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Abstract: The main objective of the present work is to find an approximate analytical solution for the
nonlinear differential equation of the vibro-impact oscillator under the influence of the electromag-
netic actuation near the primary resonance. The trigger of vibro-impact regime is due to Hertzian
contact. The optimal auxiliary functions method (OAFM) is utilized to give an analytical approximate
solution of the problem. The influences of static normal load and electromagnetic actuation near
the primary resonance are completely studied. The main novelties of the proposed procedure are
the presence of some new adequate auxiliary functions, the introduction of the convergence-control
parameters, the original construction of the initial and of the first iteration, and the freedom to choose
the method for determining the optimal values of the convergence-control parameters. All these led
to an explicit and accurate analytical solution, which is another novelty proposed in the paper. This
technique is very accurate, simple, effective, and easy to apply using only the first iteration. A second
objective was to perform an analysis of stability of the model using the multiple scales method and
the eigenvalues of the Jacobian matrix.

Keywords: electromagnetic actuation; vibro-impact; Optimal Auxiliary Functions Method;
resonance; stability

MSC: 34C15

1. Introduction

Vibro-impact dynamics under a Hertzian contact force is present in various engineer-
ing applications, especially in gear drive, bearing, mechanisms transforming non-resonant
rotations or translations, railway wheel–rail contact, and so on [1–3]. The Hertzian model
is just one of the existing vibro-impact models, and many different phenomena have
been reported in the field of vibro-impact systems in the last 40 years, including grazing
and C–bifurcations [4], Neimark–Sacker bifurcation [5], period-doubling bifurcations [6],
stochastic stability [7], fractals [8], chaos [9], and many others.

Electromechanical actuators have become widely used in various industrial applica-
tions, including aircraft, aerospace, turbomachinery, small heart pumps, transportation, and
some other fields. In the last years, many studies have been devoted to the electromagnetic
actuators. Tong et al. [10] utilized the dynamic Preisach model to reduce the undesired
nonlinearity. A magneto-strictive actuator capable of several kN of force output is used as
the fine positioning element in dual-stage system.

Liu and Wang [11] presented the actuating performance of a one-degree-of-freedom
positioning device using spring-mounted piezoelectric (PZT) actuators. An experimental
set-up consisting of two spring-mounted PZT actuators was configurated to examine the
actuating characteristics and verified as effective in describing the actuating behaviors through
numerical examinations. Askari and Tahani [12] studied the influence of the Casimir force
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on dynamic pull-in instability of a nanoelectromechanical beam under ramp-input voltage
by increasing the slope of a voltage–time diagram. Ma et al. [13] considered the backlash
actuators, a chattering-free sliding-mode control strategy with the scope to regulate the rudder
angle and suppress unknown external disturbances. A Lyapunov-based proof ensures the
asymptotical stability and finite-time convergence of the closed-loop system.

Qiao et al. [14] analyzed the general configuration, limitations, and merits of a direct-
drive electromechanical actuator and a gear-drive electromechanical actuator. Three aspects
were taken into account in elaborating the development state of electromechanical actuator
testing system: performance testing in vacuum environment, iron bird, and testing based
on room temperature. Li and Liu [15] explored stability and dynamical behaviors of an
electromechanical actuator with nonlinear stiffness in dry clutches. Four bifurcations,
two Hopf and two stable points, are found in the unregulated system, and four stable
bifurcations are found in the regulated system. Forced vibration illustrated three segments
in the bifurcation diagram, four in that of the proportional gain, and three in that of the
derivative gain.

Morozov et al. [16] discussed the diminution of the vibratory activity of a roller screw
mechanism for converting a rotational movement into a translational one. It was proved
that this mechanism has a low vibroactivity that leads to create mechatronic actuators.
Yoo [17] proposed an enhanced time-delay control algorithm with a novel severe nonlinear-
ity compensator to study an electromechanical missile fin actuation system, which has high
computational efficiency and a very simple structure. The effects of combined DC and fast
AC electromagnetic actuations on the dynamic behavior of a faced cantilever beam were
derived by Bichri et al. [18]. They analyzed the influence of the air gap and of the fast AC
actuation on the nonlinear system, and it was shown that the nonlinear characteristic can
be controlled by approximately tuning the air gap and the AC actuation.

Xiu and Fu [19] considered the nonlinearities specific for electrostatic and van der
Waals forces and the nonlinear vibration equations of a flexible ring of the electrostatic
harmonic actuator. Results showed that the effects of van der Waals are relatively obvious
under some conditions. The study of Li [20] comprised the nonlinear control method of
electromechanical actuation system based on genetic algorithm. The nonlinear characteris-
tics of each part of the electric actuator were different by Mathlab/Simulink simulation.
Wankhade and Bajoria [21] investigated vibration reduction and dynamic control of a
piezo-laminated plate actuated with coupled electromechanical loading. They analyzed
the Sommerfeld effect and vibration amplitudes encountered in a non-ideal system as well
as attenuation effects using a smart material actuator.

Yang et al. [22] presented a nonlinear model for the self-powered electromechanical
actuator endowed with radioactive thin films. The equations are based on Hamilton princi-
ple and take into account the effects of geometric nonlinearities due to nonlinear curvature
and nonlinearity due to radioactive sources. Shivashankar et al. [23] studied vibrations
of cantilever aluminum beam with a pair of d33-mode surface bondable multilayer ac-
tuators attached. The nonlinear constitutive equation was considered to represent both
the nonlinear elasticity and nonlinear electromechanical actuator. The effect of nonlinear
actuator dynamics and an aeroelastic simulation model of a flexible ring with control
surface were explored by Tang et al. [24]. Ruan et al. [25] examined a radial basis neural
network adaptive sliding-mode controller for nonlinear electromechanical actuators, which
is used to compensate friction disturbance torque of the system. The stability is analyzed
by Lyapunov’s theory.

The objective of Kossoski et al. [26] was reduction of the mechanical vibrations and
the Sommerfeld effect in a shape-memory alloy actuator in a nonideal system. Zhang and
Li [27] developed a compound scheme involving an improved active disturbance controller
and nonlinear compensation for electromechanical actuator. The Lu Gre model and hys-
teresis inverse model are used to compensate for the friction and backlash phenomenon.
Simulations and experiments are developed to prove the effectiveness of the proposed
method. Pravika et al. [28] considered a linear electromechanical actuator that is used
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in conjunction with a positive displacement piston-type drug-dispersing syringe pump.
Overall performance of the considered system is investigated by in silico studies, which
offer better dynamic response, stability, and reliability. The stability is investigated by
means of frequency–response plots under different load inertia values and system time
delay. Ref. [29] presents an investigation on how the amplitude modulation method affects
the fast and slow flows in the low-frequency excited oscillator, and in [30], a slow-varying
Lu controller is proposed, the variable of which changes on much smaller time scale for
investigating the dynamics of the whole system.

Concerning the way in which analytical solutions could be obtained for nonlinear dy-
namical systems involving vibro-impact and electromagnetic actuators, there are available
in the literature many amenable analytical approaches, such as the homotopy perturbation
method [31], the variational iteration method [32], the homotopy analysis method [33],
the Adomian decomposition method [34], and many others, but in this study, the optimal
auxiliary functions method was employed.

In the present research, we investigated the nonlinear forced vibration of vibro-impact
oscillator under the influence of the electromagnetic actuation force in the neighborhood
of primary resonance. Forced vibrations are given by the static normal load and electro-
magnetic force. In this situation, which involves the presence of the Hertzian force in
combination with the electromagnetic force and another perturbing force, the optimal
auxiliary functions method (OAFM) was applied to obtain an explicit and very accurate
analytical approximate solution for the considered nonlinear differential equation, which
is an important novelty presented in the paper. The present technique ensures a fast con-
vergence of the solutions using only the first iteration, using some new adequate auxiliary
functions and several convergence-control parameters independent of the presence of small
or large parameters in the governing equations or in the boundary/initial conditions. The
stability of the solution is established by means of the eigenvalues of Jacobian matrix and
of the multiple scales method.

The rest of this paper is organized as follows: Section 2 provides the basics of the
proposed procedure, namely OAFM. Section 3 describes the mathematical model of a
vibro-impact, damped, and forced oscillator in the presence of electromagnetic actuation.
In Section 4, the application of OAFM is detailed presented, and an approximate analytical
solution is derived for the considered governing equation. A numerical example proving
the accuracy of the proposed procedure is presented in Section 5. Section 6 provides an
analysis of the stability of steady-state motion near the primary resonance, and finally, we
conclude this paper in Section 7.

2. The Second Alternative of the OAFM

In order to apply OAFM [35–42], we consider the nonlinear differential equation:

L[x(t)] + N[x(t)] + g(t) = 0, t ∈ D (1)

with the boundary/initial conditions

B[x(t),
dx(t)

dt
] = 0 (2)

where L is a linear operator, N is a nonlinear operator, g is a known function, t is the indepen-
dent variable, x(t) is an unknown function, D is the domain of interest, and B is a boundary
operator. Henceforward, the linear operator L does not necessarily coincide in its entirely
with the linear part of the governing equation, and x̃(t) will be the approximate solution of
Equations (1) and (2) and can be expressed in the form with only two components:

x̃(t) = x0(t) + x1(t, C1, C2, . . . , Cn) (3)
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where Ci are n parameters unknown in this stage, and n is an arbitrary positive integer num-
ber. The initial approximation x0(t) and the first approximation x1(t,Ci) will be determined
as described below. Substituting Equation (3) into Equation (1), one obtains:

L[x0(t)] + L[x1(t, Ci)] + N[x0(t) + x1(t, Ci)] + g(t) = 0 (4)

The initial approximation x0(t) can be determined from the following linear
differential equation:

L[x0(t)] + g(t) = 0 (5)

with the boundary conditions

B[x0(t),
dx0(t)

dt
] = b (6)

It is clear that the linear operator L depends on the boundary/initial conditions (2),
and the function g(t) is not unique.

The initial approximation is well-determined from the linear differential Equation (5)
with the boundary conditions (6).

Taking into consideration Equations (5) and (6), the first approximation x1(t,Ci) is
obtained from the nonlinear differential equation

L[x1(t, Ci)] + N[x0(t) + x1(t, Ci)] = 0 (7)

with the boundary conditions

B[x1(t, Ci),
dx1(t, Ci)

dt
] = −b (8)

The nonlinear term of Equation (7) is developed in the form

N[x0(t) + x1(t, Ci)] = N[x0(t)] + ∑
k≥1

xk
1(t, Ci)

k!
N(k)[x0(t)] (9)

where k! = 1 ·2 · . . . k and N(k) denotes the differentiation of order k of nonlinear operator N.
To avoid the difficulties that appear in solving the nonlinear differential Equation (7)

and to accelerate the convergence of the approximate solution, instead of solving the
equation obtained from (8) and (9),

L[x1(t, Ci)] + N[x0(t)] + ∑
k≥1

xk
1(t, Ci)

k!
N(k)[x0(t)] = 0 (10)

we make the following remarks. In general, the solution of the linear differential
Equations (5) and (6) can be expressed as

x0(t) =
n1

∑
i=1

ai fi(t) (11)

where the coefficients ai, the functions fi(t), and the positive integer n1 are known.
Now, the nonlinear operator N[x0(t)] calculated for x0(t) given by Equation (11) may

be written as

N[x0(t)] =
n2

∑
j=1

bjgj(t) (12)

where the coefficients bj, the functions gj, and the positive integer n2 are known and depend
on the initial approximation x0(t) and also on the nonlinear operator N[x0(t)].

In the following, since the Equation (10) is difficult to be solved, we will not solve this
equation, but from theory of differential equations [43], Cauchy method, the method of
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influence functions, the operator method, and so on, it is more convenient to consider the
unknown first approximation x1(t,Ci) depending on x0(t) and N[x0(t)]. More precisely, we
have the freedom to choose the first approximation in the form

x1(t, Ci) =
p

∑
i=1

Fi(Cj, fk, gr), B = (x1, dx1
dt ) = −b (13)

where Fi are auxiliary functions depending on n unknown convergence-control parameters
Ci and also on the functions fi defined in Equation (11) and on the functions gi, which
appear in the composition of N[x0(t)].

Consequently, the first approximation x1(t,Ci) is determined from Equation (13), and
the approximate solution of Equation (1) is determined from Equations (3), (5) and (13).
Finally, the unknown parameters Cj, j = 1, 2, . . . , n can be optimally identified using
rigorous mathematical procedures, such as the Ritz method, the collocation method, the
Galerkin method, the least squares method, and the Kantorovich method or by minimizing
the square residual error.

In this way, the optimal values of the convergence-control parameters and the optimal
auxiliary functions Fi are known. Further, with these values known, the approximate
solution is well-determined. It is noteworthy to remark that the accuracy of the results
obtained through OAFM grow along with increasing the number of convergence-control
parameters Ci.

Let us note that the nonlinear differential Equations (1) and (2) are reduced to two
linear differential equations, which do not depend on all terms of the nonlinear operator
N[x0(t)]. This technique leads to very accurate results, is effective and explicit, and provides
a rigorous way to control and adjust the convergence of the solutions using only the first
iteration, without the presence of any small or large parameter into Equations (1) and (2).

3. Derivation of the Mathematical Model of Vibro-Impact, Damped, and Forced
Oscillator in the Presence of Electromagnetic Actuation

In the present study, we consider an asymmetric electromagnetic actuator EA on the
loss of contact in a forced Hertzian contact oscillator near primary resonance. The schematic
model of the system is depicted in Figure 1, and the governing equation is written as [3]:

m
..
δ+ c

.
δ+ kδ3/2 = Ns(1 + σ cosυt) + Fem (14)
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Figure 1. Sketch of damped, forced Hertzian oscillator with an asymmetric EA.

Where the dot denotes differentiation with respect to time t, and δ is the normal displace-
ment of the rigid mass m, c is the damping coefficient, k is the constant of elasticity given by the
Hertzian theory, Ns is the static normal load, σ is the amplitude, and ν is the frequency of the
harmonic excitation load, respectively, and Fem is the electromagnetic force.
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In Equation (14), it was considered that the deformation between the solids in contact
are elastic, and the contact is maintained, and the dry contact is equivalent with the linear
viscous damping. The electromagnetic force can be written as

Fem =
c0l2

0

(e− δ)2 (15)

where c0 and l0 are coefficients depending on the geometric characteristics of the actuator
and on the current induced in the magnetic circuit, respectively; e is the initial air gap
between electromagnet and the rigid mass.

Using the notations

δs =
Ns

k
; δ = δs

(
1 + 2z

3
)
; ω2

0 =
(

3k
2m

)√
δs; τ = ω0t; ω = υ

ω0
; α = c

mω0
; a0 =

3c0l2
0

2mω2
0δ

3
s
; R = e

δs
− 1

the Equation (14) can be rewritten in the form

z′′ + αz′ +
(

1 +
2z
3

)3/2
= 1 + σ cosωτ− a0

(R− 2z
3 )

2 (16)

where the prime denotes differentiation with respect to variable τ. Since the amplitude of the
mass is small, the nonlinear terms in Equation (17) can be approximated by Taylor expansion(

1 +
2z
3

)3/2
= 1 + z +

z2

16
+

z3

54
− z4

72
+

z5

648
+ . . . (17)

Retaining only the terms up to order three, from Equations (16) and (17), one can obtain

z′′ + αz′ +ω2
1z + β1z2 − γ1z3 − G1 = σ cosωτ (18)

where

ω2
1 = 1− 4a0

3R3 ; β1 =β− 4a0

3R4 ; γ1 = 1
54 + 32a0

27R5 ; G1 = − a0
R2 ; β = 1

6 (19)

The initial conditions for the nonlinear differential Equation (18) are

z(0) = A, z′(0) = 0 (20)

In the present paper, we consider only the primary resonance

ω2
1 = ω2 + λ (21)

in which λ is the detuning parameter from the primary resonance such that Equation (18)
can be rewritten as

z′′ + αz′ +ω2z + λz + β1z2 − γ1z3 + G1 − σ cosωτ = 0 (22)

By means of the transformation

z = ZAe−
1
2ατ (23)

the Equations (18) and (22) become

Z′′ + p2Z + β1 AZ2e−
1
2ατ − γ1 A2Z3e−ατ +

G1

A
e

1
2ατ − σ

A
e

1
2ατ cosωτ = 0 (24)

Z(0) = 1, Z′(0) = 1
2α (25)
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where p2 = ω2 + λ− 1
4α

2.
The Equation (24) with the initial conditions (25) is a second-order nonlinear differ-

ential equation with variable coefficients, and therefore, is difficult to solve it analytically.
In what follows, the OAFM is applied for Equations (24) and (25) to study the nonlinear
vibrations near to the primary resonance.

4. The Application of OAFM

The linear operator and the nonlinear operator corresponding to Equation (24) are, respectively:

L[Z(τ)] = Z′′ + p2Z (26)

N[Z(τ)] = β1 AZ2e−
1
2ατ − γ1 A2Z3e−ατ +

G1

A
e

1
2ατ − σ

A
e

1
2ατ cosωτ (27)

The approximate solution of Equation (24) is given by Equation (3), which becomes

Z̃(τ) = Z0(τ) + Z1(τ, Ci), i = 1, 2, . . . , n (28)

The initial approximation Z0(τ) is obtained from Equations (5) and (26)

Z′′ 0 + p2Z0 = 0, Z0(0) = 1, Z′0(0) = 1
2α (29)

whose solution is
Z0(τ) = cos pτ+

α

2p
sin pτ (30)

Inserting Equation (30) into (27), after simple manipulations, we have

N(Z0) = β1 Ae−
1
2ατ
(

1+α2

2p2 + p2−α2

2p2 cos 2pτ+ α
p sin 2pτ

)
− γ1 A2e−ατ

[
12p2+3α2

16p2 cos pτ+

+ 4p2−3α2

16p2 cos 3pτ+ 12p2+3α3

32p2 sin pτ+ 12αp2−3α3

32p2 sin 3pτ
]
+ G1

A e−
1
2ατ − σ

A e
1
2ατ cos pτ

(31)

The first approximate solution Z1(τ,Ci) can be obtained from Equation (13) in which
the functions fi are obtained from Equations (11) and (30), and the functions gj are obtained
from Equations (12) and (31). The auxiliary functions Fi are a combination of functions fi
and gj but are not unique. For example, the auxiliary functions can be of the forms

F1 = e
1
2ατ cos pτ; F2 = sin pτ; F3 = e

1
2ατ cos 2pτ; F4 = eατ sin pτ; F5 = e−

1
2ατ cos 3pτ

F6 = eατ sin 2pτ; F7 = e
1
2ατ sin 3pτ; F8 = e

1
2ατ cos 4pτ

(32)

The initial conditions for the first iteration Z1(τ,Ci) are obtained from Equations (25), (28)
and (29):

Z1(0) = 0, Z′1(0) = 0 (33)

The first approximation can be chosen as

Z1(τ, Ci) =
C1

A
e

1
2ατ(1− cos pτ) +

C2

A
e

1
2ατ(1− cos 2pτ) +

C3

A
e

1
2ατ(1− cos 3pτ) +

C4

A
e

1
2ατ(1− cos 4pτ) (34)

or

Z1(τ, Ci) =
C1
A e

1
2ατ(1− cos pτ) + C2

A e
1
2ατ(1− cos 2pτ) + C3

A e
1
2ατ(1− cos 3pτ)+

+C4
A e

1
2ατ(1− cos 4pτ) + C5

A e
1
2ατ(1− cos 5pτ)

(35)

or yet

Z1(τ, Ci) =
C1

A
e

1
2ατ(1− cos pτ) +

C2

A
eατ(1− cos 3pτ) +

C3

A
e2ατ(1− cos 5pτ) (36)

and so on.



Mathematics 2022, 10, 3301 8 of 16

Having in view Equations (34) and (35), two approximate solutions of Equations (22) and (20)
can be obtained, and taking into account Equations (23), (28), (30), (34) and (35), respectively,

z̃(τ, Ci) = Ae−
1
2ατ(cos pτ+

α

2p
sin pτ) + C1(1− cos pτ) + C2(1− cos 2pτ) (37)

z̃(τ, Ci) = Ae−
1
2ατ(cos pτ+

α

2p
sin pτ) + C1(1− cos pτ) + C2(1− cos 2pτ) + C3(1− cos 3pτ) (38)

5. Numerical Example for Equations (37) and (38)

To prove the high efficiency of OAFM, we consider a particular case characterized by
the following parameters :

A1 = 1, ω = 0.98, α1 = 0.001, β1 = 1
6 , λ = 0.003, γ1 = 1

54 , G1 = −0.07, σ = 0.01 (39)

Following the described procedure, the optimal convergence-control parameters are
obtained for Equation (37) as: C1 = 0.026565458544, C2 = −0.032800035657.

In this subcase, the approximate solution of Equations (22) and (18) becomes:

x̃(τ) = Ae−0.0005τ(cos 0.98τ+ 5.1020408 · 10−4 sin 0.98τ) + 0.0265654585(1− cos 0.98τ)−
−0.0328000356(1− cos 1.96τ)

(40)

For Equation (38), the values of the optimal convergence-control parameters are:
C1 = 0.017395180116, C2 = −0.028650838223, and C3 = −0.001183797642, and the corre-
sponding approximate solution can be written in the form

x̃(τ) = Ae−0.0005τ(cos 0.98τ+ 5.1020408 · 10−4 sin 0.98τ) + 0.0173951801(1− cos 0.98τ)−
−0.0286508382(1− cos 1.96τ)− 0.0011837976(1− cos 2.94τ)

(41)
The Figure 2 shows the comparison between the approximate solution (40) of nonlinear

Equations (22) and (20), the approximate solution (41), and numerical integration results
obtained by means of a Runge–Kutta approach.
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It can be seen that the two solutions obtained using our technique are nearly identical
to that obtained through numerical integration method. On the other hand, from Figure 2,
it is observed that the accuracy obtained through OAFM grows along with the increasing
number of convergence-control parameters.

6. Analysis of the Stability of Steady-State Motion near the Primary Resonance

In this section, we consider the dynamic near the primary resonance: ω1 ≈ ω, and
to analyze this situation, it is needed to order the damping, the nonlinearities, and the
perturbed force so that these to appear at the same time in the perturbation procedure.
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Therefore, if we let z = εx into Equation (18), we need to order α1z′ as α1εx′, G1 as G1ε
2,

and σ as ε2∆ so that the Equation (18) can be rewritten as

..
x +ω2

1x + ε2α1
.
x + β1εx2 − γ1ε

2x3 + εG1 = ε2∆ cosωt (42)

where the point denotes differentiation with respect to variable t, and for the primary
resonance, we introduce the detuning parameter δ according to

ω = ω1 + ε
2δ (43)

Using the method of multiple scales, we introduce the new independent variables

Ti = εit, i = 0, 1, 2, . . . (44)

such that we seek an approximate solution of Equation (42) by letting:

x(t, ε) = x0(T0, T1, T2) + εx1(T0, T1, T2) + ε
2x2(T0, T1, T2) (45)

In term of new variables Ti, the time derivative becomes, in terms of the partial derivative:

d
dt = D0 + εD1 + ε

2D2
d2

dt2 = D2
0 + 2εD0D1 + ε

2(D2
1 + 2D0D2)

(46)

where Di = ∂/∂Ti, i = 0, 1, 2.
Inserting Equations (45) and (46) into Equation (42) and equating the coefficients of ε

to zero, it holds that:
D2

0x0 +ω
2
1x0 = 0 (47)

D2
0x1 +ω

2
1x1 = −2D0D1x0 − β1x2

0 − G1 (48)

D2
0x2 +ω

2
1x2 = −2D0D1x1 − 2D0D2x0 − D2

1x0 − α1D0x0 − 2β1x0x1 + γ1x3
0 + ∆ cos(ω1T0 + δT2) (49)

The solution of Equation (47) is

x0 = A(T1, T2) exp(iω1T0) + c.c. (50)

where c.c. means the complex conjugate of the preceding terms.
If Equation (50) is substituted into Equation (48), one obtains:

D2
0x1 +ω

2
1x1 = −2iω1D1 A exp(iω1T0)− β1[AA + A2 exp(2iω1T0)]−

G1

2
+ c.c. (51)

The secular term into Equation (51) will be eliminated if D1A = 0, or A = A(T2). The
solution of Equation (9) becomes

x1 = − β1

ω2
1

[
2AA− 1

3
A2 exp(iω1T0)−

1
3

A2 exp(−2iω1T0)

]
− G1

ω2
1

(52)

Now, substituting Equations (50) and (51) into Equation (49), we obtain

D2
0x2 +ω

2
1x2 = [(

10β1

3ω2
1
+ 3γ1)A2 A− 2iω1(A′ +

α1

2
A) +

∆
2

exp(iδT2) +
β1G1 A
ω2

1
] exp(iω1T0) + c.c + NT (53)

where A′ = ∂A/∂T2, and NT stands for nonlinear terms.
Avoiding the secular terms into Equation (53), we obtain

(
10β1

3ω2
1
+ 3γ1)A2 A− 2iω1(A′ +

α1

2
A) +

∆
2

exp(iδT2) +
β1G1 A
ω2

1
= 0 (54)
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Letting A = 0.5a exp(iβ), where a and β are real, and then separating real and
imaginary parts, respectively, from the last equation, we have:

a′ = −α1

2
a +

∆
2ω1

sin(δT2 − β) (55)

aβ′ = −
(

5β1

12ω3
1
+

3γ1

8ω1

)
a3 − β1G1a

8ω3
1
− ∆

2ω1
cos(δT2 − β) (56)

Letting α = σT2 − β, the Equations (55) and (56) can be rewritten as:

a′ = −α1

2
a +

∆
2ω1

sinα (57)

aα′ =

(
5β1

12ω3
1
+

3γ1

8ω1

)
a3 +

(
δ+

β1G1

8ω3
1

)
a +

∆
2ω1

cosα (58)

For the steady-state solution a′ = α′ = 0, and therefore, from Equations (57) and (58) it
follows that

α1a0 =
∆
ω1

sinα0 (59)(
5β1

6ω3
1
+

3γ1

4ω1

)
a3

0 +

(
2δ+

β1G1

4ω3
1

)
a0 = − ∆

ω1
cosα0 (60)

Squaring and adding Equations (59) and (60) yields the amplitude a0 of the
steady-state solution:

MU3 + NU2 + PU + Q = 0 (61)

where

U = a2
0; M =

(
5β1
6ω3

1
+ 3γ1

4ω1

)2
; N = 4

(
5β1
6ω3

1
+ 3γ1

4ω1

)(
δ+ β1G1

8ω3
1

)
; P = α2

1 +

(
δ+ β1G1

8ω3
1

)2
; Q = − ∆2

ω2
1

(62)

The solutions of algebraic Equation (62) are

U1 = − N
3M

+
3

√√
p3 + q2 − q− 3

√√
p3 + q2 + q (63)

U2 = − N
3M
− 1

2

(
3

√√
p3 + q2 − q− 3

√√
p3 + q2 + q

)
+

i
√

3
2

(
3

√√
p3 + q2 − q− 3

√√
p3 + q2 + q

)
(64)

U3 = − N
3M
− 1

2

(
3

√√
p3 + q2 − q− 3

√√
p3 + q2 + q

)
− i
√

3
2

(
3

√√
p3 + q2 − q− 3

√√
p3 + q2 + q

)
(65)

where p = P
3M −

N2

9M2 ; q = N3

27M3 − NP
6M2 +

P
6M .

We remark that if p3 + q2 > 0, then Equation (61) has a single real solution and two
complex conjugate solutions. If p3 + q2 < 0, then Equation (61) has three real and distinct
solutions. If p3 + q2 = 0, then U1 = U2 = U3 = 0 for p = q = 0, and U1 = U2, U3 6= U1 for
p3 = −q2 6= 0. The parameter a0 can be obtained as a0 = ±

√
Uk, and k = 1,2,3, and the

parameter α0 can be obtained from Equations (59) and (60):

tanα0 = −α1

[(
5β1

6ω3
1
+

3γ1

4ω1

)
a2

0 +

(
2δ+

β1G1

8ω3
1

)
a0

]−1

(66)
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With a0 and α0 known, we can study the stability of steady-state motion considering

a = a0 + ∆a
α = α0 + ∆α

(67)

where ∆a and ∆α are small.
Substituting Equation (67) into Equation (58) and keeping only the linear terms in ∆a

and ∆α, we have

(∆a)′ = −α1

2
∆a +

∆
2ω1

(cosα0)∆α (68)

a0(∆α)′ =

[(
5β1

4ω3
1
+

9γ1

8ω1

)
a2

0 + δ+
β1G1

8ω3
1

]
∆a− ∆

2ω1
(sinα0)∆α (69)

The stability of the steady-state motion is determined by the eigenvalues of the Jaco-
bian matrix obtained from Equations (68) and (69):

[J] =

 − 1
2α1

∆
2ω1

cosα0(
5β1
4ω3

1
+ 9γ1

8ω1

)
a2

0 + δ+
β1G1
8ω3

1
− ∆

2ω1
sinα0

 (70)

The sign of the real parts of the eigenvalues of the Jacobian matrix are obtained from
the characteristic equation:

det([J]− λ[I2]) = 0 (71)

where [I2] is the unity matrix of the second order, and λ is the eigenvalue of the Jacobian
matrix. Taking into account the expression (31), the characteristic equation becomes:

λ2 + (trJ)λ+ detJ = 0 (72)

where the trace of J and the determinant of J are given by

trJ =
1
2
(α1 +

∆
ω1

sinα0) (73)

detJ =
α2

4
∆
ω1

sinα0 −
∆

2ω1
cosα0

[(
5β1

4ω3
1
+

9γ1

4ω1

)
a2

0 + δ+
β1G1

8ω3
1

]
(74)

Substituting sinα0 and cosα0 from Equations (59) and (60) into Equations (73) and (74),
one can obtain

trJ =
1
2
(1 + a0) (75)

detJ =
1
4

a0α
2
1 +

[(
5β1

4ω3
1
+

9γ1

4ω1

)
a2

0 + δ+
β1G1

8ω3
1

][(
5β1

6ω3
1
+

3γ1

4ω1

)
a3

0 + 2δ+
β1G1

4ω3
1

]
(76)

The discriminant of Equation (72) is

D = (trJ)2 − 4detJ = −6Ma5
0 − 12Na3

0 − 2Pa0 −
α2

1
4
(1 + a2

0) (77)

where M, N, and P are given by Equation (62).
The formula for the solution of quadratic Equation (72) is

λ1,2 = −1
2

trJ ± 1
2

√
D (78)

The signs of the eigenvalues λ1 and λ2 determine stability so that we will leave
discussion of so-called “borderline” cases.



Mathematics 2022, 10, 3301 12 of 16

In the case of Hopf bifurcation, there exists one pair of conjugate, purely imaginary
eigenvalues, λ1 = iΩ and λ2 = −iΩ, in the characteristic Equation (72). This means that
trJ = 0, and detJ > 0, and it follows that a0 = −1, and 3M + 6N + P+0.25α2

1 < 0. Based on the
saddle-node bifurcation theory, there is one zero eigenvalue of the Jacobian matrix, and
this condition corresponds to detJ = 0, or 3M + 6N + P+0.25α2

1 = 0. In this case, the value of
the detuning parameter becomes

δ = −1
4

[
3

(
5β1

6ω3
1
+

3γ1
4ω1

)(
5β1

6ω3
1
+

3γ1
4ω1

+
β1G1

ω3
1

)
+ α2

1 +
β1G1

2ω3
1

](
1 +

5β1

6ω3
1
+

3γ1
4ω1

)−1

(79)

In what follows, we will graphically examine the numerical study of stability near
primary resonance. For this aim, we use the parameters:

ω = 0.98,α1 = 0.001,β1 = 1/6, γ = 1/54, G1 = −0.07, δ ∈ [−0.2, 0.2] (80)

Figure 3 shows the variation of the amplitude a0 obtained from Equation (61) in respect
to detuning parameter δ. The positive values of a0 increase up to δ ≈ −0.02, and then, the
amplitude a0 decreases for δ > −0.02 and vice versa if a0 is negative. It is obvious that the
graph of the amplitude a0 is symmetrical with respect to the horizontal axis Oδ.
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Figure 3. The variation of a0 given by Equation (61) on the domain [-0.2,0.2]. Figure 3. The variation of a0 given by Equation (61) on the domain [−0.2, 0.2].

If the detuning parameter δ is defined on the domain [−0.2, 0.2], then from Equation (61),
the amplitude a0 is defined on the domain [−0.59, 0.59].

The variation of trJ given by Equation (75) and the variation of the discriminant D
given by Equation (77) are plotted in Figures 4–6, respectively. The trace of matrix J is
decreasing with respect to the amplitude, and trJ is negative for all a0 [−0.59, 0.59].
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The graph of D with respect to a0 for δ > 0 is plotted in Figure 5, and the graph of D
with respect to a0 for δ < 0 is plotted in Figure 6. The graphs of the discriminant D are not
monotonous on the entire domain δ ∈ [−0.2, 0.2] and a0 ∈ [−0.002, 0.002] for δ > 0. The
same discussion appears for δ < 0. The discriminant D for δ < 0 increases on each domain
(−0.59, −0.4), (−0.3, −0.08), (0.08, 0.3), and (0.4, 0.59).

Finally, the graph of a0 for D = 0 is presented in Figure 7, and the nodes are unstable.
It should be emphasized that from the quintic algebraic equation D = 0, where D is given in
Equation (77), one can obtain at most five solutions. However, the amplitude a0 depends
on the coefficients M, N, and P defined in Equation (62) and implicitly on the δ [−0.2, 0.2].
It follows that D = 0 led to the amplitude a0 in the domain [−3, 0].
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7. Conclusions

Vibro-impact dynamics under a Hertzian contact force and the influence of an asym-
metric electromagnetic actuators are analyzed near the primary resonance. The vibro-
impact is created by the loss of contact generated near resonance. The mathematical model
depending on one nonlinear differential equation was studied, and accurate analytical
approximate solutions are presented by means of OAFM. Explicit solutions are given for
a complex problem. For the first time, a small number of new auxiliary functions and
involved convergence-control parameters were employed in the constructions of the ini-
tial and of the first iteration, and the determination of these parameters was successfully
implemented in our approach. We remark that these parameters lead to a high precision
by comparing our approximate solution with numerical integration results. The nonlinear
differential equation was reduced to two linear differential equations, which do not depend
on all terms of the nonlinear operator. We have a great freedom to choose the number of
convergence-control parameters, the number of auxiliary functions, and some terms from
the nonlinear operator. We proved that the accuracy of our solution could be increased, if
needed, along with increasing the number of convergence-control parameters, which is an
important facility of the proposed approach. The optimal values of the convergence-control
parameters were determined using rigorous mathematical procedures. Our approach does
not suppose the presence of a small or large parameter in the governing equation or in
the boundary/initial conditions. The stability analysis was carried out to the steady-state
motion. Using MMS and the eigenvalues of the Jacobian matrix, we studied some cases
depending on the trace of the Jacobian and the discriminant of the characteristic equation.
The Hopf bifurcation and the saddle node bifurcation were taken into account.

Some future works will be further developed to study the global stability by means of
Liapunov function; two symmetrical EA, active control of vibro-impact, and corresponding
experimental validation of the obtained results will be carried out.
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