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Abstract: Deep neural network-based autoencoders can effectively extract high-level abstract fea-
tures with outstanding generalization performance but suffer from sparsity of extracted features,
insufficient robustness, greedy training of each layer, and a lack of global optimization. In this study,
the broad learning system (BLS) is improved to obtain a new model for data reconstruction. Support
Vector Domain Description (SVDD) is one of the best-known one-class-classification methods used to
solve problems where the proportion of sample categories of data is extremely unbalanced. The SVDD
is sensitive to penalty parameters C, which represents the trade-off between sphere volume and the
number of target data outside the sphere. The training process only considers normal samples, which
leads to a low recall rate and weak generalization performance. To address these issues, we propose a
BLS-based weighted SVDD algorithm (BLSW_SVDD), which introduces reconstruction error weights
and a small number of anomalous samples when training the SVDD model, thus improving the ro-
bustness of the model. To evaluate the performance of BLSW_SVDD model, comparison experiments
were conducted on the UCI dataset, and the experimental results showed that in terms of accuracy
and F1 values, the algorithm has better performance advantages than the traditional and improved
SVDD algorithms.

Keywords: broad learning system; data reconstruction; support vector domain description; anomaly
detection

MSC: 68T99

1. Introduction

With the rapid development of Internet technology, the volume and type of data are
exploding; in the data acquisition process, we generally encounter data that are quite
distinct from the entire dataset, and this can affect the analysis and analysis-based decision
making. Traditional anomaly detection algorithms need to acquire and label many normal
and abnormal samples. However, in practical problems, abnormal labels may not be
available, such as in the case of aircraft failure and earthquake disasters, which are difficult
to obtain. One-class-classification algorithms can effectively resolve such situations. The
support vector domain description (SVDD) classifier, a typical one-class classifier, was first
proposed by Tax and Duin [1,2]. The basic idea of this algorithm is to first map the data
samples from the original input data space to a high-dimensional feature space. Further,
it finds the smallest hypersphere in the high-dimensional feature space that contains as
much target data as possible while rejecting most anomalous data. It can rely on only a
small number of support vectors (SVs) on the sphere to obtain a very flexible and accurate
description of the domain. SVDD is currently applied to several fields such as industrial
anomaly detection [3] and disease detection [4].

Despite the usefulness of the SVDD classifiers, problems such as difficulties in selecting
penalty parameters remain. Some researchers have successively made improvements to

Mathematics 2022, 10, 3292. https://doi.org/10.3390/math10183292 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10183292
https://doi.org/10.3390/math10183292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4213-0236
https://orcid.org/0000-0001-5260-8788
https://doi.org/10.3390/math10183292
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10183292?type=check_update&version=1


Mathematics 2022, 10, 3292 2 of 16

SVDD. The data domain description is susceptible to the penalty parameter C’ choice, which
significantly effects on the boundary description of the domain but is difficult to estimate
in practice. To solve this problem and find better outlier detection algorithms, researchers
have proposed improved SVDD algorithms. Lee et al. [5,6] proposed the density-induced
SVDD algorithm (DI-SVDD) in 2007, which introduced a weighting based on each training
data point’s spatial distribution of density. In 2013, Wang and Lai [7] proposed the position
regularized support vector data domain description algorithm (P_SVDD) which adaptively
regularizes the complexity of the sphere by assigning a position-based weight to each
training data point based on the Euclidean distance between each training data point and
mean points in the mapped feature space. Cha et al. [8] proposed the density weighted
support vector domain description algorithm (DW_SVDD), which introduced the concept
of density weights to search for the optimal domain description by calculating the relative
density of each training data point according to the data distribution in the original space
and replacing the penalty parameters of the corresponding slack variables. Tao et al. [9]
assigned corresponding weights to each training data according to the distribution of spatial
location and density of each training data point to obtain a spherical data description of the
training data, and a new weighted SVDD anomaly detection algorithm (AW_SVDD) was
proposed. The results and performance of SVDD are significantly affected when the target
data samples are irregularly distributed and have widely different density distributions. To
address this problem, an anomaly detection algorithm (KM_SVDD) based on SVDD and
K-means clustering algorithm was proposed by Xu et al. [10]. Wu et al. [11] combined the
affinity propagation (AP) clustering algorithm and SVDD and proposed an adaptive SVDD
algorithm (SA_SVDD). To map the data point into a compact domain description, more
suitable for being surrounded by hyperspheres, Sohrab et al. [12] proposed a subspace
support vector data description algorithm (SSVDD), which maps the training data points
to a subspace optimized for a target class by non-linear mapping. Further, it determines
the best hypersphere in the feature space that encloses the target class. Ruff, L. et al. [13]
proposed Deep Support Vector Data Description (Deep SVDD) replacing the mapping
function in traditional SVDD by training a neural network such that the volume of the
hypersphere containing as many target class samples as possible is minimized. Hojjati, H.
et al. [14] proposed an anomaly detection algorithm (DASVDD)-based Deep Autoencoder
and SVDD, which learns the basic distribution of target class by minimizing the combined
anomaly score of the autoencoder’s reconstruction error and the distance from the sample
to the center of the closed hypersphere in training. Including the reconstruction error in
the anomaly score ensures that DASVDD does not suffer from the common hypersphere
runout problem.

Compared with the traditional SVDD, some improved SVDD algorithms described
above are effective in terms of performance. However, the calculation of weights depends
on the distributions of spatial location and density feature of data points in the feature space.
It is ineffective for training sets with insignificant spatial location and density distributions.
To solve this challenge, we propose a novel anomaly detection algorithm (BLSW_SVDD)
based on BLS and SVDD, which first uses the normal training dataset to improve the BLS
network, trains to construct a data reconstruction model, and then assigns a weight based
on reconstruction error to each training data point when training the SVDD model. The
value of reconstruction error reflects the likelihood of each data point becoming an outlier.
Using normal samples alone to train SVDD is vulnerable to the attack of anomalous samples,
which degrades the efficiency and performance of the SVDD model [15]. Therefore, the
BLSW_SVDD model proposed in this paper adds a small number of anomalous samples
to the training samples. To evaluate the performance of the BLSW_SVDD algorithm,
experiments were conducted on datasets from the UCI repository. The experimental results
demonstrate that the BLSW_SVDD algorithm outperforms traditional SVDD and improved
SVDD algorithms in terms of accuracy and F1 value. Its performance in the data domain
description was improved. It overcomes the difficult selection of penalty parameters by
traditional SVDD has a better generalization performance.
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The rest of the paper is organized as follows. In Section 2, we introduce the brief
related works for BLS and SVDD. In Section 3, we mainly discuss more details about the
BLSW_SVDD model, including the model inferring process and structure. In Section 4, we
design the experiments to evaluate the performance of BLSW_SVDD model and analyze the
experimental results from different perspectives. Finally, we draw conclusions in Section 5.

2. Related Work
2.1. Overview of the Broad Learning System

Deep structured neural networks, which can effectively extract high-level abstract
features and have outstanding generalization performance, have been applied in many
areas with extraordinary achievements, especially in large-scale data processing [16,17].
The more famous deep structured networks are deep belief networks (DBNs) [18,19], deep
Boltzmann machines (DBMs) [20], and convolutional neural networks (CNNs) [21,22].
Although deep structured networks are so powerful, they require a large number of
iterations for training due to a large number of hyperparameters in their complex multi-
layer stacked networks, which consume a lot of computational resources and time. At the
same time, training methods based on backpropagation and gradient descent are prone
to suffering from slow convergence and being trapped in local optimal. In the face of
newly added samples involving the whole network, it is difficult to quickly update its deep
structure parameters and to analyze the deep structure at a theoretical level. Therefore,
most of the work has focused on stacking more layers in the deep structure network or
continuously adjusting the network structure parameters to obtain better performance.
Pao et al. [23,24] proposed a random vector function linked neural network (RVFLNN),
which uses the original input data layer and enhancement feature node layer serve as the
total input layer to the network. Then, the pseudo-inverse method can quickly find the
weights, effectively solving the drawback of requiring a large amount of training time in
deep structured networks. RVFLNN has a powerful function approximation generalization
capability [25], fast learning properties, and continuous generalization approximation
capability. Currently, it is widely used to solve regression and classification problems due
to the approximate generalization capability.

As the accuracy of RVFLNN model was insufficient to support the data’s modeling
requirements as the data volume continued to increase, Chen and Liu proposed the broad
learning system (BLS) based on the RVFLNN network at the 32nd Annual Young Academics
Conference [26] in 2017. In a paper published in 2018 [27], Chen and Lui carried out further
research on BLS, refining the theoretical knowledge of BLS. Compared with RVFLNN, the
BLS network adds a sparse coding algorithm and a feature node layer in the hidden layer,
which performs the primary feature extraction on the original input data. In addition, the
BLS incorporates a dynamic stepwise update algorithm, which can quickly optimize the
model for newly added hidden layer nodes or newly added samples without re-modelling,
thus saving much time and being highly efficient. Many research scholars have conducted
studies on BLS. Chu, F. et al. [28] proposed a weighted BLS-based model (BBLS) to solve
the problem of data noise and outliers in industrial processes. To improve the robustness
of BLS, Zheng, Y. et al. [29] proposed to train the output weights using the maximum
correlation entropy criterion (MCC) to obtain a broad learning system model based on
correlation entropy (C-BLS). Zhang, L. et al. [30] proposed four variants of BLS networks
and incremental implementations based on the structure of deep neural networks. Huang,
P. et al. [31] proposed a bidirectional broad learning system (B_BLS) that minimizes the
number of hidden layer nodes without compromising the performance of BLS. In the
paper [32], Lili Xu proposed that they assembled some of the best performing activation
functions, obtaining better performance than the corresponding individual activation
functions in the standard BLS. Existing BLS models are not directly applicable for large-
scale multi-label learning due to the large and complex label space. Therefore, a novel
multi-label classifier based on BLS (called BLS-MLL) is proposed by Pu, X. et al. [33].
Considering that in many practical applications, training data are sequentially generated,
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an online semi-supervised broad learning system (OSSBLS) is proposed for fault diagnosis
in these cases by Huang, J. et al. [34].

So far, it has been applied to many fields, such as drift compensation [35], image
classification [36], and collaborative localization [37].

2.2. Broad Learning System (BLS)

The broad learning system provides a simple new algorithmic structure that does
not rely on deep structural layers. As shown in Figure 1, the basic architecture of the BLS
consists of an input layer, a hidden layer including mapped feature nodes and enhancement
feature nodes, and an output layer.
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The input data of the BLS are assumed to be X ∈ RN×D, N and D denote the number
of data samples and the feature dimension of the samples, respectively, and the output data
are denoted by Y ∈ RN×C, where N denotes the number of data samples and C represents
the number of categories of the samples. Figure 1 shows that the BLS network has n groups
of mapped feature nodes and m groups of enhancement feature nodes. Each group of
mapped feature nodes has p feature nodes, and the i-th group of mapped feature nodes is
generated by random mapping, as shown in Equation (1).

Zi = φi(XWei + βei), (1)

where Wei and βei are the weights and biases of the appropriate randomly generated
dimensions and φi(·) is the mapping function. Since the sparse feature model [38] can
be effective in learning and obtaining good feature representations and useful feature
information from the data samples, the classical sparse autoencoder [39] was utilized in
generating the mapping feature nodes layer to extract the sparse feature points in the input
data matrix, with a slight fine-tuning of Wei and βei.

These randomly generated mapped feature nodes are then stitched together, denoted
as Zn = [Z1, Z2 . . . , Zn]. The BLS will use these mapped feature nodes to form the Zn and
extend the enhancement feature nodes layer by a non-linear activation function ξ j(·). Each
set of enhancement feature nodes has of q nodes, and thej-th enhancement feature node is
denoted as Equation (2).

Hj = ξ j

(
ZnWhj + βhj

)
, (2)

where Whj and βhj are the weights and biases of the appropriate randomly generated
dimensions. Similar to the previous step, the m enhancement feature nodes are joined
horizontally, which can be expressed as Hm = [H1, H2 . . . , Hm].

The output feature matrix A of the BLS, denoted by A = [Zn | Hm] ∈ RN×(np+mq),
can be obtained by horizontally concatenating the mapped features nodes Zn and the
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enhancement feature nodes Hm into a matrix. The final output layer representation of the
broad learning system is obtained by calculating the multiplication of the feature matrix
and connection weights, so that the output Y of the BLS can be expressed as:

Y = AWm, (3)

where Wm denotes the connection weights of the BLS network from the hidden layer to
the output layer. The pseudo-inverse algorithm can easily obtain the weights of the output
layer in a randomized weight-plane neural network. Thus, the weights of the output layer
Wm can be quickly calculated using Wm = A+Y, where A+ is the pseudo-inverse matrix
of the BLS feature matrix A. However, owing to the sheer volume and dimensionality of
the dataset, it is too expensive to utilize standard methods such as orthogonal projection,
iteration, and singular value decomposition to compute the generalized inverse. By intro-
ducing parametric regularization, the problem of solving the pseudo-inverse of a matrix
can be expressed as the following optimization problem:

arg min
w
‖AWm −Y‖2 + λ‖Wm‖2, (4)

regularization constraint term λ is added to the original least-squares estimate to enable the
original generalized inverse to determine the pseudo-inverse under pathological conditions.
Thus, Wm can be calculated as follows:

Wm =
(

λI + AAT
)−1

ATY, (5)

then, A+ = lim
λ→0

(
λI + AAT)−1 AT , where I is the unit matrix.

2.3. Support Vector Domain Description (SVDD)

Given a dataset X =
{

xi ∈ Rd|i = 1, . . . , n
}

, the goal of the SVDD is to construct a
minimal volume hypersphere with center µ and radius R containing all or most normal
samples, the structure of which is illustrated in Figure 2.
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We introduce the slack variable ξi to allow some of the samples to be erroneously
classified and be outside the hyperspheres. The objective of the SVDD algorithm is shown
in Equation (6).

min F(R, µ, ξi) = R2 + C
n
∑

i=1
ξi

s.t. ‖φ(xi)− µ‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i = 1, . . . , n
(6)

where C is the penalty parameter that controls the degree of punishment for samples that do
not satisfy the constraint, and φ(·) is a non-linear transformation from mapping the input
data from the input space to a high-dimensional feature space. By introducing Lagrange
multipliers αi ≥ 0 and βi ≥ 0, the objective function of Equation (6) can be transformed
into the optimization problem in Equation (7) as follows:

L(R, µ, ξi, αi, βi) = R2 + C
n
∑

i=1
ξi

−
n
∑

i=1
αi

(
R2 + ξi − ‖φ(xi)− µ‖2

)
−

n
∑

i=1
βiξi

(7)

The partial derivatives of the variables R, µ, ξi in Equation (7) are then calculated,
and the values of these partial derivatives are zero, which can be expressed as shown in
Equations (8)–(10), respectively:

∂L
∂R

= 0→
n

∑
i=1

αi = 1, (8)

∂L
∂µ

= 0→ µ =
n

∑
i=1

αiφ(xi), (9)

∂L
∂ξi

= 0→ C− αi − βi = 0. (10)

Replacing the inner product (xi·xi) with the kernel function K(xi, xi) gives the dual
form, expressed in Equation (11).

max
n
∑

i=1
αiK(xi, xi)−

n
∑

i=1

n
∑

j=1
αiαjK

(
xi, xj

)
s.t. 0 ≤ αi ≤ C

n
∑

i=1
αi = 1, ∀i = 1, . . . , n

(11)

Equation (9) indicates that the center of the hypersphere is a linear combination of
data objects, and the weight factor αi is obtained by optimizing Equation (11). K

(
xi, xj

)
is a

kernel function that satisfies Mercer’s theorem and can map the data to a certain feature
space. This study uses a Gaussian kernel function expressed in Equation (12), where q is
the kernel parameter.

K
(
xi, xj

)
= exp

(
−q‖xi − xj‖2

)
. (12)

Data points can be classified into three types based on the value of the Lagrange
multiplier.

(1) Interior points (IP): αi = 0, the corresponding sample φ(xi) lies within the hyper-
sphere.

(2) Support vectors (SV): 0 ≤ αi ≤ C, the corresponding sample φ(xi) lies on the bound-
ary of the hypersphere.

(3) Boundary support vector (BSV): αi = C, the corresponding sample φ(xi) lies outside
the hypersphere.

The sphere radius R can be obtained by calculating the distance between the sphere’s
center and the support vector (SV). Ideally, all the SVs should have the same radius. How-
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ever, because of numerical problems, they may be slightly different. A practical strategy is
to use their maximum values as radii, which can be expressed using Equation (13).

R2 = ‖φ(xi)− µ‖2

= 1− 2
n
∑

i=1
αiK(xi, xi) +

n
∑

i=1

n
∑

j=1
αiαjK

(
xi, xj

)
R = max{R(xi)|xi is a SV, 0 ≤ αi ≤ C }

(13)

To determine whether a specific sample Z to be tested is inside the hypersphere, the
distance from the test data point Z to the center of the sphere must be calculated, and the
calculation formula is given by Equation (14).

f (Z) = φ(Z, Z)− 2
n

∑
i=1

αiK(xi, xi) +
n

∑
i=1

n

∑
j=1

αiαjK
(
xi, xj

)
. (14)

If f (Z) ≤ R2 and the test data point Z is within the hypersphere, it is a normal class
sample, and otherwise it is an abnormal class sample.

3. Fundamentals of Anomaly Detection Model Based on BLS and SVDD
3.1. Data Reconstruction Model Based on BLS

An autoencoder based on the deep neural network can effectively extract high-
dimensional feature representations of data with outstanding generalization performance.
However, it has problems such as the sparsity of extracted features, insufficient robustness,
greedy training of each layer, and a lack of global optimization. Therefore, a model for
constructing reconstructed data based on BLS networks was proposed, and its structure is
shown in Figure 3.
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To construct a data reconstruction model using BLS network, we should approximate
the output of the output layer to the original input. The traditional BLS network is primarily
used for supervised sample classification problems, and the corresponding output is the
sample category label vector corresponding to the training samples. The flow of the data
reconstruction model is as follows:

(1) Suppose the original input dataset is X ∈ RN×D; N and D denote the number and
feature dimension of the data samples, respectively. According to Equations (1) and
(2), we calculate to get the corresponding mapped feature nodes Zn and enhance-
ment feature nodes Hm, respectively. By connecting the mapped feature nodes and
enhancement feature nodes horizontally, we obtain the output feature matrix of the
BLS, represented as A = [Zn|Hm ].
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(2) Construct the data reconstruction model. Let Y = X, and X be the data matrix after
reconstruction. We can then obtain the output expression as follows:

X = AWm. (15)

(3) Similar to the solution method described above, Equation (15) can be expressed as
Wm = A+X, where A+ is the pseudo-inverse matrix of the matrix A. Subsequently,
by introducing parametric regularization, the problem of solving the pseudo-inverse
of a matrix can be expressed as the following optimization problem.

arg min
w
‖AWm − X‖2

+ λ‖Wm‖2, (16)

Thus, Wm can be calculated as follows:

Wm =
(

λI + AAT
)−1

ATX. (17)

In the autoencoder built on BLS, the input data are first mapped to the random feature
space and then further mapped to the enhancement feature space. Thus, the more effective
feature information of the original input data is obtained before reconstruction, which
allows the reconstruction matrix to be trained more accurately. The BLS-based autoencoder
utilizes ridge regression to solve the reconstruction matrix, accelerating the reconstruction
of the original input data and having good generalization performance. The traditional
autoencoder based on deep learning trains the network using a back-propagation algorithm,
which incurs considerable time. In contrast, the BLS-based autoencoder has fast learning
ability and excellent generalization performance.

3.2. Data Reconstruction Error Weights

The reconstruction error weights are obtained by using normal datasets to train the
reconstruction network based on BLS network. Using Equation (15), we can obtain the
reconstruction data matrix for normal and abnormal data, then the reconstruction error
weight for each data point w(xi) can be expressed as follows:

w(xi) =
1

‖xi − xi‖2 . (18)

Then, the compression and reconstruction of the input data can be achieved using the
BLS. A well-trained data-reconstruction matrix ensures that the error between the input
data point xi and reconstruction data point xi is sufficiently small. When a particular test
data point xi is a normal sample, the error between the input xi and reconstruction output
xi is extremely small, the corresponding w(xi) is considerable, and the slack variable ξi is
small. As there is a large difference between the normal test sample and the abnormal test
sample, and the normal sample is used for training Wm, when the test sample point xi is
an abnormal sample, the error between the input xi and xi is large and the corresponding
w(xi) is extremely small and the larger the slack variable ξi is, the greater the possibility
that the data sample is abnormal.

3.3. Reconstruction Error Weighting-Based SVDD Algorithm

According to the above analysis, each data point should use a different penalty pa-
rameter that reflects the confidence level reflecting that each data point is an outlier. The
traditional SVDD algorithm uses the same penalty parameter C for all training data points
when constructing hyperspherical boundaries. This assumption that the probability of
becoming an outlier was the same for each training data point is inaccurate. According to
the above analysis, each data point should use a different penalty parameter that reflects
the confidence level reflecting that each data point is an outlier. Therefore, this study
proposes replacing the penalty parameter C with the reconstructed error value of each
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training data point to indicate the likelihood that the corresponding data point lies outside
the hypersphere. The reconstruction error value of each data point w(xi) obtained from
Equation (18) is introduced into the SVDD algorithm to obtain the objective function as
shown in Equation (19):

min F(R, µ, ξi) = R2 +
n
∑

i=1
w(xi)ξi

s.t. ‖φ(xi)− µ‖2 ≤ R2 + w(xi)ξi, ξi ≥ 0, ∀i = 1, . . . , n
(19)

By introducing Lagrange multipliers αi ≥ 0 and βi ≥ 0, the objective function of
Equation (19) can be transformed into the following:

L(R, µ, ξi, αi, βi) = R2 + w (xi)
n
∑

i=1
ξi

−
n
∑

i=1
αi

(
R2 + ξi − ‖φ(xi)− µ‖2

)
−

n
∑

i=1
βiξi

(20)

Letting the partial derivative of the objective function L with respect to variablesR, µ, ξi
be zero, the constraints can be obtained as follows:

n

∑
i=1

αi = 1, µ =
n

∑
i=1

αiφ(xi), αi = w(xi)− βi. (21)

By eliminating the variables R, µ, ξi, βi and replacing the inner product (xi·xi) with
the kernel function K(xi, xi), the objective function (20) can be transformed into the Wolfe
dual form, as shown in Equation (22):

max
n
∑

i=1
αiK(xi, xi)−

n
∑

i=1

n
∑

j=1
αiαjK

(
xi, xj

)
s.t. 0 ≤ αi ≤ w(xi)

n
∑

i=1
αi = 1, ∀i = 1, . . . , n

(22)

By optimizing Equation (22), we can obtain the value of αi corresponding to each
training data point xi. The hypersphere center is obtained by Equation (9). Similarly, the
hypersphere radius R can be obtained by Equation (13). To determine whether a test sample
Z is within the hypersphere, the distance from the test data point Z to the center of the
sphere is first calculated using Equation (14). If f (Z) ≤ R2, then the test data point Z is a
normal class sample within the hypersphere. Otherwise, it is an abnormal sample.

3.4. Framework of the BLSW_SVDD Model

The detailed steps of the BLSW_SVDD model are as follows.

(1) Training the data-reconstruction model. First, the dataset X is divided into a nor-
mal dataset and an abnormal dataset. The normal dataset is utilized for training
the reconstruction error weight matrix Wm of the BLS network. Subsequently, the
reconstruction data matrix of the normal data and the abnormal data (Xnormal and
Xabnormal) can be obtained using Equation (15).

(2) The reconstruction error weights are calculated. The normal dataset and the abnor-
mal dataset are partitioned with 70% of the data for training the SVDD model and
the remaining 30% of the data for testing the SVDD model (i.e., Xtrain and Xtest).
Correspondingly, 70% of the normal reconstructed data and 70% of the abnormal
reconstructed data are removed to obtain the reconstructed error matrix of the training
set Xtrain, and the remaining 30% of the normal reconstructed data and abnormal
reconstructed data are used as the reconstructed error matrix of the test set Xtest.
The reconstruction error value of each training data point can be obtained using
Equation (18).
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(3) Training the SVDD. The SVDD model is trained by assigning a weight based on the
reconstruction error to each training data point in the Xtrain and replacing the penalty
parameter C to obtain the center µ of the minimum hypersphere and the minimum
hypersphere radius R.

(4) Testing and anomaly detection. The distance from the data point Z in the test
datasetXtest to the center of the hypersphere is calculated using Equation (14). If
f (Z) ≤ R2, then the test data point Z is within the hypersphere and is a normal class
sample, otherwise, it is an abnormal class sample.

4. Experiment and Analysis
4.1. Experimental Setup and Datasets

To evaluate the performance of the proposed BLSW_SVDD model, we used 12 datasets
collected from the UCI repository, described in Table 1. The choice of parameters has a very
significant impact on the performance of the BLSW_SVDD algorithm. The kernel function
used in this study was a Gaussian kernel function. The traditional SVDD generally has two
parameters that need to be optimized appropriately, the kernel parameter q and the penalty
parameter C. In this model, because C is replaced with the reconstruction error weight of
each training data point, only the kernel parameter q needs to be optimized appropriately.
This experiment used a Bayesian parameter optimization algorithm and a 10-fold cross-
validation method to optimize q in an optimization range of [2−6, 26]. The Gaussian model
was used as a probabilistic proxy model in the Bayesian parameter optimization algorithm,
and the employed collection function was the expectation increment.

Table 1. UCI dataset used in the experiment.

Datasets Sample Points Dimensionality Outliers (%)

Wbc 378 30 21 (5.6%)

Haberman’s survival 306 3 81 (26.4%)

Inosphere 351 34 126 (36%)

Arrhythmia 452 274 66 (15%)

Wdbc 569 30 212 (27.1%)

Breast Wisconsin 683 9 239 (35%)

Glass 214 9 9 (4.2%)

Banknote authentication 1372 4 610 (45%)

Vowels 1456 12 50 (3.4%)

Cardio 1831 21 176 (9.6%)

Pendigits 6870 16 156 (2.27%)

Annthyroid 7200 6 534 (7.42%)

In the BLS network, the number of enhancement nodes per group (Ne) in was set to
500, the number of mapped feature nodes per group (N f ) was 10, the number of groups of
mapped feature nodes (Nm) was 10, the regularization factor (λ) was 2(−30), the nonlinear
activation function used was the tansigmoid function, and the kernel parameter coefficient
(s) was 0.8.

BLSW_SVDD model is executed by solving a quadratic programming (QP). Therefore,
its computational complexity is equal to O(N3). Finally, these experiments have been
performed in MATLAB R2018a (9.4.0.813654) on Windows 10 (developed by Microsoft,
Redmond, WA, USA) and PC (16 GB RAM and Core i5 12500).
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4.2. Model Evaluation Metrics

The accuracy rate and F1 values were used as the performance metrics. Based on the
confusion matrix, the number of normal samples correctly determined as normal is True
Positive (TP), number of normal samples incorrectly determined as normal is False Positive
(FP), number of abnormal samples correctly detected as abnormal is True Negative (TN),
and number of normal samples incorrectly identified as abnormal is False Negative (FN).
The distribution of these data is shown in Table 2.

Table 2. Confusion matrix.

Predicted as a Target Class Predicted as Anomaly Class

Real as a target class True positive (TP ) False negative (FN )
Real as anomaly class False positive (FP ) True negative (TN )

More advanced classification metrics were obtained from the confusion matrix: preci-
sion, recall, accuracy, and F1 value.

(1) Precision represents the proportion of samples identified as normal by the model that
are actually normal.

P = TP/(TP + FP). (23)

(2) Recall represents the ratio of the number of samples correctly identified as normal by
the model to the total number of samples in the normal class.

R = TP/(TP + FN). (24)

(3) Accuracy is the most commonly used classification performance metric and can repre-
sent a model’s accuracy. This represents the number of correct model identifications
as a proportion of the total sample size.

Acc =
(TP + TN)

(TP + FN + FP + TN)
. (25)

(4) F1 value, also known as the balanced F-score, is defined as the summed average of the
accuracy and recall, which integrates the results of precision and recall, and expresses
the robustness of the model.

F1 =
2P ∗ R
P + R

. (26)

4.3. Comparison Results and Analysis with Other SVDD Models

To evaluate the performance of the proposed BLSW_SVDD model, in this section, we
used 12 datasets collected from the UCI repository, described in Table 1. The BLSW_SVDD
model was compared with the conventional SVDD, KM_SVDD, SA_SVDD, and SSVDD
models described earlier for the experiments, and the results were compared and analyzed.
In the paper of SSVDD model, the linear and nonlinear data mappings were proposed, and
models Ψ1, Ψ2, Ψ3, and Ψ4 were proposed respectively depending on the regularization
term Ψ, which represents the class variance in the low-dimensional space. Because the
experimental results from the original study showed that the performance of SSVDD when
applying linear data mappings is better than that when applying nonlinear data mappings,
we used the Ψ1, Ψ2, Ψ3, and Ψ4 models corresponding to SSVDD linear mappings in the
comparison experiments.

The anomaly detection accuracies of the BLSW_SVDD model proposed in this study
and other SVDD comparison models on the 12 datasets are shown in Table 3. The accuracy
of the BLSW_SVDD model is higher than that of other SVDD comparison models for nine
datasets, and the performance is significantly better than other SVDD comparison models.
For the Inosphere dataset, the SSVDD_Ψ4 model achieves a higher accuracy rate. The
classification accuracy of the BLSW_SVDD model proposed in this study reaches 96% and
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above for 7 datasets (e.g., Vowels); for Haberman’s survival dataset with 26.4% outliers, the
accuracy of the BLSW_SVDD model is lower at 72.97%, but for this dataset, the accuracy of
the model proposed in this study is still higher than that of the other comparative SVDD
models, which verifies the superiority of the proposed model. For the four sub-models
Ψ1–Ψ4 of SSVDD, the accuracy values for these 12 datasets are not very different, but
those of the SSVDD_Ψ2 and SSVDD_Ψ4 models are significantly better than those of the
SSVDD_Ψ1 and SSVDD_Ψ3 models. The accuracies of the SSVDD_Ψ2 and SSVDD_Ψ4
models compared with the other four SVDD models are shown in Figure 4.
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Table 4 shows the F1 values of the BLSW_SVDD model and other SVDD models. The
BLSW_SVDD model achieves the highest F1 measurements on 11 datasets, (e.g., Wbc).
For the Inosphere dataset, the SSVDD_Ψ2 model achieves the highest F1 values. For the
Wbc and Vowels datasets, the SSVDD model only achieves the second highest F1 values
for the BLSW_SVDD model. For the BLSW_SVDD model proposed in this study, the
F1 values reach more than 90% on 9 datasets, such as Cardio, with the corresponding
F1 measurements for the Pendigits dataset reaching 99.77%. For the four sub-models of
SSVDD, the SSVDD_Ψ4 model is the best-performing, followed by the SSVDD_Ψ2 model.
The comparison plots of the F1 values of the SSVDD_Ψ2 and SSVDD_Ψ4 models with those
of the other four SVDD models are shown in Figure 5.

In order to evaluate the performance of the BLSW_SVDD model proposed in this
paper in terms of real time, we selected five representative datasets from the 12 UCI datasets
mentioned above and compared the test time of the BLSW_SVDD model with other SVDD
comparison models, and the test time results are shown in Table 5. From Table 5, we can
see that the test time of the BLSW_SVDD model is significantly lower than the results of the
other SVDD comparison models on four datasets, and only for the Inosphere dataset, the
SSVDD_Ψ4 model achieves the fastest test time. Therefore, the real-time performance of



Mathematics 2022, 10, 3292 13 of 16

the BLSW_SVDD model proposed in this paper is significantly better than the other SVDD
comparison models.

In summary, in terms of accuracy, F1 values, and real-time performance, the BLSW_SVDD
model has better performance advantages than the traditional SVDD model and the im-
proved SVDD model and has better generalization performance. However, for some
datasets with a relatively large proportion of outliers, the accuracy and F1 values of the
BLSW_SVDD model are not high and the detection effect is not outstanding.
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Table 3. Accuracy of different SVDD models.

SVDD KM_SVDD SA_SVDD
SSVDD

BLSW_SVDD
Ψ1 Ψ2 Ψ3 Ψ4

Wbc 0.9600 0.7913 0.8452 0.9391 0.9130 0.9478 0.9391 0.9652

Haberman’s survival 0.7011 0.6796 0.6806 0.6559 0.6774 0.6344 0.6559 0.7297

Inosphere 0.8330 0.8396 0.8340 0.8113 0.8774 0.8491 0.9151 0.8896

Arrhythmia 0.8478 0.7956 0.8309 0.8824 0.8971 0.8750 0.8456 0.9691

Wdbc 0.8215 0.7703 0.7919 0.8953 0.8953 0.8953 0.8953 0.9209

Breast Wisconsin 0.6431 0.6180 0.6900 0.7820 0.9336 0.7630 0.8294 0.9431

Glass 0.9569 0.9262 0.9169 0.8923 0.9077 0.8000 0.8154 0.9846

Banknote authentication 0.6400 0.7840 0.8049 0.6384 0.6384 0.6384 0.6165 0.8884

Vowels 0.8780 0.8654 0.9153 0.9474 0.9542 0.9497 0.9497 0.9771

Cardio 0.7382 0.7789 0.8104 0.9018 0.9164 0.9273 0.9164 0.9636

Pendigits 0.9233 0.9347 0.9455 0.9772 0.9772 0.9772 0.9772 0.9937

Annthyroid 0.8563 0.8756 0.9023 0.9255 09255 0.9255 0.9255 0.9727
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Table 4. F1 values of different SVDD models.

SVDD KM_SVDD SA_SVDD
SSVDD

BLSW_SVDD
Ψ1 Ψ2 Ψ3 Ψ4

Wbc 0.9789 0.8757 0.7554 0.9680 0.9767 0.9717 0.9717 0.9817

Haberman’s survival 0.8167 0.8013 0.8097 0.7867 0.7724 0.7724 0.7724 0.8335

Inosphere 0.8668 0.8539 0.7287 0.8529 0.9323 0.8806 0.8993 0.9112

Arrhythmia 0.9149 0.8776 0.8939 0.9163 0.9317 0.9224 0.9200 0.9816

Wdbc 0.8746 0.8443 0.8788 0.9231 0.9231 0.9231 0.9231 0.9560

Breast Wisconsin 0.6865 0.6573 0.6210 0.8678 0.9110 0.9110 0.9286 0.9265

Glass 0.9776 0.9607 0.9557 0.9421 0.9076 0.8850 0.9672 0.9919

Banknote authentication 0.7548 0.8306 0.8186 0.7410 0.7483 0.7483 0.7517 0.8933

Vowels 0.9070 0.9161 0.8430 0.9763 0.9811 0.9784 0.9713 0.9882

Cardio 0.7617 0.8683 0.6640 0.9473 0.9553 0.9604 0.9542 0.9800

Pendigits 0.9344 0.9432 0.9521 0.9885 0.9885 0.9885 0.9885 0.9977

Annthyroid 0.8846 0.9027 0.9268 0.9613 0.9613 0.9613 0.9613 0.9825

Table 5. Testing time of different SVDD models.

SVDD KM_SVDD SA_SVDD
SSVDD

BLSW_SVDD
Ψ1 Ψ2 Ψ3 Ψ4

Inosphere 0.0122 0.005 0.0067 0.0026 0.0017 0.0018 0.0016 0.002

Arrhythmia 0.013 0.012 0.0152 0.0178 0.0122 0.0103 0.0101 0.0023

Breast Wisconsin 0.0034 0.0137 0.014 0.0177 0.0087 0.0079 0.0079 0.0022

Vowels 0.4157 0.0252 0.0384 0.1508 0.1422 0.1367 0.1603 0.0062

Annthyroid 15.5247 10.3347 11.3567 19.0395 18.9802 19.0092 19.0057 0.0699

5. Conclusions

Owing to problems such as the sparsity of extracted features, lack of robustness, each
layer being trained greedily, and no global optimization in deep-structured neural networks,
this study proposed a model for constructing reconstructed data based on BLS. Through this
reconstructed model, a reconstructed error weight was introduced to SVDD to reflect the
likelihood of each training data point being an anomaly sample, eliminating the problem
of traditional SVDD penalizing the parameter selection. This generated a very accurate
domain description with a small number of anomaly samples in the training data, which
is a new reconstruction error weighted SVDD algorithm (BLSW_SVDD) proposed in this
study. Experimental results indicated that the performance of the proposed BLSW_SVDD
algorithm is better than the traditional SVDD and improved SVDD algorithms.

Future research can focus on the following aspects:

(1) The kernel function used in the BLSW_SVDD model in this study is a Gaussian
function, and the parameter to be optimized is g. However, when using kernel tricks,
the SVDD algorithm faces difficulty selecting the kernel function and parameters.
Therefore, in subsequent work, multiple kernel functions should be considered, which
can mitigate the difficulty of selecting the kernel function and more fully portray the
feature information of the original data.

(2) The BLSW_SVDD model is ineffective on some datasets with a large proportion
of abnormal data. Hence, we intend to continuously optimize the performance
of the BLSW_SVDD model on datasets with a large proportion of anomaly data
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and continuously improve the performance of the BLSW_SVDD model to develop
BLSW_SVDD model as a multi-classifier.
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