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Abstract: As is well-known, unlike the one-dimensional case, there exist nonnegative polynomials
in several real variables that are not sums of squares. First, we briefly review a method of approxi-
mating any real-valued nonnegative continuous compactly supported function defined on a closed
unbounded subset by dominating special polynomials that are sums of squares. This also works in
several-dimensional cases. To perform this, a Hahn–Banach-type theorem (Kantorovich theorem
on an extension of positive linear operators), a Haviland theorem, and the notion of a moment-
determinate measure are applied. Second, completions and other results on solving full Markov
moment problems in terms of quadratic forms are proposed based on polynomial approximation.
The existence and uniqueness of the solution are discussed. Third, the characterization of the con-
straints T1 ≤ T ≤ T2 for the linear operator T, only in terms of quadratic forms, is deduced. Here,
T1, T, and T2 are bounded linear operators. Concrete spaces, operators, and functionals are involved
in our corollaries or examples.
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1. Introduction

We begin by recalling a few general remarks on approximation theory and its applica-
tions. A first fact is that the results of the present review paper focus on the existence and
uniqueness of the solution of the solution for a large class of Markov moment problems. The
involved solutions are bounded linear operators T mapping L1

ν(F) into an order-complete
Banach lattice Y, where ν is a moment-determinate positive regular Borel measure on the
closed unbounded subset F ⊆ Rn, n ∈ {1, 2, . . .}. The uniqueness follows from the density
of polynomials in L1

ν(F) (Lemma 1) via the continuity of the operator T. Of note, our first
result (Lemma 1) also works for n ≥ 2, when, unlike the case n = 1, there exist moment-
determinate measures ν on Rn for which the polynomials are not dense in L2

ν(F) (according
to [1]). Thus, for n ≥ 2, Lemmas 1, 2, and 3 are no longer valid if we turn L1

ν(F) into L2
ν(F).

Moreover, Lemma 1 holds true for any closed (unbounded) subset of F ⊆ Rn. Hence, the
nonnegative polynomials on F are dense in the positive cone of L1

ν(F). If F = Rn or F = Rn
+,

special convex cones of nonnegative polynomials (which are sums of squares) are dense in
the positive cone of L1

ν(F) (Lemmas 2 and 3). These remarks lead to the characterizations
in terms of quadratic forms in the case n ≥ 2, which is the main contribution of this review
paper. Going back to our aim on the applications of approximation theory, in [2] an interest-
ing connection of a moment problem on [0, 1] (the Hausdorff moment problem) with fixed
point theory was pointed out. As a rule, fixed point theorems use an iteration process. In [2],
this iteration involved a rational function. The solution of the Hausdorff moment problem
under attention is regarded as the fixed point of a transformation appearing naturally from
the context. In [3], deep results on the uniqueness of the solutions for moment problems
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were carefully discussed. The article [4] provided approximation results on various locally
compact spaces not necessarily related to the moment problem. In references [5] and [6],
the geometric and iterative aspects of optimization theory were emphasized. The article [7]
provided several interesting functional equations and new simple proofs of related inequal-
ities involving logarithmic convexity and proposed new conjectures on the subject. In the
article [8], an iterative method and its related algorithm, accompanied by a convergence
analysis, for solving an optimization problem were discussed. As a general remark, recall
that determining the element of minimum norm of a closed convex subset in a Hilbert
space, not containing the origin, is also a passing to the limit process associated with an
iteration geometrical method. This method can be adapted for a more general setting. The
article [9] provides an iterative method for solving and approximating the solution of an
operator equation, starting from Newton’s global method for convex monotone increasing
(or decreasing) operators. Sometimes, the usual iteration defining Newton’s method leads
to an iteration Ak+1 = ϕ(Ak), where Ak are self-adjoint operators acting on a Hilbert space
and ϕ is a contractive convex mapping. As is well-known, the convergence of the sequence
generated by Newton’s method generally only works locally. For convex monotone opera-
tors of the C1 class, it works globally, with the control of the norm of the error (providing
the velocity of the convergence). The key point of the article [9] is that the convergence of
the sequence of the successive approximations associated with the contraction mapping
ϕ can be handled more easily than that provided by Newton’s method. The contraction
constant of ϕ can be determined quite easily. In particular, if the matrices have real entries,
the result holds for functions of symmetric matrices. In the end, recall the connection
between optimization (such as the best approximation by the elements of a closed subspace
of a Hilbert space) and Fourier approximation. This is a useful remark that can be used in
controlling the mean square error g− h2

2 between the solutions g, h of the reduced moment
problems

〈
g, ψj

〉
= yj,

〈
h, ψj

〉
= mj, j = 0, 1, . . . , m in terms of the squares of the errors(

mj − yj
)2, j = 0, 1, . . . , m. Here, all the involved functions g, h, ψj are elements of the

Hilbert space L2
µ(F), and F ⊆ Rn is a closed subset:

ψj(t) = tj := tj1
1 · · · t

jn
n , t = (t1, . . . , tn) ∈ F, j = (j1, . . . , jn) ∈ Nn,

where yj are the exact values of the moments, determined in the experimental stage,
while mj are the modified values for yj, perturbed by external influences in the real-
life measuring stage. Another important field in approximation theory is provided by
Korovkin-type theorems and their applications. The article [10] presents such an application
in approximating a Kantorovich-type rational operator by means of Korovkin’s classical
approximating result and completing technique. Associated inequalities are established as
well. The papers [11,12] refer to the aspects related to or like those of the moment problem,
being inverse problems, as the moment problem is as well. The references [13,14] contain
a polynomial approximation on the unbounded subsets discussed in the beginning of
this introduction. Another direction of applying these approximation results is that of
characterizing sandwich conditions on bounded linear operators defined on L1

ν(F) (where
ν is moment-determinate) only in terms of quadratic forms (see below). Another well-
known application of approximation theory arises from Krein-Milman theorem, which
leads to approximation by convex combinations of the extreme points of a compact convex
subset in a locally convex space. Such results lead to representation theorems and possible
applications for optimization (see the references [14–17]).

Before stating our work on the multidimensional Markov moment problem and the
related results studied in Section 3, we recall some basic notions and related terminology
on compatible structures on usual spaces, which are used in the sequel. The motivation
for this is that all concrete spaces of functions and self-adjoint operators have such natural
structures. For complete and related information, see the monographs and books [18–27].
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An ordered vector space is a real vector space X endowed with an order relation compatible
with the algebraic structure expressed by the following two properties:

x, y ∈ X, x ≤ y := x + z ≤ y + z for all z ∈ X,
x ≤ y := αx ≤ αy for all real α ∈ [0, ∞).

An order relation with the above two compatibility properties is called a linear order
relation on X. An ordered vector space X with the property that for any x1, x2 ∈ X there
exists the least upper bound sup{x1, x2} = x1 ∨ x2 for the set {x1, x2} is called a vector
lattice. In a vector lattice X, the following basic notations are used:

x+ := x ∨ 0, x− := (−x) ∨ 0, |x| := x ∨ (−x), x ∈ X.

All the usual vector spaces have such a natural order relation. If X is an order vector space,
one denotes by X+ the convex cone with a vertex at 0, defined by X+ := {x ∈ X; x ≥ 0}. This
cone is called the positive cone of X. In the function spaces and in the spaces of symmetric
matrices with real entries, as well as in the space of self-adjoint operators acting on an
infinite-dimensional Hilbert space, there exist natural norms, which make them Banach
spaces. Generally, the structures given by the norms are compatible with the algebraic and
order structures on the Banach spaces appearing in applications. An ordered Banach space
is a Banach space X endowed with a linear order relation such that the positive cone X+ is
topologically closed and the norm is monotone increasing (isotone) on X+ :

x1, x2 ∈ X, 0 ≤ x1 ≤ x2 := ‖x1‖ ≤ ‖x2‖.

A Banach lattice is a Banach space X, which is also a vector lattice, such that the norm
is solid on X :

x1, x2 ∈ X, |x1| ≤ |x2| := ‖x1‖ ≤ ‖x2‖.

Almost all Banach function spaces have a natural structure of a Banach lattice. From
the above definitions, clearly, any Banach lattice is an ordered Banach space. The converse
is false. A first example of an ordered Banach spaces that is not a lattice is the space
SM(n× n) of all symmetric n× n matrices with real entries. The order relation on this
space is given by:

A, B ∈ SM(n× n), A ≤ B if and only if 〈Ah, h〉 ≤ 〈Bh, h〉 for all h ∈ Rn.

From this definition, we infer that A ≤ B if and only if B− A is positive semidefinite.
The norm of the symmetric matrix A is: A = sup

h≤1
|〈Ah, h〉|. Here, by ‖h‖ we denote the

Euclidean norm of the vector h. These definitions and notations make sense and have moti-
vations in the infinite-dimensional case. Namely, if H is an arbitrary infinite-dimensional
real or complex Hilbert space, a linear operator A : H → H is called a symmetric operator
if 〈Ax, y〉 = 〈x, Ay〉 for all x, y ∈ H. A linear symmetric (continuous) operator is called a
self-adjoint operator. Of note, any symmetric linear operator acting on H is continuous and
therefore self-adjoint thanks to the closed graph theorem. The last definition makes sense
for linear operators A : D(A)→ H, where D(A) ⊆ H is a vector subspace of H, called the
domain of definition of A. In this case, 〈Ax, y〉 = 〈x, Ay〉 holds for all x, y ∈ D(A). To avoid
the inconvenience arising from the fact that the real vector space of self-adjoint operators
is not a lattice as well as the noncommutativity of the multiplication (composition) of
self-adjoint operators (and of symmetric square matrices), the following subspace has been
studied. Let A ∈ A(H), where A(H) is the real vector space of all self-adjoint operators
acting on H. We define:

Y1(A) := {V ∈ A(H); AV = VA}, Y(A) := {W ∈ Y1(A); UW = WU ∀U ∈ Y1(A)}.
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Then, Y(A) is an order complete Banach lattice and a commutative real algebra of
self-adjoint operators (according to [22]). P = R[t1, . . . , tn] is the real vector space of all
polynomial functions with real coefficients of n real variables t1, . . . , tn.In what follows,
F is a closed, unbounded subset of Rn, and P+(F) is the convex cone of polynomials
p : F → R, with p(t) ≥ 0 for all t ∈ F. We denote by P++(F) a convex subcone of P+(F)
whose elements are special nonnegative polynomials. For example, P++(Rn) can be the
convex cone of all sums of polynomials of the form p1 ⊗ · · · ⊗ pn, where:

(p1 ⊗ · · · ⊗ pn)(t1, . . . , tn) := p1(t1) · · · pn(tn), t = (t1, . . . , tn) ∈ Rn,
pi ∈ P+(R), i = 1, . . . , n.

(1)

We recall that:
p ∈ P+(R)⇔ p = q2 + r2 (2)

for some polynomials q, r and

p ∈ P+(R+)⇔ p(t) = q(t)2 + tr(t)2 for all t ∈ R+ := [0, ∞). (3)

for some q, r ∈ R[t]. We denote by N := {0, 1, . . .} the set of all nonnegative integers. If
F is a closed unbounded subset of Rn, then Cc(F) is the vector space of all real-valued
continuous compactly supported functions defined on F. In the sequel, all the involved
vector space and linear operators (or functionals) are considered over the real field.

The classical moment problem can be written as follows: being given a sequence(
yj
)

j∈Nn of real numbers and a closed subset F ⊆ Rn, n ∈ {1, 2, . . .}, find a positive regular

Borel measure µ on F such that
∫

F tjdµ = yj, j ∈ Nn. This is the full moment problem. The
existence, uniqueness, and construction of the unknown solution µ are the focus of attention.
The truncated (or reduced) moment problem requires the interpolation moment conditions
only for jk ≤ d, k = 1, . . . , n, , j = (j1, . . . , jn), where d is a given positive integer. The
numbers yj, j ∈ Nn are called the moments of the measure µ. When a sandwich condition
on the solution is required, we have a Markov moment problem. The moment problem is
an inverse problem since the measure µ is not known. It must be found, starting from its
moments. Instead of real number moments, one can work with elements yj ∈ Y, j ∈ Nn,
where Y is an order complete Banach lattice of functions or self-adjoint operators. If the yj
are operators, we have an operator-valued moment problem. When Y is a Banach lattice
of functions, we have a vector-valued moment problem. The requirement for Y to be
order-complete is motivated by the necessity of applying Hahn–Banach-type theorems in
order to obtain a linear positive extension T : X → Y of the linear operator T0 : P → Y,
satisfying the moment conditions T0

(
ϕj
)

:= yj, j ∈ Nn, ϕj(t) = tj = tj1
1 · · · t

jn
n from P to an

ordered Banach space X containing both spaces P and Cc(F). When a sandwich condition
T1 ≤ T ≤ T2 is required on the extension T, where Ti, i = 1, 2 are given bounded linear
operators mapping X into Y, we have a Markov moment problem. In this case the positivity
of T on X+ is replaced by the condition T1 ≤ T, while the requirement T ≤ T2 controls
the norm of the solution T. As in the case of a scalar-valued linear solution, we now study
the existence, the uniqueness, and eventually the construction of a/the linear solution T
satisfying the interpolation moment conditions and the sandwich condition. A basic result
in solving the classical moment on unbounded closed subsets is the Haviland theorem [28].
In [29], the result of Kantorovich on the extension of positive linear operators preserving
linearity and positivity was reviewed and proven. This a Hahn–Banach-type result. The
references [30–43] point out various aspects of the moment and related problems. Unlike
other unbounded subsets of Rn, n ≥ 2, the expression of nonnegative polynomials on
a strip in terms of sums of squares is known due to M. Marshall’s theorem [39]. Using
the polynomial approximation ensured by Lemma 1 and Theorem 1, proven below, the
Markov moment problem in terms of quadratic forms is solved (see Theorem 3 below).
Applications of Hahn–Banach-type extension theorems to the study of the isotonicity
(increasing monotonicity) of continuous convex operators on the positive cone X+ were



Mathematics 2022, 10, 3288 5 of 16

published in the article [44]. References [45–48] focus mainly on several aspects of the
truncated or full Markov moment problem. The rest of this paper is organized as follows.
Section 2 summarizes the basic methods and results used along the proofs of the theorems
in the present paper. Section 3 is devoted to the results: polynomial approximation on
unbounded subsets in some L1

ν spaces, applications of such results accompanied by other
theorems to the existence and uniqueness of the solution of the Markov moment problem on
an unbounded closed subset, and characterizations of the sandwich condition for bounded
linear operators. All these applications of approximation-type results are partially or
completely formulated in terms of quadratic forms. Section 4 concludes the paper.

2. Methods

Here are the basic methods used directly or as background of this paper:

(1) Polynomial approximation on closed unbounded subsets F ⊆ Rn. in spaces L1
ν(F),

where ν is a moment-determinate positive regular Borel measure on F. Here, we use
notions on the determinacy of measures, Kantorovich theorem on the extension of
positive linear operators, Haviland theorem, and measure theory standard results.
However, the key point is the notion of a moment-determinate measure and its use
in the proof of Lemma 1. Bernstein-approximating polynomials are applied in the
proofs of Lemmas 2 and 3.

(2) The characterization of the existence and uniqueness of the solution for full vector-
valued Markov moment problems on unbounded subsets and their consequences for
scalar Markov moment problems.

(3) The characterization of the sandwich-type conditions for a large class of bounded
linear operators on L1

ν(Rn), only in terms of quadratic forms.

3. Results

3.1. On Polynomial Approximation on Unbounded Closed Subsets F ⊆ Rn in Spaces L1
ν(F),

Where ν Is a Moment-Determinate Positive Regular Borel Measure on F

In the sequel, the following approximation lemmas are applied

Lemma 1. Let F ⊆ Rn be an unbounded closed subset and ν be a moment-determinate pos-
itive regular Borel measure on F, with finite moments of all natural orders. Then, for any
x ∈ Cc(F), x(t) ≥ 0, ∀t ∈ F, there exists a sequence (pm)m, pm ≥ x, m ∈ N, pm → x in
L1

ν(F). Consequently, we have:

lim
m

∫
F

pm(t)dν =
∫
F

x(t)dν,

where P+ = P+(F) is dense in
(

L1
ν(F)

)
+, and P is dense in L1

ν(F).

Proof To prove the assertions of the statement, it is sufficient to show that for any
x ∈ (Cc(F))+ we have

Q1(x) := in f
{∫

F
p(t)dν; p ≥ x, p ∈ P

}
=
∫

F
x(t)dν.

Obviously, one has

Q1(x) ≥
∫

F
x(t)dν.

To prove the converse, we define the linear form

T0 : X0 := P ⊕ Sp{x} → R, F0(p + αx) :=
∫

F
p(t)dν + αQ1(x), p ∈ P , α ∈ R.
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We denote by X1 the vector subspace of X = L1
ν(F) of all functions from f from X

whose absolute value |f | is dominated by a polynomial pf on F. Next, we show that F0 is
positive on X0. In fact, for α < 0, one has (from the definition of Q1, which is a sublinear
functional on X1):

p + αx ≥ 0 := p ≥ −αx := (−α)Q1(x) = Q1(−αx) ≤
∫
F

p(t)dν := T0(p + αx) ≥ 0.

If a ≥ 0, we infer that:

0 = Q1(0) = Q1(αx− αx) ≤ αQ1(x) + Q1(−αx) =⇒∫
F

p(t)dν ≥ Q1(−αx) ≥ −αQ1(x) := T0(p + αx) ≥ 0,

where, in both possible cases, we have x0 ∈ (X0)+ := T0(x0) ≥ 0. Since X0 contains the
space of the polynomials’ functions, which is a majorizing subspace of X1, there exists a
linear positive extension T : X → R of T0 (cf. [29]), which is continuous on Cc(F) with
respect to the sup-norm. Therefore, T has a representation by means of a positive Borel
regular measure µ on F such that

T(x) =
∫

F
x(t)dµ, x ∈ Cc(F).

Let p ∈ P+ be a nonnegative polynomial function. There is a nondecreasing se-
quence (xm)m of continuous nonnegative function with compact support such that xm ↗ p
pointwise on F. The positivity of T and Lebesgue’s dominated convergence theorem for
µ yield

∫
F

p(t)dν = T(p) ≥ supT(xm) = sup
∫

F
xm(t)dµ =

∫
F

p(t)dµ, p ∈ P+.

Thanks to Haviland’s theorem [28], there exists a positive Borel regular measure λ on
F such that

λ(p) = ν(p)− µ(p)⇔ ν(p) = λ(p) + µ(p), p ∈ P .

Since ν is assumed to be M-determinate, it follows that:

ν(B) = λ(B) + µ(B),

for any Borel subset B of F. From this last assertion, approximating each x ∈
(

L1
ν(F
)
+

by a nondecreasing sequence of nonnegative simple functions and using Lebesgue’s con-
vergence theorem, one obtains, first for positive functions, then for arbitrary ν-integrable
functions, ϕ : ∫

F
ϕdν =

∫
F

ϕdλ +
∫

F
ϕdµ, ϕ ∈ L1

ν(F).

In particular, we must have∫
F

xdν ≥
∫

F
xdµ = T(x) = T0(x) = Q1(x).

The conclusion is: Q1(x) =
∫

F x(t)dν. This ends the proof. �
Using Bernstein polynomial of n real variables when Lemma 1 is applied to n = 1,

for F = R and Fubini’s theorem we derive the following multidimensional polynomial
approximation result.
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Lemma 2. Let ν = ν1 × · · · × νn be a product of n positive regular Borel-moment-determinate
measures on R, with finite moments of all orders. Then, we can approximate any nonnegative
continuous compactly supported function ψ ∈ X = (Cc(Rn))+ with the sums of products:

p1 ⊗ · · · ⊗ pn,
(p1 ⊗ · · · ⊗ pn)(t1, . . . , tn) := p1(t1) · · · pn(tn).t = (t1, . . . , tn) ∈ Rn,

where pj is a nonnegative polynomial on the entire real line, j = 1, . . . , n, and any such sum of
special polynomials dominates ψon Rn.

Lemma 3. Let ν = ν1 × · · · × νn be a product of n positive regular Borel-moment-determinate
measures on R+, with finite moments of all orders. Then, we can approximate any nonnegative
continuous compactly supported function ψ ∈

(
Cc
(
Rn
+

))
+ with the sums of products:

p1 ⊗ · · · ⊗ pn,
(p1 ⊗ · · · ⊗ pn)(t1, . . . , tn) := p1(t1) · · · pn(tn).t = (t1, . . . , tn) ∈ Rn

+,

where pj is a nonnegative polynomial on the entire nonnegative semi axes, j = 1, . . . , n, and any
such sum of special polynomials dominates ψ on Rn

+.

Proof. Let f ∈
(
Cc
(
Rn
+

))
+,Ki = pri(supp( f )), ai = in f Ki,bi = supKi, i = 1, . . . , n,

K = [a1, b1]× · · · × [an, bn].

The restriction of f to the parallelepiped K can be approximated uniformly on K
by Bernstein polynomials Bm in n variables. Any such polynomial Bm is a sum of the
products of the form qm,1 ⊗ · · · ⊗ qm,n, where each qm,i is a polynomial nonnegative on
[ai, bi], i = 1, . . . , n, m ∈ N. Bm can be written as:

Bm = ∑
ki=0,...,m,
i=1,...,n

qm,k1 ⊗ · · · ⊗ qm,kn ,

where qm,ki
is a nonnegative polynomial on [ai, bi], i = 1, . . . , n, m ∈ N. By the Weierstrass–

Bernstein uniform approximation theorem, we have:

‖ f − Bm‖∞ := sup
t∈K
| f (t)− Bm(t)| → 0, m→ ∞.

By an abuse of notation, we write qm,i = qm,ki
. We need a similar approxima-

tion, with sums of tensor products of nonnegative polynomials pi, pi(ti) ≥ 0, for all
ti ∈ R+, i = 1, . . . , n in the space L1

ν

(
Rn
+

)
. To this aim, the idea is to use Lemma 18

for n = 1, F = R+, followed by Fubini’s theorem. We define q0,m,i = qm,i·χ[ai ,bi ]
,

i = 1, . . . , n and fi(t) = qm,i(t), t ∈ [ai, bi], fi(t) = 0 for t outside an interval [ai − ε, bi + ε]
with small ε > 0, the graph of fi on [bi, bi + ε] being the line segment of the ends of the
points (bi, qi(bi)) and (bi + ε, 0). We proceed similarly on an interval [ai − ε, ai]. Clearly,
for ε > 0 small enough, fi approximates q0, m,i in L1

νi
(R+) as accurate as we wish. On

the other hand, fi is nonnegative, compactly supported, and continuous on R+, so that
Lemma 1 ensures the existence of an approximating polynomial pi with respect to the
norm of L1

dνi
( R+), pi(t) ≥ 0 for all t ∈ R+, i = 1, . . . , n. According to Fubini’s the-

orem, the preceding reasoning yields p1 ⊗ · · · ⊗ pn , which approximates f1 ⊗ · · · ⊗ fn,
and f1 ⊗ · · · ⊗ fn, which approximates q0,m,1 ⊗ · · · ⊗ q0,m,n = q0,m,k1 ⊗ · · · ⊗ q0,m,kn . The
approximations hold for finite sums of these products in L1

ν

(
Rn
+

)
. Moreover, finite sums of

functions q0,m,1, ⊗ · · · ⊗ q0,m,n approximate f uniformly on K because their restrictions to K
define the restriction to K of approximating Bernstein polynomials (Bm)m∈N associated to
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f . Since f and q0,m,1, ⊗ · · · ⊗ q0,m,n vanish outside K, we infer that the following norm ‖ ‖1
in L1

ν

(
Rn
+

)
is evaluated as:

‖ f − ∑
ki=0,...,m,
i=1,...,n

q0,m,k1, ⊗ · · · ⊗ q0,m,kn‖

1

=
∫

K

∣∣∣∣∣∣∣∣ f − ∑
ki=0,...,m,
i=1,...,n

qm,,k1 ⊗ · · · ⊗ qm,kn

∣∣∣∣∣∣∣∣dν ≤

sup
t∈K
| f (t)− Bm(t)|·ν(K)→ 0, m→ ∞.

The conclusion is that f can be approximated in L1
ν

(
Rn
+

)
by the sums of products

p1 ⊗ · · · ⊗ pn, where pi is nonnegative on R+ for all i = 1, . . . , n. This ends the proof. �

Example 1. For any α ∈ (0, ∞), dν = e−αtdt is a moment-determinate positive Borel measure on
R+, according to [14]. The application of Lemma 3 shows that for the product measure:

dν = exp

(
−

n

∑
j=1

αjtj

)
dt1 · · · dtn =

exp(−α1t1)dt1 × · · · × exp(−αntn)dtn, αj > 0, j = 1, . . . , n,

the polynomials are dense in L1
ν

(
Rn
+

)
. In particular, the measureν is moment-determinate on Rn

+. A
similar consequence follows from Lemma 2, for the measure

dµ = exp

(
−

n

∑
j=1

αjt2
j

)
dt1 · · · dtn, αj > 0, j = 1, . . . , n.

In this case, the polynomials are dense in L1
µ(Rn); in particular, µ is a moment-

determinate measure on Rn.

3.2. Solving Markov Moment Problems in Terms of Signatures of Quadratic Forms

The approximation results reviewed in Section 3.1 allow the extension of sandwich
conditions on the solution T, preserving the interpolation moment conditions, from the
subspace of polynomials to the entire space L1

ν(F) for moment-determinate measures ν.
The results stated in the sequel complete theorems previously published in [13,14,16].

Theorem 1. Let F be a closed unbounded subset of Rn, Y an order-complete Banach lattice,(
yj
)

j∈Nn a given sequence in Y, and ν a positive regular moment-determinate Borel measure on

F, with finite moments of all orders. Let T1,T2 ∈ B
(

L1
ν(F), Y

)
be two linear bounded operators from

L1
ν(F) to Y. The following statements are equivalent:

(a) there exists a unique bounded linear operator T ∈ B
(

L1
ν(A), Y

)
such that T

(
ϕj
)
= yj, j ∈

Nn, and T is between T1 and T2 on the positive cone of L1
ν;

(b) for any finite subset J0 ⊂ Nn and any
{

aj
}

j∈J0
⊂ R, we have

∑
j∈J0

aj ϕj ≥ 0onF ⇒

∑
j∈J0

ajT1
(

ϕj
)
≤ ∑

j∈J0

ajyj ≤ ∑
j∈J0

ajT2
(

ϕj
)
.

Proof. We define T0 : P → Y by

T0

(
∑
j∈J0

λj ϕj

)
:= ∑

j∈J0

λjyj. (4)
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Here, J0 ⊂ Nn is an arbitrary finite subset, and λj, j ∈ J0 are real coefficients. With this
notation, point (b) says that

T1(p) ≤ T0(p) ≤ T2(p), p ∈ P+(F). (5)

In other words, U1 := T0 − T1, U2 := T2 − T1, Ui : P → Y, i = 1, 2 are positive linear
operators on the positive coneP+(F) of the ordered vector spaceP , and U1

∣∣∣P+(F) ≤ U2

∣∣∣
P+(F)

.

According to the Kantorovich extension result for positive linear operators, there exists a
positive linear extension V1 of U1 from P to a dense subspace X1 of X := L1

ν(F) since P is
a majorizing subspace of X1 := { f ∈ X; ∃p ∈ P , | f | ≤ p}. Clearly, the space X1 contains
both subspaces Cc(F) and P . Then, V1 + T1 extends T0 to a linear operator:

W1 : X1 → Y, W1 := V1 + T1 ≥ T1 on P+(F).

Using Lemma 1, the continuity of T1, T2, and the inequalities 0 ≤ U1 ≤ U2 on P+, we
infer that for any sequence of nonnegative compactly supported functions (gl)l , gl → 0 ,
there exists a sequence of polynomials (pl)l , 0 ≤ gl ≤ pl for all l, pl − gl → 0, l → ∞.
These yield:

pl = (pl − gl) + gl → 0, l → ∞. (6)

On the other hand, (5) and (6) lead to:

0← T1(pl) ≤ T0(pl) ≤ T2(pl)→ 0.

Thus, W1(pl) = T0(pl)→ 0, which further implies

0 ≤W1(gl) ≤W1(pl)→ 0.

Thus, W1(gl)→ 0 for any convergent to zero sequence of elements from (Cc(F))+. Now,
let (gl)l be an arbitrary sequence in Cc(F), gl → 0. Then, g+l → 0, g−l → 0, and the preced-
ing reasons imply W1

(
g+l
)
→ 0, W1

(
g−l
)
→ 0 . Therefore, W1(gl) = W1

(
g+l
)
−W1

(
g−l
)
→ 0 .

The conclusion is that the linear operator W1 is continuous on Cc(F). It admits a unique
linear continuous extension T ∈ B(X, Y), since Cc(F) is dense in X. Hence, T is continuous
and defined on the entire space X = L1

ν(F), verifying T
(

ϕj
)
= T0

(
ϕj
)
= yj, j ∈ Nn. If

ψ ∈ X+, there exists a sequence (gl)l of functions in (Cc(F))+ such that gl → ψ in X. If (pl)l
is a sequence of polynomial functions, gl ≤ pl for all l, pl − gl → 0, then the continuity of
the operators T1, T, T2 on X and the inequalities (5) yield:

T1(ψ) = lim
l

T1(pl) ≤ lim
l

T0(pl) = lim
l

T(pl) ≤ lim
l

T2(pl) = T2(ψ), ψ ∈ X+.

This ends the proof. �
If the nonnegative polynomials on F are expressible in terms of sums of squares,

theorem 1 allows the characterization of the existence and uniqueness of the solution in
terms of quadratic forms. The following consequences hold. We start with the simplest
case, when F = R.

Corollary 1. Let X = L1
ν(R), where ν is a positive regular moment-determinate Borel measure on

R, with finite moments of all orders. Assume that Y is an arbitrary order complete Banach lattice
and (yn)n≥0 is a given sequence with its terms in Y. Let T1, T2 be two linear operators from X to Y
such that 0 ≤ T1 ≤ T2 on X+. The following statements are equivalent:

(a) There exists a unique bounded linear operator T from X to Y, T1 ≤ T ≤ T2 on X+,
‖T1‖ ≤ ‖T‖ ≤ ‖T2‖ such that T(ϕn) = yn for all n ∈ N;

(b) If J0 ⊂ N is a finite subset and
{

λj; j ∈ J0
}
⊂ R, then

∑
i,j∈J0

λiλjT1
(

ϕi+j
)
≤ ∑

i,j∈J0

λiλjyi+j ≤ ∑
i,j∈J0

λiλjT2
(

ϕi+j
)
.
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Proof. We apply Theorem 1 to F = R as well as the explicit form of nonnegative polynomi-
als on the real axes (2). One uses the obvious equality:

q = ∑
j∈J0

λj ϕj ⇒ q2 = ∑
i,j∈J0

λiλj ϕi ϕj = ∑
i,j∈J0

λiλj ϕi+j,

Here, J0 ⊂ N is an arbitrary finite subset, λj ∈ R, j ∈ J0. It remains to prove that

‖T1‖ ≤ ‖T‖ ≤ ‖T2‖.

The positivity of the linear operators T1, T, T2, T − T1, T2 − T on X+ and their
continuity yields:

± T1(x) = T1(±x) ≤ T1(|x|) ≤ T(|x|),

which implies |T1(x)| ≤ T(|x|), x ∈ X. Since Y is a Banach lattice, we infer that
the inequalities:

‖T1(x)‖ ≤ ‖T(|x|)‖ ≤ ‖T‖‖x‖,

hold for all x ∈ X. This proves that ‖T1‖ ≤ ‖T‖. Similarly, we show that ‖T‖ ≤ ‖T2‖. This
ends the proof. �

Here is the scalar-valued version of Corollary 1.

Corollary 2. Let ν be a positive regular moment-determinate Borel measure on R, with finite
moments of all orders. Assume that h1, h2 are two functions in L∞

ν (R) such that 0 ≤ h1 ≤ h2
almost everywhere. Let (yn)n≥0 be a given sequence of real numbers. The following statements
are equivalent:

(a) There exists a unique h ∈ L∞
ν (R) such that h1 ≤ h ≤ h2 ν−almost everywhere and∫

R tjh(t)dν = yj for all j ∈ N.
(b) If J0 ⊂ N is a finite subset, and

{
λj; j ∈ J0

}
⊂ R, then:

∑
i,j∈J0

λiλj

∫
R

ti+jh1(t)dν ≤ ∑
i,j∈J0

λiλjyi+j ≤ ∑
i,j∈J0

λiλj

∫
R

ti+jh2(t)dν.

Proof. The implication (a) := (b) is obvious. To prove the converse, we apply Corollary 1
to the case Y = R, Ti( f ) :=

∫
R hi(t) f (t)dν, i = 1, 2. The linear positive (hence, continuous)

functional T is represented by a function h ∈ L∞
ν (R) according to the measure theory

results from [9]. The moment interpolation conditions from Corollary 1 must be written as∫
R

h(t)tjdν = T
(

ϕj
)
= yj, j ∈ N.

To finish the proof, we must show that h1 ≤ h ≤ h2 ν−almost everywhere in R.
According to Corollary 1, we already know that:∫

R
h1(t) f (t)dν ≤

∫
R

h(t) f (t)dν ≤
∫
R

h2(t) f (t)dν,

for all f ∈
(

L1
ν(R)

)
+. Writing this for any f = χB, where B ⊆ R is an arbitrary Borel subset

with ν(B) ∈ (0, ∞), the following conclusion holds:∫
B
(h(t)− h1(t))dν ≥ 0,

∫
B
(h2(t)− h(t))dν ≥ 0, B ∈ B, ν(B) > 0.
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Here, B is the sigma algebra of all Borel subsets of R. Now, a well-known measure
theory argument [9] leads to h1(t) ≤ h(t) ≤ h2(t) for almost all t ∈ R with respect to the
measure dν. This ends the proof. �

If in Corollaries 1 and 2 we take R+ instead of R, the following statements hold, via
proofs like those shown above.

Corollary 3. Let X = L1
ν(R+), where ν is a positive regular moment-determinate Borel measure on

R+. Assume that Y is an arbitrary order-complete Banach lattice and (yn)n≥0 is a given sequence
with its terms in Y. Let T1, T2 be two linear operators from X to Y such that 0 ≤ T1 ≤ T2 on X+.
The following statements are equivalent:

(c) There exists a unique bounded linear operator T from X to Y, T1 ≤ T ≤ T2 on X+,
‖T1‖ ≤ ‖T‖ ≤ ‖T2‖ such that T(ϕn) = yn for all n ∈ N;

(d) If J0 ⊂ N is a finite subset and
{

λj; j ∈ J0
}
⊂ R, then

∑
i,j∈J0

λiλjT1

(
ϕi+j+k

)
≤ ∑

i,j∈J0

λiλjyi+j+k ≤ ∑
i,j∈J0

λiλjT2

(
ϕi+j+k

)
, k ∈ {0, 1}.

Corollary 4. Let ν be a positive regular moment-determinate Borel measure on R+, with finite
moments of all orders. Assume that h1, h2 are two functions in L∞

ν (R+) such that 0 ≤ h1 ≤ h2
almost everywhere. Let (yn)n≥0 be a given sequence of real numbers. The following statements
are equivalent:

(c) There exists a unique h ∈ L∞
ν (R+) such that h1 ≤ h ≤ h2 ν−almost everywhere, and∫

R+

tjh(t)dν = yjfor all j ∈ N.

(d) If J0 ⊂ N is a finite subset and
{

λj; j ∈ J0
}
⊂ R, then:

∑
i,j∈J0

λiλj

∫
R+

ti+j+kh1(t)dν ≤ ∑
i,j∈J0

λiλjyi+j+k ≤ ∑
i,j∈J0

λiλj

∫
R+

ti+j+kh2(t)dν, k ∈ {0, 1}.

Example 2. If, in Corollary 4, we take dν = e−tdt, h1(t) := te−t,, h2(t) := 1/2, then dν is
moment-determinate [14],

∫
R+

ti+j+kh1(t)dν =
∞∫
0

ti+j+k+1e−2t,dt = 2−(i+j+k+2)
∞∫
0

ui+j+k+1e−udu =

2−(i+j+k+2)(i + j + k + 1)!,∫
R+

ti+j+kh2(t)dν = 2−1(i + j + k)!.

Thus, condition (b) must be written as follows:

∑
i,j∈J0

λiλj2−(i+j+k+2)(i + j + k + 1)! ≤ ∑
i,j∈J0

λiλjyi+j+k ≤

∑
i,j∈J0

λiλj2−1(i + j + k)!, k ∈ {0, 1},

where J0 ⊂ N is an arbitrary finite subset and λj, j ∈ J0 are arbitrary real numbers.
We go on with the two-dimensional case, starting with the Markov moment problem

on a strip. The motivation is that the explicit expression of nonnegative polynomials on a
strip in terms of sums of squares is known due to following M. Marshall’s result [39].
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Theorem 2. If p(t1, t2) ∈ R[t1, t2] is nonnegative on the strip F = [0, 1]×R, then p(t1, t2) is
expressible as:

p(t1, t2) = σ(t1, t2) + τ(t1, t2)t1(1− t1),

where σ(t1, t2), τ(t1, t2) are sums of squares in R[t1, t2].

From Theorems 1 and 2, the next result also holds. Let F = [0, 1]×R, ν be a positive reg-
ular Borel M-determinate (moment-determinate) measure on F, and
X = L1

ν(F), ϕj(t1, t2) := tj1
1 tj2

2 , j = (j1, j2) ∈ N2, (t1, t2) ∈ F. Let Y be an order-complete
Banach lattice and

(
yj
)

j∈N2 be a sequence of given elements in Y.

Theorem 3. Let T1, T2 ∈ B+(X, Y) be two linear (bounded) positive operators mapping X into Y.
The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T : X → Y such that T
(

ϕj
)
= yj, j ∈ N2,

where T is between T1 and T2 on the positive cone of X, ‖T1‖ ≤ ‖T‖ ≤ ‖T2‖;
(b) For any finite subset J0⊂ N2 and any

{
λj; j ∈ J0

}
⊂ R, we have:

∑
i,j∈J0

λiλjT1
(

ϕi+j
)
≤ ∑

i,j∈J0

λiλjyi+j ≤ ∑
i,j∈J0

λiλjT2
(

ϕi+j
)
,

∑
i,j∈J0

λiλj
(
T1
(

ϕi1+j1+1, i2+j2 − ϕi1+j1+2, i2+j2
))
≤

∑
i,j∈J0

λiλj
(
yi1+j1+1, i2+j2 − yi1+j1+2, i2+j2

)
≤

∑
i,j∈J0

λiλj
(
T2
(

ϕi1+j1+1, i2+j2 − ϕi1+j1+2, i2+j2
))

, i = (i1, i2), j = (j1, j2) ∈ J0.

Unfortunately, similar results cannot be proven for moment problems on Rn and Rn
+.

This is a motivation for reviewing the following result [13].
If F ⊆ Rn is an arbitrary closed unbounded subset, then we denote, by P++, a sub-

cone of P+ generated by special nonnegative polynomials expressible in terms of sums
of squares.

Theorem 4. Let F ⊆ Rn be a closed unbounded subset; ν be a positive regular Borel-moment-
determinate measure on F, having finite moments of all orders; and X = L1

ν (F), ϕj(t) = tj,
t ∈ F, j ∈ Nn. Let Y be an order-complete Banach lattice,

(
yj
)

j∈Nn be a given sequence of elements
in Y, and T1 and T2 be two bounded linear operators mapping X into Y. Assume that there
exists a subcone P++ ⊆ P+ such that each f ∈ (Cc(F))+ can be approximated in X by a sequence
(pl)l , pl ∈ P++, pl ≥ f for all l. The following statements are equivalent:

(a) There exists a unique (bounded) linear operator

T : X → Y, T
(

ϕj
)
= yj, j ∈ Nn, 0 ≤ T1 ≤ T ≤ T2 X+, ‖T1‖ ≤ ‖T‖ ≤ ‖T2‖;

(b) For any finite subset J0 ⊂ Nn and any
{

λj; j ∈ J0
}
⊂ R, the following implications

hold true:
∑
j∈J0

λj ϕj ∈ P+(F) := ∑
j∈J0

λjT1
(

ϕj
)
≤ ∑

j∈J0

λjyj,

∑
j∈J0

λj ϕj ∈ P++ := ∑
j∈J0

λjT1
(

ϕj
)
≥ 0, ∑

j∈J0

λjyj ≤ ∑
j∈J0

λjT2
(

ϕj
)
.

The application of Theorem 4 and Lemma 2 yields the following result.

Theorem 5. Let ν = ν1 × · · · × νn, n ≥ 2, νj being a positive regular M−determinate (moment-
determinate) Borel measure on R, j = 1, . . . , n, X = L1

ν (Rn), ϕj(t) = tj, t ∈ Rn, j ∈ Nn.
Additionally, assume that νj has finite moments of all orders, j = 1, . . . , n. Let Y be an order-
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complete Banach lattice,
(
yj
)

j∈Nn a given sequence of elements in Y, and T1 and T2 two bounded
linear operators mapping X into Y. The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T : X → Y, T(ϕj) = yj, j ∈ Nn,
0 ≤ T1 ≤ T ≤ T2. on X+, ‖T1‖ ≤ ‖T‖ ≤ ‖T2‖;

(b) For any finite subset J0 ⊂ Nn and any
{

λj; j ∈ J0
}
⊂ R, the following implication

holds true:
∑
j∈J0

λj ϕj ∈ P+ ⇒ ∑
j∈J0

λjT1
(

ϕj
)
≤ ∑

j∈J0

λjyj.

For any finite subsets Jk ⊂ N, k = 1, . . . , n and any
{

λjk
}

jk∈Jk
⊂ R, the following inequali-

ties hold true:

0 ≤ ∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T1
(

ϕi1+j1,..,,in+jn
))
· · ·
)

,

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn yi1+j1,..,,in+jn

)
· · ·
)
≤

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T2
(

ϕi1+j1,..,,in+jn
))
· · ·
)

.

A similar result holds for products of n moment-determinate measures on R+, n ≥ 2
via Theorem 4 and Lemma 3, also using the explicit form of nonnegative polynomials on
R+ written in (3).

3.3. Characterizing Sandwich Conditions on Bounded Linear Operators in Terms of
Quadratic Forms

Lemma 2 leads to the following characterization.

Theorem 6. Let ν, X be as in the statement of Theorem 5, Y a Banach lattice, and T1, T, T2 bounded
linear operators mapping X into Y. The following statements are equivalent:

(a) T1 ≤ T ≤ T2 on the positive cone X+;
(b) For any finite subsets Jk ⊂ N, k = 1, . . . , n and any

{
λjk
}

jk∈Jk
⊂ R, k = 1, . . . , n, the

following inequalities hold:

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T1
(

ϕi1+j1 , . . . ,in+jn
))
· · ·
)

≤ ∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T
(

ϕi1+j1 , . . . ,in+jn
))
· · ·
)
≤

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T2
(

ϕi1+j1 , . . . ,in+jn
))
· · ·
)

.

Proof. Statement (b) says that T1(p) ≤ T(p) ≤ T2(p) for all p ∈ P++(Rn), where P++(Rn)
is the subcone of P+(Rn) formed by all polynomials that can be written as finite sums of
the polynomial defined by (1), with pi ∈ P+(R), i = 1, 2, . . . , n. Hence, the implication
(a) := (b) is obvious. For the converse, according to a measure-type result [9], for any
ψ ∈ X+ there exists a sequence (gl)l∈N of functions from (Cc(Rn))+, with ψ = lim

l
gl . On the

other hand, Lemma 2 implies that there is a sequence of polynomials (pl)l∈N, pl ∈ P++(Rn)
for all l such that pl − gl → 0, l → ∞. Thus,

ψ− pl = (ψ− gl) + (gl − pl)→ 0.
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This means that ψ = lim
l→∞

pl . From (b), we know that T1(pl) ≤ T(pl) ≤ T2(pl) for all

l ∈ N. Now, the continuity of the three involved operators T1, T, T2 yields

T1(ψ) = lim
l

T1(pl) ≤ lim
l

T(pl) = T(ψ) ≤ lim
l

T2(pl) = T2(ψ), ψ ∈ X+.

This ends the proof. �
Using Lemma 3 and the form of nonnegative polynomials on R+ (3), the next result

holds too.

Theorem 7. Let X = L1
ν

(
Rn
+

)
, ϕj(t) = tj, t ∈ Rn

+, j ∈ Nn, where ν is as in Lemma 3, Y is
a Banach lattice, and T1, T, T2 are bounded linear operators mapping X into Y. The following
statements are equivalent:

(a) T1 ≤ T ≤ T2 on the positive cone X+;
(b) For any finite subsets Jk ⊂ N, k = 1, . . . , n and any

{
λjk
}

jk∈Jk
⊂ R, k = 1, . . . , n, the

following inequalities hold:

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T1

(
ϕl1+i1+j1 , . . . ,ln+in+jn

))
· · ·
)

≤ ∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T
(

ϕl1+i1+j1 , . . . ,ln+in+jn

))
· · ·
)
≤

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T2

(
ϕl1+i1+j1 , . . . ,ln+in+jn

))
· · ·
)

,

for all (l1, . . . , ln) ∈ {0, 1}n.

4. Discussion

The present paper provides recently published results and a new way to present
them. Such results refer to the Markov moment problem, which motivated the polynomial
approximation on unbounded subsets stated in the beginning of the previous section.
Instead of looking for the explicit form of nonnegative polynomials on unbounded closed
subsets F of Rn, n ≥ 2 (which has been proven to not always be expressible in terms of
sums of squares), the approximation by finite sums of special polynomials pointed out in
Lemmas 2 and 3, followed by the passing to the limit process, solved partially or completely,
respectively, the problems discussed in the present work. With respect to our own previous
similar results, this review paper comes with generalizations and improvements in the
theorems, which clearly needed to be improved. We did not see a simpler method in the
literature that was able to solve polynomial approximation on unbounded subsets (which
is important as a separate subject) and the applications emphasized in this paper. It is a
work in the settings of analysis and functional analysis over the real field. The presentation
of some statements completes or generalizes the published results on the subject. As a
direction for future work, it would be interesting to study what these theorems say in the
cases when the codomains Y are concrete Banach lattices.
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