşcan (see [14]) .
(iv) When we put m = 1, p = 1 and s = 0, Definition 5, yields the definition of a harmonically
P–function (see [24]).
(v) When we put m = 1, p = −1 and s = 0, Definition 5, yields the definition of a P–function [25].
(vi) When we put m = 1, p = 1 and s = 1, Definition 5, yields the definition of a harmonically
convex function, which is defined by İşcan (see [21]).
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(vii) When we put m = 1, p = −1 and s = 1, Definition 5, yields the Definition (1).
(viii) When we put p = −1 and s = 1, Definition 5, yields the definition of an m–poly convex
function, which is defined by Kadakal (see [9]).
(ix) When we put m = 1 and p = 1, Definition 5 yields the following new definition of a
harmonically s–type convex function:

Q
(

κ1κ2

ωκ2 + (1−ω)κ1

)
≤ [1− (s(1−ω))]Q(κ1) + [1− sω]Q(κ2). (10)

(x) When we put m = 1 and p = −1, Definition 5, yields the definition namely s–type convex
function, which is defined by İşcan (see [14]).

The best part of this newly introduced definition is that, if we choose different values
for m, s and p, it yields new inequalities and explains its relation with some classical
established results.

Lemma 1. Let m ∈ N and s ∈ [0, 1], then the following inequalities 1
m

m
∑

j=1
[1− (s(1−ω))j] ≥ ω

and 1
m

m
∑

j=1
[1− (sω)j] ≥ (1−ω) hold true for all ω ∈ [0, 1].

Proof. The proof is evident.

Proposition 1. Let I ⊂ (0,+∞) be a p–harmonic convex set. Every p–harmonic convex function
on a p–harmonic convex set is an m–poly p–harmonic s–type convex function.

Proof. Using the definition of p–harmonic convex function and from the Lemma 1, since

ω ≤ 1
m

m
∑

j=1
[1− (s(1−ω))j] and 1−ω ≤ 1

m

m
∑

j=1
[1− (sω)j] for all ω ∈ [0, 1], we have

Q
[ κp

1κ
p
2

ωκp
2 + (1−ω)κp

1

] 1
p

≤ ωQ(κ1) + (1−ω)Q(κ2)

≤ 1
m

m

∑
j=1

[1− (s(1−ω)j]Q(κ1) +
1
m

m

∑
j=1

[1− (sω)j]Q(κ2).

Proposition 2. Every m–poly p–harmonic convex function is an m–poly p–harmonic s–type
convex function.

Proof. Using the definition of m–poly p–harmonic convex function and from (Remark 3,

see [14]), we have 1
m

m
∑

j=1
[1 − (1 − ω)j] ≤ 1

m

m
∑

j=1
[1 − (s(1 − ω))j] and 1

m

m
∑

j=1
[1 − ω j] ≤

1
m

m
∑

j=1
[1− (sω)j] for all ω ∈ [0, 1], m ∈ N and s ∈ [0, 1].

Q
[ κp

1κ
p
2

ωκp
2 + (1−ω)κp

1

] 1
p

≤ 1
m

m

∑
j=1

[1− (1−ω)j]Q(κ1) +
1
m

m

∑
j=1

[1−ω j]Q(κ2)

≤ 1
m

m

∑
j=1

[1− (s(1−ω))j]Q(κ1) +
1
m

m

∑
j=1

[1− (sω)j]Q(κ2).
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Proposition 3. Every m–poly p–harmonic s–type convex function is a p–harmonic h–convex

function with h(ω) = 1
m

m
∑

j=1
[1− (s(1−ω))j].

Proof.

Q
[ κp

1κ
p
2

ωκp
2 + (1−ω)κp

1

] 1
p

≤ 1
m

m

∑
j=1

[1− (s(1−ω))j]Q(κ1) +
1
m

m

∑
j=1

[1− (sω)j]Q(κ2)

≤ h(ω)Q(κ1) + h(1−ω)Q(κ2).

Remark 2. (i) If we put p = 1 in Proposition 2, then it yields the harmonically h–convex function,
which was introduced by Noor et al. [26].
(ii) If we put p = −1 in Proposition 2, then it yields the h–convex function, which was defined by
Varos̆anec et al. [27].

Now, to enhance the stability of the newly introduced definition of m–poly p–harmonic
s–type convex functions, we give some examples.

Example 1. If Q(x) = xp is a non-decreasing harmonic convex function and p ≥ 1, then it is a
p–harmonic convex function (see [28]). So, taking Proposition 1 into consideration, it is an m–poly
p–harmonic s–type convex function.

Example 2. Using the literature of a published paper (see [28]), we say that if Q(x) = x2ex2
is

a non-decreasing harmonic convex function on (0, 1) and p ≥ 1, then it is p–harmonic convex
function. So, taking Proposition 1, into consideration it is an m–poly p–harmonic s–type convex
function.

Example 3. İşcan proved that in (see [28]), Q(x) = ex is p–harmonic convex function for p ≥ 1 .
So, according to Proposition 1, it is an m–poly p–harmonic s–type convex function.

Example 4. Every non-decreasing harmonic convex function and p ≥ 1 is p–harmonic convex
function (see [28]). Therefore Q(x) = 1/x2 is p–harmonic for nonnegative values of x. So, taking
Proposition 1, into consideration it is an m–poly p–harmonic s–type convex function.

Now, before presenting our main results, we study some algebraic properties of the
newly introduced function.

Theorem 1. Let Q, O : I = [κ1,κ2] → R. If Q and O are two m–poly p–harmonic s–type
convex functions, then

1. Q + O is m–poly p–harmonic s–type convex function.
2. For nonnegative real numbers c, cQ is an m–poly p–harmonic s–type convex function.
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Proof. (1) Let Q and O be m–poly p–harmonic s–type convex, then

(Q + O)

[ κp
1κ

p
2

ωκp
2 + (1−ω)κp

1

] 1
p

= Q
[ κp

1κ
p
2

ωκp
2 + (1−ω)κp

1

] 1
p

+ O
[ κp

1κ
p
2

ωκp
2 + (1−ω)κp

1

] 1
p

≤ 1
m

m

∑
j=1

[1− (s(1−ω))j]Q(κ1) +
1
m

m

∑
j=1

[1− (sω)j]Q(κ2)

+
1
m

m

∑
j=1

[1− (s(1−ω))j]O(κ1) +
1
m

m

∑
j=1

[1− (sω)j]O(κ2)

=
1
m

m

∑
j=1

[1− (s(1−ω))j][Q(κ1) + O(κ1)] +
1
m

m

∑
j=1

[1− (sω)j][Q(κ2) + O(κ2)]

=
1
m

m

∑
j=1

[1− (s(1−ω))j](Q + O)(κ1) +
1
m

m

∑
j=1

[1− (sω)j](Q + O)(κ2).

(2) Let Q be m–poly p–harmonic s–type convex, then

(cQ)

[ κp
1κ

p
2

ωκp
2 + (1−ω)κp

1

] 1
p

≤ c
[

1
m

m

∑
j=1

[1− (s(1−ω))j]Q(κ1) +
1
m

m

∑
j=1

[1− (sω)j]Q(κ2)

]

=
1
m

m

∑
j=1

[1− (s(1−ω))j]cQ(κ1) +
1
m

m

∑
j=1

[1− (sω)j]cQ(κ2)

=
1
m

m

∑
j=1

[1− (s(1−ω))j](cQ)(κ1) +
1
m

m

∑
j=1

[1− (sω)j](cQ)(κ2),

which completes the proof.

Remark 3. (i) Choosing m = 1 in Theorem 1, we get that Q + O and cQ are p–harmonic s–type
convex functions.
(ii) Choosing p = 1 in Theorem 1, we get that Q + O and cQ are m–poly harmonic s–type convex
functions.
(iii) Choosing m = 1 and p = 1 in Theorem 1, we get that Q + O and cQ are harmonic s–type
convex functions.
(iv) Choosing p = −1 in Theorem 1, we get that Q + O and cQ are m–poly s–type convex functions.
(v) Choosing m = 1 and p = −1 in Theorem 1, we get that Q + O and cQ are s–type convex func-
tions.

Theorem 2. Let Q : I→ J be a p–harmonic convex function and O : J → R be a non-decreasing
and m–poly s–type convex function. Then the function O ◦Q : I → R is m–poly p–harmonic
s–type convex.
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Proof. For all κ1,κ2 ∈ I, and ω ∈ [0, 1], we have

(O ◦Q)

[ κp
1κ

p
2

ωκp
2 + (1−ω)κp

1

] 1
p

= O

Q
[ κp

1κ
p
2

ωκp
2 + (1−ω)κp

1

] 1
p


≤ O(ωQ(κ1) + (1−ω)Q(κ2))

≤ 1
m

m

∑
j=1

[1− (s(1−ω))j]O(Q(κ1)) +
1
m

m

∑
j=1

[1− (sω)j]O(Q(κ2))

=
1
m

m

∑
j=1

[1− (s(1−ω))j](O ◦Q)(κ1) +
1
m

m

∑
j=1

[1− (sω)j](O ◦Q)(κ2),

which completes the proof.

Remark 4. (i) If we put m = 1 in Theorem 2, then we obtain the following inequality

(O ◦Q)

[ κp
1κ

p
2

tκp
2 + (1− t)κp

1

] 1
p

≤ [1− (s(1−ω))](O ◦Q)(κ1) + [1− (sω)](O ◦Q)(κ2).

(ii) If we put p = 1 in Theorem 2, then we obtain the following inequality

(O ◦Q)

[
κ1κ2

ωκ2 + (1−ω)κ1

]
≤ 1

m

m

∑
j=1

[1− (s(1−ω))j](O ◦Q)(κ1) +
1
m

m

∑
j=1

[1− (sω)j](O ◦Q)(κ2).

(iii) If we put m = 1 and p = 1 in Theorem 2, then we obtain the following inequality

(O ◦Q)

[
κ1κ2

ωκ2 + (1−ω)κ1

]
≤ [1− (s(1−ω))](O ◦Q)(κ1) + [1− (sω)](O ◦Q)(κ2).

(iv) If we put p = −1 in Theorem 2, then we obtain the following inequality

(O ◦Q)(ωκ1 + (1−ω)κ2) ≤
1
m

m

∑
j=1

[1− (s(1−ω))j](O ◦Q)(κ1) +
1
m

m

∑
j=1

[1− (sω)j](O ◦Q)(κ2).

(v) If we put m = 1 and p = −1 in Theorem 2, then we obtain the following inequality:

(O ◦Q)(ωκ1 + (1−ω)κ2) ≤ [1− (s(1−ω))](O ◦Q)(κ1) + [1− (sω)](O ◦Q)(κ2).

Theorem 3. Let 0 < κ1 < κ2, Qj : [κ1,κ2]→ [0,+∞) be a class of m–poly p–harmonic s–type
convex functions and Q(u) = supj Qj(u). Then Q is an m–poly p–harmonic s–type convex
function and U = {u ∈ [κ1,κ2] : Q(u) < +∞} is an interval.



Mathematics 2022, 10, 3286 9 of 21

Proof. Let κ1,κ2 ∈ U and ω ∈ [0, 1], then

Q
[ κp

1κ
p
2

ωκp
2 + (1−ω)κp

1

] 1
p

= sup
j

Qj

[ κp
1κ

p
2

ωκp
2 + (1−ω)κp

1

] 1
p

≤ 1
m

m

∑
j=1

[1− (s(1−ω))j] sup
j

Qj(κ1) +
1
m

m

∑
j=1

[1− (sω)j] sup
j

Qj(κ2)

=
1
m

m

∑
j=1

[1− (s(1−ω))j]Q(κ1) +
1
m

m

∑
j=1

[1− (sω)j]Q(κ2) < +∞,

which completes the proof.

Remark 5. If we put p = 1 and s = 1 in Theorem 3, then we get Theorem (2.2) in [13].

4. (H–H) Type Inequality for m–Poly p–Harmonic s–Type Convex Functions

The Hermite–Hadamard-type inequality was first studied for convex functions and
has been examined and investigated extensively in different directions. This inequality
plays an amazing role in the literature; no one can deny its applications and fruitful uses.
Numerous extensions, generalizations and improvements have appeared in the literature
of this inequality. Many researchers have collaborated on numerous concepts in the field
of inequalities. This type of inequality has remained an area of great interest due to its
widespread perspective and importance in the area of pure and applied sciences.

The purpose of this section is to derive a new inequality of the (H–H) type using
m–poly p–harmonic s–type convexity. Further, some corollaries and remarks are presented.

Theorem 4. Let Q : [κ1,κ2] → [0,+∞) be an m–poly p–harmonic s–type convex function. If
Q ∈ L[κ1,κ2], then

m

2
m
∑

j=1
[1− ( s

2 )
j]

Q
[

2κp
1κ

p
2

κp
1 +κp

2

] 1
p

≤
pκp

1κ
p
2

κp
2 −κp

1

∫ κ2

κ1

Q(x)
xp+1 dx ≤

[
Q(κ1) + Q(κ2)

m

] m

∑
j=1

[
j + 1− sj

j + 1

]
. (11)

Proof. Since Q is m–poly p–harmonic s–type convex function, we have

Q
[

xpyp

ωyp + (1−ω)xp

] 1
p

≤ 1
m

m

∑
j=1

[1− (s(1−ω))j]Q(x) +
1
m

m

∑
j=1

[1− (sω)j]Q(y),

which leads to

Q
[

2xpyp

xp + yp

] 1
p

≤ 1
m

m

∑
j=1

[1− (
s
2
)j]Q(x) +

1
m

m

∑
j=1

[1− (
s
2
)j]Q(y).

Using a change of variables, we get

Q
[

2κp
1κ

p
2

κp
1 +κp

2

] 1
p

≤ 1
m

m

∑
j=1

[1− (
s
2
)j]

{
Q
[ κp

1κ
p
2(

ωκp
2 + (1−ω)κp

1

)] 1
p

+ Q
[ κp

1κ
p
2(

ωκp
1 + (1−ω)κp

2

)] 1
p
}

.
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Integrating the above inequality with respect to ω on [0, 1], we obtain

m

2
m
∑

j=1
[1− ( s

2 )
j]

Q
[

2κp
1κ

p
2

κp
1 +κp

2

] 1
p

≤
pκp

1κ
p
2

κp
2 −κp

1

∫ κ2

κ1

Q(x)
xp+1 dx,

which completes the left side inequality. For the right side inequality, changing the variable

of integration as x =

[
κp

1κ
p
2

ωκp
2 +(1−ω)κp

1

] 1
p

and using Definition 5 for the function Q, we have

pκp
1κ

p
2

κp
2 −κp

1

∫ κ2

κ1

Q(x)
xp+1 dx

=
∫ 1

0
Q
[ κp

1κ
p
2

ωκp
2 + (1−ω)κp

1

] 1
p

dω

≤
∫ 1

0

[
1
m

m

∑
j=1

[1− (s(1−ω))j]Q(κ1) +
1
m

m

∑
j=1

[1− (sω)j]Q(κ2)

]
dω

=
Q(κ1)

m

m

∑
j=1

∫ 1

0
[1− (s(1−ω))j]dω +

Q(κ2)

m

m

∑
j=1

∫ 1

0
[1− (sω)j]dω

=

[
Q(κ1) + Q(κ2)

m

] m

∑
j=1

[
j + 1− sj

j + 1

]
,

which completes the proof.

Corollary 1. Choosing m = 1 in Theorem 4, then we get the following new H–H type inequality
for p–harmonic s–type convex functions:

1
2− s

Q
[

2κp
1κ

p
2

κp
1 +κp

2

] 1
p

≤
pκp

1κ
p
2

κp
2 −κp

1

∫ κ2

κ1

Q(x)
xp+1 dx ≤ 2− s

2
[
Q(κ1) + Q(κ2)

]
.

Corollary 2. Choosing p = 1 in Theorem 4, then we get the following new H–H type inequality
for m–poly harmonic s–type convex functions:

m

2
m
∑

j=1
[1− ( s

2 )
j]

Q
[

2κ1κ2

κ1 +κ2

]
≤ κ1κ2

κ2 −κ1

∫ κ2

κ1

Q(x)
x2 dx ≤

[
Q(κ1) + Q(κ2)

n

] m

∑
j=1

[
j + 1− sj

j + 1

]
. (12)

Corollary 3. Choosing p = −1 in Theorem 4, then we get the following new H–H type inequality
for m–poly s–type convex functions:

m

2
m
∑

j=1
[1− ( s

2 )
j
Q
(
κ1 +κ2

2

)
≤ 1

κ2 −κ1

∫ κ2

κ1

Q(x)dx ≤
(

Q(κ1) + Q(κ2)

m

) m

∑
j=1

[
j + 1− sj

j + 1

]
.

Remark 6. Choosing m = 1 and s = 1 in Theorem 4, we get Theorem (2.5) in [29].

Remark 7. Choosing p = 1 and s = 1 in Theorem 4, we get Theorem (2.3) in [13].

Remark 8. Choosing p = −1 and s = 1 in Theorem 4, we get Theorem (4) in [9].

Remark 9. Choosing m = 1, p = 1 and s = 1 in Theorem 4, we get Theorem (3) in [30].
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Remark 10. Choosing m = 1, p = −1 and s = 1 in Theorem 4, we get the simple H–H inequality
in [2].

5. Refinements of (H–H) Type Inequality

The main objective and goal of this section is to investigate and examine the re-
finements of H–H type inequality via the newly introduced idea, namely the m–poly
p–harmonic s–convex function. Further, here a lemma, power mean and Hölder-type
inequality will be required in our studies. We conclude this section by adding some
corollaries.

Lemma 2 ([31]). Let Q : I = [κ1,κ2] ⊆ R \ {0} → R be differentiable function on the I◦ of I.
If Q′ ∈ L[κ1,κ2], then

Q(κ1) + Q(κ2)

2
−

pκp
1κ

p
2

κp
2 −κp

1

∫ κ2

κ1

Q(x)
x1+p dx =

κ1κ2(κ
p
2 −κp

1 )

2p

∫ 1

0

µ(ω)

Ap+1
ω

Q′
(
κ1κ2

Aω

)
dω,

where Aω =

[
ωκp

2 + (1−ω)κp
1

] 1
p

and µ(ω) = (1− 2ω).

Theorem 5. Let Q : I = [κ1,κ2] ⊆ R \ {0} → R be a differentiable function on the I◦ of I. If
Q′ ∈ L[κ1,κ2] and |Q′|q is m–poly p–harmonic s–type convex function on I, q ≥ 1, then∣∣∣∣Q(κ1) + Q(κ2)

2
−

pκp
1κ

p
2

κp
2 −κp

1

∫ κ2

κ1

Q(x)
x1+p dx

∣∣∣∣
≤

κ1κ2(κ
p
2 −κp

1 )

2p

{
G

1− 1
q

1

[
G2|Q′(κ1)|q + G3|Q′(κ2)|q

] 1
q
}

,

where,

G1 =
∫ 1

0
|1−2ω|
Ap+1

ω

dω, G2 = 1
m
∫ 1

0

|1−2ω|
m
∑

j=1
[1−(s(1−ω))j ]

A1+p
ω

dω, G3 = 1
m
∫ 1

0

|1−2ω|
m
∑

j=1
[1−(sω)j ]

A1+p
ω

dω.
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Proof. Using Lemma 2, the power mean inequality and m–poly p–harmonic s–type con-
vexity of the |Q′|q, we have∣∣∣∣Q(κ1) + Q(κ2)

2
−

pκp
1κ

p
2

κp
2 −κp

1

∫ κ2

κ1

Q(x)
x1+p dx

∣∣∣∣
≤

κ1κ2(κ
p
2 −κp

1 )

2p

∫ 1

0

|1− 2ω|
Ap+1

ω

∣∣∣∣Q′(κ1κ2

Aω

)∣∣∣∣dω

≤
κ1κ2(κ

p
2 −κp

1 )

2p

( ∫ 1

0

|1− 2ω|
Ap+1

ω

dω

)1− 1
q
( ∫ 1

0

|1− 2ω|
Ap+1

ω

∣∣∣∣Q′(κ1κ2

Aω

)∣∣∣∣qdω

) 1
q

≤
κ1κ2(κ

p
2 −κp

1 )

2p

( ∫ 1

0

|1− 2ω|
Ap+1

ω

dω

)1− 1
q

×
( ∫ 1

0

|1− 2ω|
[

1
m

m
∑

j=1
[1− (s(1−ω))j]|Q′(κ1)|q + 1

m

m
∑

j=1
[1− (sω)j]|Q′(κ2)|q

]
A1+p

ω

dω

) 1
q

≤
κ1κ2(κ

p
2 −κp

1 )

2p

( ∫ 1

0

|1− 2ω|
Ap+1

ω

dω

)1− 1
q

×
(

1
m

∫ 1

0

|1− 2ω|
m
∑

j=1
[1− (s(1−ω))j]

A1+p
ω

|Q′(κ1)|qdω +
1
m

∫ 1

0

|1− 2ω|
m
∑

j=1
[1− (sω)j]

A1+p
ω

|Q′(κ2)|qdω

) 1
q

≤
κ1κ2(κ

p
2 −κp

1 )

2p

{
G

1− 1
q

1

[
G2|Q′(κ1)|q + G3|Q′(κ2)|q

] 1
q
}

,

which completes the proof.

Corollary 4. Under the assumptions of Theorem 5 with m = 1 and p = −1, we have the following
new result: ∣∣∣∣Q(κ1) + Q(κ2)

2
− 1

κ2 −κ1

∫ κ2

κ1

Q(x)dx
∣∣∣∣

≤ (κ2 −κ1)

2

(
1
2

)1− 1
q
(

s− 6
24

){[
|Q′(κ1)|q + |Q′(κ2)|q

] 1
q
}

.

Corollary 5. Under the assumptions of Theorem 5 with m = p = 1, we have the following
new result: ∣∣∣∣Q(κ1) + Q(κ2)

2
− κ1κ2

κ2 −κ1

∫ κ2

κ1

Q(x)
x2 dx

∣∣∣∣
≤ κ1κ2(κ2 −κ1)

2

{
G
′1− 1

q
1

[
G
′
2|Q′(κ1)|q + G

′
3|Q′(κ2)|q

] 1
q
}

,

where

G
′
1 =

∫ 1

0

|1− 2ω|
A2

ω
dω, G

′
2 =

∫ 1

0

|1− 2ω|[1− s(1−ω)]

A2
ω

dω,

G
′
3 =

∫ 1

0

|1− 2ω|[1− sω]

A2
ω

dω.
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Theorem 6. Let Q : I = [κ1,κ2] ⊆ R \ {0} → R be a differentiable function on the I◦ of
I. If Q′ ∈ L[κ1,κ2] and |Q′|q is m–poly p–harmonic s–type convex function on I, r, q ≥ 1,
1
r +

1
q ≥ 1 then

∣∣∣∣Q(κ1) + Q(κ2)

2
−

pκp
1κ

p
2

κp
2 −κp

1

∫ κ2

κ1

Q(x)
x1+p dx

∣∣∣∣
≤

κ1κ2(κ
p
2 −κp

1 )

2p

{
G

1
r
4

[
G5|Q′(κ1)|q + G6|Q′(κ2)|q

] 1
q
}

,

where

G4 =
∫ 1

0
|1− 2ω|rdω, G5 =

1
m

∫ 1

0

m
∑

j=1
[1− (s(1−ω))j]

A(1+p)q
ω

dω, G6 =
1
m

∫ 1

0

m
∑

j=1
[1− (sω)j]

A(1+p)q
ω

dω.

Proof. Considering the equality presented in Lemma 2, Hölder’s inequality and p–harmonic
s–type convexity of the |Q′|q, we have∣∣∣∣Q(κ1) + Q(κ2)

2
−

pκp
1κ

p
2

κp
2 −κp

1

∫ κ2

κ1

Q(x)
x1+p dx

∣∣∣∣
≤

κ1κ2(κ
p
2 −κp

1 )

2p

∫ 1

0

|1− 2ω|
Ap+1

ω

∣∣∣∣Q′(κ1κ2

Aω

)∣∣∣∣dω

≤
κ1κ2(κ

p
2 −κp

1 )

2p

{( ∫ 1

0
|1− 2ω|rdω

) 1
r
( ∫ 1

0

1

A(1+p)q
ω

∣∣∣∣Q′(κ1κ2

Aω

)∣∣∣∣qdω

) 1
q

≤
κ1κ2(κ

p
2 −κp

1 )

2p

{( ∫ 1

0
|1− 2ω|rdω

) 1
r

×
( ∫ 1

0

1

A(1+p)q
ω

[
1
m

m

∑
j=1

[1− (s(1−ω))j]|Q′(κ1)|q +
1
m

m

∑
j=1

[1− (sω)j]|Q′(κ2)|q
]

dω

) 1
q
}

=
κ1κ2(κ

p
2 −κp

1 )

2p

{
G

1
r
4

[
G5|Q′(κ1)|q + G6|Q′(κ2)|q

] 1
q
}

,

which completes the proof.

Corollary 6. Under the assumptions of Theorem 6 with m = 1 and p = −1, we have the following
new result:∣∣∣∣Q(κ1) + Q(κ2)

2
− 1

κ2 −κ1

∫ κ2

κ1

Q(x)dx
∣∣∣∣

≤ (κ2 −κ1)

2

( ∫ 1

0
|1− 2ω|rdω

) 1
r
[

2− s
2

]{[
|Q′(κ1)|q + |Q′(κ2)|q

] 1
q
}

.

Corollary 7. Under the assumptions of Theorem 6 with m = p = 1, we have the following
new result: ∣∣∣∣Q(κ1) + Q(κ2)

2
− κ1κ2

κ2 −κ1

∫ κ2

κ1

Q(x)
x2 dx

∣∣∣∣
≤ κ1κ2(κ2 −κ1)

2

{
G′

1
r

4

[
G
′
5|Q′(κ1)|q + G

′
6|Q′(κ2)|q

] 1
q
}

,
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where

G
′
4 =

∫ 1

0
|1− 2ω|rdω, G

′
5 =

∫ 1

0

[1− s(1−ω)]

A2q
ω

dω, G
′
6 =

∫ 1

0

[1− sω]

A2q
ω

dω.

6. Ostrowski-Type Inequalities

The Ostrowski inequality expresses bounds on the deviation of a function from its
integral mean. The great mathematician Ostrowski investigated his famous and popular
inequality in 1938. This inequality has lot of applications in the field of numerical analysis,
cumulative distribution functions, probability theory and approximation theory.

The main objective and goal of this section is to introduce a new lemma. On the
basis of this newly introduced lemma, we make some refinements of the Ostrowski-type
inequality with the help of the power mean and Hölder type inequality.

Lemma 3. Let Q : I → R be a differential mapping on I◦ and κ1,κ2 ∈ I with κ1 < κ2 and
p ∈ R \ {0}. If Q ∈ L[κ1,κ2], then the following equality holds true.

Q(x)− p
κp

1κ
p
2

κp
2 −κp

1

∫ κ2

κ1

Q(u)
u1+p du

=
κp

1κ
p
2

p(κp
2 −κp

1 )

{(
xp −κp

1

κp
1 xp

)2 ∫ 1

0
ω

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p

Q
′
([ κp

1 xp

ωκp
1 + (1−ω)xp

] 1
p
)

dω

−
(κp

2 − xp

κp
2 xp

)2 ∫ 1

0
ω

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p

Q
′
([ κp

2 xp

ωκp
2 + (1−ω)xp

] 1
p
)

dω

}
.

Proof. Integration by parts and changing variables of integration yields

κp
1κ

p
2

p(κp
2 −κp

1 )

{(
xp −κp

1

κp
1 xp

)2 ∫ 1

0
ω

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p

Q
′
([ κp

1 xp

ωκp
1 + (1−ω)xp

] 1
p
)

dω

−
(κp

2 − xp

κp
2 xp

)2 ∫ 1

0
ω

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p

Q
′
([ κp

2 xp

ωκp
2 + (1−ω)xp

] 1
p
)

dω

}

=
κp

1κ
p
2

p(κp
2 −κp

1 )

{
p
(

xp −κp
1

κp
1 xp

)2[
p

κp
1 xp

xp −κp
1

ωQ
([ κp

1 xp

ωκp
1 + (1−ω)xp

] 1
p
)∣∣∣∣1

0

− p
κp

1 xp

xp −κp
1

∫ 1

0
Q
([ κp

1 xp

ωκp
1 + (1−ω)xp

] 1
p
)

dω

−
(κp

2 − xp

κp
2 xp

)2[
p

κp
2 xp

κp
2 − xp

ωQ
([ κp

2 xp

ωκp
2 + (1−ω)xp

] 1
p
)∣∣∣∣1

0
+ p

κp
2 xp

κp
2 − xp

∫ 1

0
Q
([ κp

2 xp

ωκp
2 + (1−ω)xp

] 1
p
)

dω

=
κp

1κ
p
2

p(κp
2 −κp

1 )

{
p
(

xp −κp
1

κp
1 xp

)
Q(x)− p

xp −κp
1

xpκp
1

∫ 1

0
Q
([ κp

1 xp

ωκp
1 + (1−ω)xp

] 1
p
)

dω

− p
κp

2 − xp

κp
2 xp

Q(x) + p
κp

2 − xp

κp
2 xp

∫ 1

0
Q
([ κp

2 xp

ωκp
2 + (1−ω)xp

] 1
p
)

dω

= Q(x)− p
κp

1κ
p
2

κp
2 −κp

1

∫ κ2

κ1

Q(u)
u1+p du.

Theorem 7. Let Q : I = [κ1,κ2] ⊆ R \ {0} → R be a differentiable mapping on I◦, where
κ1,κ2 ∈ I with κ1 < κ2, Q′ ∈ L[κ1,κ2] and p ∈ R \ {0}. If |Q|′ is an m–poly p–harmonic
s–type convex function on I for q ≥ 1 and s ∈ [0, 1], then
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∣∣∣∣Q(x)− p
κp

1κ
p
2

κp
2 −κp

1

∫ κ2

κ1

Q(u)
u1+p du

∣∣∣∣
≤

κp
1κ

p
2

p(κp
2 −κp

1 )

{(
xp −κp

1

κp
1 xp

)2[(
k1(p,κ1, x)

)1− 1
q
{
|Q′(x)|qk3(p,κ1, x) + |Q′(κ1)|qk4(p,κ1, x)

} 1
q

]

−
(κp

2 − xp

κp
2 xp

)2[(
k2(p,κ2, x)

)1− 1
q
{
|Q′(x)|qk5(p,κ2, x) + |Q′(κ2)|qk6(p,κ2, x)

} 1
q

]}
,

where

K1(p,κ1, x) =
∫ 1

0
ω

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p

=
κ1+p

1
2 2F1

(
1 +

1
p

, 2, 3, 1− (
κ1

x
)p
)

,

K2(p,κ2, x) =
∫ 1

0
ω

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p

=
κ1+p

2
2 2F1

(
1 +

1
p

, 2, 3, 1− (
κ2

x
)p
)

,

K3(p,κ1, x) =
1
m

m

∑
j=1

∫ 1

0
ω(1− (s(1−ω))j)

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p

dω

=
1
m

m

∑
j=1

κ1+p
1
2 2F1

(
1 +

1
p

, 2, 3, 1− (
a
x
)p
)
−

sjκ1+p
1

(j + 1)(j + 2) 2F1

(
1 +

1
p

, 2, j + 3, 1− (
κ1

x
)p
)

,

K4(p,κ1, x) =
1
m

m

∑
j=1

∫ 1

0
ω(1− (sω)j)

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p

dω

=
1
m

m

∑
j=1

κ1+p
1
2 2F1

(
1 +

1
p

, 2, 3, 1− (
κ1

x
)p
)
− sjκ1

1+p

(j + 2) 2F1

(
1 +

1
p

, j + 2, j + 3, 1− (
a
x
)p
)

,

K5(p,κ2, x) =
1
m

m

∑
j=1

∫ 1

0
ω(1− (s(1−ω))j)

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p

dω

=
1
m

m

∑
j=1

κ1+p
2
2 2F1

(
1 +

1
p

, 2, 3, 1− (
κ2

x
)p
)
−

sjκ1+p
2

(j + 1)(j + 2) 2F1

(
1 +

1
p

, 2, j + 3, 1− (
κ2

x
)p
)

,

K6(p,κ2, x) =
1
m

m

∑
j=1

∫ 1

0
ω(1− (sω)j)

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p

dω

=
1
m

m

∑
j=1

κ1+p
2
2 2F1

(
1 +

1
p

, 2, 3, 1− (
κ2

x
)p
)
−

sjκ1+p
2

(j + 2) 2F1

(
1 +

1
p

, 2, j + 3, 1− (
κ2

x
)p
)

.

Proof. Considering the equality presented in Lemma 3, applying power-mean inequality
and m–poly p–harmonic s–type convexity of the |Q′|q, we have
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∣∣∣∣Q(x)− p
κp

1κ
p
2

κp
2 −κp

1

∫ κ2

κ1

Q(u)
u1+p du

∣∣∣∣
≤

κp
1κ

p
2

p(κp
2 −κp

1 )

{(
xp −κp

1

κp
1 xp

)2 ∫ 1

0

∣∣∣∣ω[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p
∣∣∣∣∣∣∣∣Q′

([ κp
1 xp

ωκp
1 + (1−ω)xp

] 1
p
)∣∣∣∣dω

−
(κp

2 − xp

κp
2 xp

)2 ∫ 1

0

∣∣∣∣ω[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p
∣∣∣∣∣∣∣∣Q′

([ κp
2 xp

ωκp
2 + (1−ω)xp

] 1
p
)∣∣∣∣dω

}

≤
κp

1κ
p
2

p(κp
2 −κp

1 )

{(
xp −κp

1

κp
1 xp

)2[( ∫ 1

0
ω

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p

dω

)1− 1
q

×
( ∫ 1

0
ω

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p
∣∣∣∣Q′
([ κp

1 xp

ωκp
1 + (1−ω)xp

] 1
p
)∣∣∣∣qdω

)] 1
q

−
(κp

2 − xp

κp
2 xp

)2[( ∫ 1

0
ω

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p

dω

)1− 1
q

×
( ∫ 1

0
ω

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p
∣∣∣∣Q′
([ κp

2 xp

ωκp
2 + (1−ω)xp

] 1
p
)∣∣∣∣qdω

)] 1
q
}

≤
κp

1κ
p
2

p(κp
2 −κp

1 )
×
{(

xp −κp
1

κp
1 xp

)2[( ∫ 1

0
ω

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p

dω

)1− 1
q

×
( ∫ 1

0
ω

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p

 1
m

m

∑
j=1

(
1− (s(1−ω))j

)
|Q′

(x)|q + 1
m

m

∑
j=1

(
1− (sω)j

)
|Q′

(κ1)|q
dω

)] 1
q

−
(κp

2 − xp

κp
2 xp

)2[( ∫ 1

0
ω

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p

dω

)1− 1
q

×
( ∫ 1

0
ω

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p

 1
m

m

∑
j=1

(
1− (s(1−ω))j

)
|Q′

(x)|q + 1
m

m

∑
j=1

(
1− (sω)j

)
|Q′

(κ2)|q
dω

)] 1
q
}

≤
κp

1κ
p
2

p(κp
2 −κp

1 )
×
{(

xp −κp
1

κp
1 xp

)2[( ∫ 1

0
ω

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p

dω

)1− 1
q

×

 |Q′
(x)|q
m

m

∑
j=1

∫ 1

0
ω(1− (s(1−ω))j)

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p

dω

+
|Q′

(κ1)|q
m

m

∑
j=1

∫ 1

0
ω(1− (sω)j)

[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p

dω

] 1
q

−
(κp

2 − xp

κp
2 xp

)2[( ∫ 1

0
ω

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p

dω

)1− 1
q

×

 |Q′
(x)|q
m

m

∑
j=1

∫ 1

0
ω(1− (s(1−ω))j)

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p

dω

+
|Q′

(κ2)|q
m

m

∑
j=1

∫ 1

0
ω(1− (sω)j)

[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p

dω

] 1
q
}

≤
κp

1κ
p
2

p(κp
2 −κp

1 )

{(
xp −κp

1

κp
1 xp

)2[(
k1(p,κ1, x)

)1− 1
q
{
|Q′

(x)|qk3(p,κ1, x) + |Q′
(κ1)|qk4(p,κ1, x)

} 1
q

]

−
(κp

2 − xp

κp
2 xp

)2[(
k2(p,κ2, x)

)1− 1
q
{
|Q′

(x)|qk5(p,κ2, x) + |Q′
(κ2)|qk6(p,κ2, x)

} 1
q

]}
.

This completes the proof.
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Theorem 8. Let Q : I = [κ1,κ2] ⊆ R \ {0} → R be a differentiable mapping on I◦, where
κ1,κ2 ∈ I with κ1 < κ2, Q′ ∈ L[κ1,κ2] and p ∈ R \ {0}. If |Q|′ is an m–poly p–harmonic
s–type convex function on I for q > 1, 1

r +
1
q = 1 and s ∈ [0, 1], then

∣∣∣∣Q(x)− p
κp

1κ
p
2

κp
2 −κp

1

∫ κ2

κ1

Q(u)
u1+p du

∣∣∣∣
≤

κp
1κ

p
2

p(κp
2 −κp

1 )

{(
xp −κp

1

κp
1 xp

)2(
1

r + 1

) 1
r [
|Q′

(x)|qK7(κ1, x, p) + |Q′
(κ1)|qK8(κ1, x, p)

] 1
q

−
(
κp

2 − xp

κp
2 xp

)2(
1

r + 1

) 1
r [
|Q′

(x)|qK9(κ2, x, p) + |Q′
(κ2)|qK10(κ2, x, p)

] 1
q
}

, (13)

where,

K7(κ1, x, p) =
1
m

m

∑
j=1

∫ 1

0
[1− (s(1−ω))j]

[ κp
1 xp

ωκp
1 + (1−ω)xp

]q(1+ 1
p )

dω

=
κq(1+p)

1
m

m

∑
j=1

[
2F1

(
q(1 +

1
p
), 1, 2, 1− (

κ1

x
)p
)
− sj

j + 1 2F1

(
q(1 +

1
p
), 1, j + 2, 1− (

κ1

x
)p
)]

,

K8(κ1, x, p) =
1
m

m

∑
j=1

∫ 1

0
[1− (sω)j]

[ κp
1 xp

ωκp
1 + (1−ω)xp

]q(1+ 1
p )

dω

=
κq(1+p)

1
m

m

∑
j=1

[
2F1

(
q(1 +

1
p
), 1, 2, 1− (

κ1

x
)p
)
− sj

j + 1 2F1

(
q(1 +

1
p
), j + 1, j + 2, 1− (

κ1

x
)p
)]

,

K9(κ2, x, p) =
1
m

m

∑
j=1

∫ 1

0
[(1− (s(1−ω))j)]

[ κp
1 xp

ωκp
2 + (1−ω)xp

]q(1+ 1
p )

dω

=
κq(1+p)

2
m

m

∑
j=1

[
2F1

(
q(1 +

1
p
), 1, 2, 1− (

κ2

x
)p
)
− sj

(j + 1) 2F1

(
q(1 +

1
p
), 1, j + 2, 1− (

κ2

x
)p
)]

,

K10(κ2, x, p) =
1
m

m

∑
j=1

∫ 1

0
[1− (sω)j]

[ κp
1 xp

ωκp
2 + (1−ω)xp

]q(1+ 1
p )

dω

=
κq(1+p)

2
m

m

∑
j=1

[
2F1

(
q(1 +

1
p
), 1, 2, 1− (

κ2

x
)p
)
− sj

(j + 1) 2F1

(
q(1 +

1
p
), j + 1, j + 2, 1− (

κ2

x
)p
)]

.

Proof. Considering the equality presented in Lemma 3 and applying Hölder’s inequality,
we have
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∣∣∣∣Q(x)− p
κp

1κ
p
2

κp
2 −κp

1

∫ κ2

κ1

Q(u)
u1+p du

∣∣∣∣
≤

κp
1κ

p
2

p(κp
2 −κp

1 )

{(
xp −κp

1

κp
1 xp

)2 ∫ 1

0

∣∣∣∣ω[ κp
1 xp

ωκp
1 + (1−ω)xp

]1+ 1
p
∣∣∣∣∣∣∣∣Q′([ κp

1 xp

ωκp
1 + (1−ω)xp

] 1
p
)∣∣∣∣dω

−
(κp

2 − xp

κp
2 xp

)2 ∫ 1

0

∣∣∣∣ω[ κp
2 xp

ωκp
2 + (1−ω)xp

]1+ 1
p
∣∣∣∣∣∣∣∣Q′([ κp

2 xp

ωκp
2 + (1−ω)xp

] 1
p
)∣∣∣∣dω

}
≤

κp
1κ

p
2

p(κp
2 −κp

1 )

×
{(

xp −κp
1

κp
1 xp

)2(∫ 1

0
ωrdω

) 1
r

∫ 1

0

[
κp

1 xp

ωκp
1 + (1−ω)xp

]q(1+ 1
p )
∣∣∣∣∣∣Q′
[ κp

1 xp

ωκp
1 + (1−ω)xp

] 1
p
∣∣∣∣∣∣

q

dω


1
q

−
(
κp

2 − xp

κp
2 xp

)2(∫ 1

0
ωrdω

) 1
r

∫ 1

0

[
κp

2 xp

ωκp
2 + (1−ω)xp

]q(1+ 1
p )
∣∣∣∣∣∣Q′
[ κp

2 xp

ωκp
2 + (1−ω)xp

] 1
p
∣∣∣∣∣∣

q

dω


1
q}

.

By using m–poly p–harmonic s–type convexity of the |Q′|q, we have

≤
κp

1κ
p
2

p(κp
2 −κp

1 )

{(
xp −κp

1

κp
1 xp

)2(∫ 1

0
ωrdω

) 1
r

∫ 1

0

[
κp

1 xp

ωκp
1 + (1−ω)xp

]q(1+ 1
p )

×
(

1
m

m

∑
j=1

(
1− (s(1−ω))j

)
|Q′(x)|q + 1

m

m

∑
j=1

(
1− (sω)j

)
|Q′(κ1)|q

)
dω

) 1
q

−
(
κp

2 − xp

κp
2 xp

)2(∫ 1

0
ωrdω

) 1
r

∫ 1

0

[
κp

2 xp

ωκp
2 + (1−ω)xp

]q(1+ 1
p )

×
(

1
m

m

∑
j=1

(
1− (s(1−ω))j

)
|Q′(x)|q + 1

m

m

∑
j=1

(
1− (sω)j

)
|Q′(κ2)|q

)
dω

) 1
q}

≤
κp

1κ
p
2

p(κp
2 −κp

1 )

{(
xp −κp

1

κp
1 xp

)2(
1

r + 1

) 1
r [
|Q′(x)|qK7(κ1, x, p) + |Q′(κ1)|qK8(κ1, x, p)

] 1
q

−
(
κp

2 − xp

κp
2 xp

)2(
1

r + 1

) 1
r [
|Q′(x)|qK9(κ2, x, p) + |Q′(κ2)|qK10(κ2, x, p)

] 1
q
}

.

This completes the proof.

7. Applications

The main objective and goal of this section is to attain some new inequalities for the
arithmetic, geometric and harmonic means. The following means are well-known and
popular due to research background because these means have fruitful importance and
magnificent applications in numerical approximation, machine learning, statistics and
probability. The harmonic mean is a special case of the power mean. This mean has a lot
of importance in numerous field of pure and applied sciences i.e., electric circuit theory,
probability, finance, computer science, geometry, trigonometry and statistics. This mean
equalizes the weights of each data point because this mean is the most appropriate measure
for rates and ratios. In this section, we recall the following special means of two positive
numbers κ1,κ2 with κ1 < κ2:
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(1) The arithmetic mean

A = A(κ1,κ2) =
κ1 +κ2

2
.

(2) The geometric mean
G = G(κ1,κ2) =

√
κ1κ2.

(3) The harmonic mean

H = H(κ1,κ2) =
2κ1κ2

κ1 +κ2
.

(4) The logarithmic mean

L = L(κ1,κ2) =
κ2 −κ1

lnκ2 − lnκ1
.

H(κ1,κ2) ≤ G(κ1,κ2) ≤ L(κ1,κ2) ≤ A(κ1,κ2).

Proposition 4. Let 0 < κ1 < κ2 and p ≥ 1. Then we have the following inequality

m

2
m
∑

j=1
[1− ( s

2 )
j]

Hp(κ
p
1 ,κp

2 ) ≤
pκp

1κ
p
2

κp
2 −κp

1

(κ1−p
2 −κ1−p

1
1− p

)
≤ A(κ1,κ2)

2
m

m

∑
j=1

[
j + 1− sj

j + 1

]
. (14)

Proof. When we choose Q(x) = x for x > 0, Theorem 4 yields the inequality (14).

Proposition 5. Let 0 < κ1 < κ2 and p ≥ 1. Then we have the following inequality

m

2
m
∑

j=1
[1− ( s

2 )
j]

H2p(κ
p
1 ,κp

2 ) ≤
pκp

1κ
p
2

κp
2 −κp

1

(κ
1
2−p
2 −κ

1
2−p
1

1
2 − p

)
≤ A(

√
κ1,
√
κ2)

2
m

m

∑
j=1

[
j + 1− sj

j + 1

]
. (15)

Proof. When we choose Q(x) =
√

x for x > 0, Theorem 4 yields inequality (15).

Proposition 6. Let 0 < κ1 < κ2 and p ≥ 1. Then we have the following inequality

m

2
m
∑

j=1
[1− ( s

2 )
j]

H(κp
1 ,κp

2 ) ≤
pκp

1κ
p
2

κp
2 −κp

1

(
κ2 −κ1

L(κ1,κ2)

)
≤ A(κp

1 ,κp
2 )

2
m

m

∑
j=1

[
j + 1− sj

j + 1

]
. (16)

Proof. When we choose Q(x) = xp for x > 0, Theorem 4 yields inequality (16).

Proposition 7. Let 0 < κ1 < κ2 and p ≥ 1. Then we have the following inequality

m

2
m
∑

j=1
[1− ( s

2 )
j]

H2
p(κ

p
1 ,κp

2 ) ≤
pκp

1κ
p
2

κp
2 −κp

1

(κ2−p
2 −κ2−p

1
2− p

)
≤ A(κ2

1 ,κ2
2)

2
m

m

∑
j=1

[
j + 1− sj

j + 1

]
. (17)

Proof. When we choose Q(x) = x2 for x > 0, Theorem 4 yields inequality (17).

Proposition 8. Let 0 < κ1 < κ2 and p ≥ 1. Then we have the following inequality
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m

2
m
∑

j=1
[1− ( s

2 )
j]

ln Hp(κ
p
1 ,κp

2 ) ≤
pκp

1κ
p
2

κp
2 −κp

1

∫ κ2

κ1

ln x
xp+1 dx ≤ ln G(κ1,κ2)

2
m

m

∑
j=1

[
j + 1− sj

j + 1

]
. (18)

Proof. When we choose Q(x) = ln x for x > 0, Theorem 4 yields inequality (18).

Proposition 9. Let 0 < κ1 < κ2. Then we have the following inequality

m

2
m
∑

j=1
[1− ( s

2 )
j]

eH(κ1,κ2) ≤
pκp

1κ
p
2

κp
2 −κp

1

∫ κ2

κ1

ex

xp+1 dx ≤ A(eκ1 , eκ2)
2
m

m

∑
j=1

[
j + 1− sj

j + 1

]
. (19)

Proof. When we choose Q(x) = ex for x > 0, Theorem 4, yields inequality (19).

Proposition 10. Let 0 < κ1 < κ2. Then we have the following inequality

A(sinκ1, sinκ2)
2
m

m

∑
j=1

[
j + 1− sj

j + 1

]
≤

pκp
1κ

p
2

κp
2 −κp

1

∫ κ2

κ1

sin x
xp+1 dx ≤ m

2
m
∑

j=1
[1− ( s

2 )
j]

sin Hp(κ1,κ2). (20)

Proof. When we choose Q(x) = sin(−x) for x ∈ (0, π
2 ), Theorem 4 yields inequal-

ity (20).

8. Conclusions

The theory of convex analysis and integral inequalities are fruitful and have amazing
applications in statistical problems, statistical theory, optimization theory, probability,
functional analysis, physics and numerical quadrature formulas. In this article,

(1) we addressed a novel idea of generalized harmonic convex function, namely m–
polynomial p–harmonic s–type convex function.

(2) Some nice algebraic properties of the proposed definition are examined.
(3) In the mode of the newly proposed definition, we investigated a new sort of H–H-

type inequality.
(4) In addition, we obtained refinements of the H–H type inequality.
(5) Further, a new lemma is presented. By considering this new lemma, several refine-

ments and remarkable extensions of the Ostrowski type inequality are established.
(6) Some applications to special means are attained as well.

In the future, we hope the results of this paper and the new idea can be extended
in different directions such as fractional calculus, quantum calculus and time scale
calculus.
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28. Baloch, I.A.; Sen, M.D.L.; İşcan, İ. Characterizations of classes of harmonic convex functions and applications. Int. J. Anal. Appl.

2019, 17, 722–733.
29. Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton inequalities for p–harmonic convex function. Honam. Math. J. 2018, 40, 239–250.
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