
Citation: Wei, Y.; Zhang, J. A

Vehicular Edge Computing-Based

Architecture and Task Scheduling

Scheme for Cooperative Perception in

Autonomous Driving. Mathematics

2022, 10, 3328. https://doi.org/

10.3390/math10183328

Academic Editors: Shi Qiang Liu,

Erhan Kozan, Felix T. S. Chan and

Weidong Li

Received: 18 July 2022

Accepted: 9 September 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Vehicular Edge Computing-Based Architecture and Task
Scheduling Scheme for Cooperative Perception in
Autonomous Driving
Yuankui Wei and Jixian Zhang *

The School of Information Science and Engineering, Yunnan University, Kunming 650500, China
* Correspondence: zhangjixian@ynu.edu.cn

Abstract: Cooperative perception is an important domain of autonomous driving that helps to
improve road safety and traffic efficiency. Nevertheless, the large amount of sensed data and
complicated algorithms make storage and computation for autonomous vehicles (AVs) challenging.
Furthermore, not every AV needs to individually process all sensed data from other AVs because
the environmental information is the same in a small region. Inspired by vehicular edge computing
(VEC), where AVs are interconnected with the help of roadside units (RSUs) for better storage and
computation capabilities, we propose a VEC-based architecture for cooperative perception and
design a key task scheduling algorithm for the above challenges. Specifically, a time slot-based VEC
architecture with the help of an RSU is designed, and the task scheduling problem in the proposed
architecture is formulated as a multitask multitarget scheduling problem with assignment restrictions.
A two-stage heuristic scheme (TSHS) is designed for the problem. Finally, extensive simulations
indicate that the proposed architecture with the TSHS can enable cooperative perception, with a fast
running speed and advanced performance, that is superior to that of the benchmarks, especially
when most AVs face limitations in terms of storage and computation.

Keywords: cooperative perception; connected autonomous vehicles; task scheduling; vehicular
edge computing

MSC: 90-10

1. Introduction

Cooperative perception is a promising and important domain of autonomous driving
that has received more and more attention from academia and industry. In cooperative
perception, autonomous vehicles (AVs) are interconnected via communication sensors, and
individual information is shared among connected and autonomous vehicles (CAVs), which
extends the line of sight and field of view of each CAV. Communication sensors include
dedicated short-range communication (DSRC) and 5G cellular networks, which could help
to establish vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication [1].
In addition, there are several different V2V communication technologies, e.g., millimeter
wave and visible light communication, but these technologies are under research and
are not widely deployed in autonomous driving [2]. In contrast, DSRC is widely used,
and many studies related to cooperative perception are based on DSRC. DSRC is based
on 802.11p, which is amended according to 802.11 for supporting mobility and the IEEE
1609 family of standards [3]; it allows short-range communication over hundreds of meters
via the dedicatedly allocated spectrum in the 5.9 GHz band. In this way, each CAV can
improve its safety over a short range and increase traffic flow efficiency over a long range.
For example, a vehicle can receive detected perception data of preceding vehicles via DSRC,
and then the vehicle can build a map of the surrounding environment over a larger range.

Mathematics 2022, 10, 3328. https://doi.org/10.3390/math10183328 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10183328
https://doi.org/10.3390/math10183328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10183328
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10183328?type=check_update&version=5

Mathematics 2022, 10, 3328 2 of 23

The map can help to know obstacles in front of the preceding vehicle or accidents on
another road to help to make decisions to avoid obstacles and change routes.

A typical architecture for cooperative perception is illustrated in Figure 1, which is
constructed from the perspective of communication and computation. There are mainly
two participants in the architecture, including roadside units (RSUs) and AVs. An RSU
can be regarded as an edge node with computing and communication capabilities that
can serve AVs within its communication range. Meanwhile, every AV is equipped with
computing devices, onboard sensors and communication sensors. Onboard sensors include
LiDAR, radar, camera, etc. [4], and each AV can perceive its surrounding environment
using a different sensor. After that, an AV can transmit detected information to other AVs
and RSUs via wireless communication technologies. The advantages of the architecture
are twofold [5]: (1) AVs can obtain road information that is out of sight, which can help to
make better decisions. (2) The RSU can collect different perception results to broadcast to
other vehicles; meanwhile, the RSU can also evaluate the “global” optimization of vehicle
trajectories for improved traffic efficiency.

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 24

preceding vehicles via DSRC, and then the vehicle can build a map of the surrounding

environment over a larger range. The map can help to know obstacles in front of the pre-

ceding vehicle or accidents on another road to help to make decisions to avoid obstacles

and change routes.

A typical architecture for cooperative perception is illustrated in Figure 1, which is

constructed from the perspective of communication and computation. There are mainly

two participants in the architecture, including roadside units (RSUs) and AVs. An RSU

can be regarded as an edge node with computing and communication capabilities that can

serve AVs within its communication range. Meanwhile, every AV is equipped with com-

puting devices, onboard sensors and communication sensors. Onboard sensors include

LiDAR, radar, camera, etc. [4], and each AV can perceive its surrounding environment

using a different sensor. After that, an AV can transmit detected information to other AVs

and RSUs via wireless communication technologies. The advantages of the architecture

are twofold [5]: (1) AVs can obtain road information that is out of sight, which can help to

make better decisions. (2) The RSU can collect different perception results to broadcast to

other vehicles; meanwhile, the RSU can also evaluate the “global” optimization of vehicle

trajectories for improved traffic efficiency.

Figure 1. Illustration of cooperative perception. Vehicles can connect with other vehicles via V2V

links and can connect with RSUs via V2I links. Detected environmental information can be trans-

mitted among all participants.

From previous studies [6–8], there are three basic tasks in cooperative perception, i.e.,

location, detection and tracking, and mapping. All these tasks are computation-intensive,

especially when deep learning-based algorithms are involved. Furthermore, detected

sensing data can rapidly exhaust the storage of AVs. These facts will pose a major chal-

lenge to AVs because of the individual execution of tasks on the ego vehicle. However,

sensing data are typically high spatial and of temporal locality, i.e., the sensed data are

the same in a section and are only important to AVs in that section during a particular

period, which indicates that not every AV needs to individually process all sensed data

received from other AVs. In this paper, we consider the inherent spatial and temporal

locality and propose a VEC-based infrastructure for the storage and computation chal-

lenges of AVs in cooperative perception. For the effective utilization of resources from

Figure 1. Illustration of cooperative perception. Vehicles can connect with other vehicles via V2V links
and can connect with RSUs via V2I links. Detected environmental information can be transmitted
among all participants.

From previous studies [6–8], there are three basic tasks in cooperative perception, i.e.,
location, detection and tracking, and mapping. All these tasks are computation-intensive,
especially when deep learning-based algorithms are involved. Furthermore, detected
sensing data can rapidly exhaust the storage of AVs. These facts will pose a major challenge
to AVs because of the individual execution of tasks on the ego vehicle. However, sensing
data are typically high spatial and of temporal locality, i.e., the sensed data are the same
in a section and are only important to AVs in that section during a particular period,
which indicates that not every AV needs to individually process all sensed data received
from other AVs. In this paper, we consider the inherent spatial and temporal locality
and propose a VEC-based infrastructure for the storage and computation challenges of
AVs in cooperative perception. For the effective utilization of resources from AVs in the

Mathematics 2022, 10, 3328 3 of 23

architecture, we investigate the key task scheduling problem among participating AVs. The
main contributions are listed below.

• We propose a hybrid time slot-based VEC architecture consisting of AVs and RSUs for
cooperative perception, in which some real conditions of AVs are considered, e.g., the
involvement of multiple types of resources, heterogeneity of tasks and AV resources
and transmission constraint of every participating AV.

• We formulate the task scheduling problem in the proposed architecture as a multitask
multitarget scheduling problem with assignment restrictions. We show that the prob-
lem is a multidimensional multiple knapsack problem with assignment restrictions,
and its NP-hardness is proven in the paper.

• We design a two-stage heuristic scheme (TSHS) for the formulated scheduling prob-
lem, which aims at better utilization of the resources of AVs for a better cooperative
perception. We compare the result of TSHS with optimum results and the results of
some basic benchmarks, and its effectiveness is validated after extensive simulations.

The remainder of this paper is organized as follows. In Section 2, we detail related
works. In Section 3, we first illustrate the VEC-based architecture for cooperative perception
and present the model formulation. Then, we analyze the optimal solution of the formulated
problem. In Section 4, we provide insight into the TSHS. In Section 5, we present our
experiment and results. Finally, in Section 6, we conclude the paper by discussing some
important topics that need further research. We summarize the used acronyms in Table 1
for better reading.

Table 1. Summary of Acronyms.

Acronym Phrase

AV autonomous vehicle

VEC vehicular edge computing

RSU roadside unit

TSHS two-stage heuristic scheme

CAVs connected and autonomous vehicles

DSRC dedicated short-range communication

V2V vehicle-to-vehicle

V2I vehicle-to-infrastructure

EC edge computing

NoN number of neighbors

BDR balance degree of resources

RRAT resource requirements of all tasks

RSD satisfaction degree

2. Related Works
2.1. Vehicular Edge Computing and Cooperative Perception

Research on the combination of edge computing (EC) and AVs has recently attracted
considerable attention because vehicle-based applications’ characteristics are naturally
consistent with those of EC. EC can provide ultralow latency and enable location awareness
by deploying edge servers near end users [9]. Vehicle applications, especially autonomous
driving services, e.g., real-time traffic information and parking guidance, are location
dependent, delay-constrained and computation-intensive [10]. Therefore, the combination
of EC and AVs can fulfill the requirements of vehicle applications and can alleviate the
pressure of the backbone network. In addition to AVs serviced by edge nodes, i.e., vehicles
utilize the resources provided by edge nodes to execute their applications, vehicles can

Mathematics 2022, 10, 3328 4 of 23

be regarded as edge nodes to provide services to other users. This kind of architecture is
called vehicular edge computing (VEC) [11], which can help to facilitate some vehicle-based
applications, e.g., vehicle-based crowdsourcing and cooperative perception.

Vehicle-based crowdsourcing is a novel resource sharing technology in which vehicles
with the capability of sensing, computing and communicating are recruited to execute
tasks of interest, e.g., environment sensing. After completing tasks, vehicles will be paid.
Different aspects of this domain have been researched. Zhu et al. [12] proposed a deep Q-
network-based algorithm for improving the quality of information and processing latency
in vehicle-based visual crowdsourcing. Lai et al. [13] solved the maximal weighted sensing
paths problem in vehicular crowdsourcing by a heuristic method, in which the selection
of participating vehicles and path computing are the main concerns and the aim is to
better benefit from vehicular crowdsourcing. Hui et al. [14] considered the privacy of
AVs and security of edge computing devices and proposed a coalition game algorithm
based on blockchain to minimize the task execution cost. We do not thoroughly review the
related researches because it is not the main concern of this paper. One difference between
vehicle-based crowdsourcing and cooperative perception is that an incentive mechanism is
needed in vehicle-based crowdsourcing to encourage more participating vehicles, but this
is not needed in cooperative perception. This is because every participating vehicle can
benefit from cooperative perception.

Cooperative perception refers to vehicles mutually sharing individual perception
information for a better line of sight and field of view, and consequently improving road
safety over a short range and increasing traffic flow efficiency over a long range [1]. The
safety of AVs is critical for AV computing system design [15]. In [7], Kim et al. proposed a
creative system for cooperative perception, in which a multimodal cooperative perception
system for all-around views of drivers is built in reality and cooperative driving is realized
by see-through forward collision warning, overtaking/lane-changing assistance and auto-
mated hidden obstacle avoidance. In paper [16], the authors proposed a cooperative-based
method for bottleneck detection on motorways. In paper [17], Shan et al. addressed the han-
dling of cooperative perception messages and demonstrated in experiments that CAVs can
perceive pedestrians around the corner. Because the realization of cooperative perception
is based on vehicle-to-everything communication, in which valuable exchange information
about the surrounding environment is transmitted, the message format and generation
rules for cooperative perception have been standardized by some standardization bodies,
e.g., the European Telecommunications Standards Institute (ETSI) [17]. Meanwhile, what
contents should be included in the exchanged messages has been researched by many
researchers. In [18], after evaluating the performances of different congestion and content
control schemes, Gani et al. determined that message content that is farther away from
the sensor is more valuable and should be concentrated on mapped objects but not near
the edge of the local sensor range. In addition to the exchanged messages, the condition
of communication in cooperative perception is critical because heavy channel loads can
degrade the performance of cooperative perception. In [19], the authors considered the
value of detected objects, and these can be included in the message only if they are valu-
able for receivers. In this way, channel loads can be reduced because fewer messages are
transmitted. In [20], the authors evaluated the impact of sensor characteristics, the market
penetration rate and congestion control schemes on the operation and the performance of
cooperative perception. They proposed that the combination of congestion control func-
tions at the access and facility layers can improve the cooperative perception. Although
communication is a very important domain, the main focus of the paper is the pressure of
computation induced by tasks in cooperative perception

The main three tasks of cooperative perception, i.e., localization, detection and track-
ing, and mapping, are researched from many perspectives. For localization, the acquisition
of a vehicle’s position in the environment is the main concern, and GPS-based multilatera-
tion [21] with errors ranging from 3.3 m to 6.75 m or an advanced refining method based
on the Extended Kalman Filter (EKF) [22] with a standard deviation of 0.02 m are used. For

Mathematics 2022, 10, 3328 5 of 23

detection and tracking, the detection of obstacles in the scene and tracking them are the
main concerns, and most related methods are neural network-based, e.g., YOLOv3 [23].
For mapping, the goal is to build a map by aggregating data from the previous two stages
and to optimize routes and adapt vehicle navigation [2]. All these tasks, especially neural
network-related tasks, put large pressure on vehicle resources, which needs to be solved.
Furthermore, we note that most of these tasks are executed locally, and a cooperative
perception with more collaboration among AVs is a promising approach in the future.

2.2. Task Scheduling among CAVs

Task scheduling, or resource allocation, is a critical issue in traditional cloud computing
(CC) and VEC because it determines the profit of the service provider and the efficiency of
resource utilization. In CC, Liu et al. [24] proposed an efficient approximation algorithm
to perform task scheduling in a multimapping manner under a heterogeneous physical
machine environment that aimed to improve social welfare and allocation efficiency. Zhang
et al. studied different scheduling scenarios in cloud computing. In [25], focusing on
the challenges of multidimensional resources in clouds, they proposed an online truthful
mechanism for time-varying resource allocation in an interprogramming model. In [26], a
dynamic priority-based online strategy-proof mechanism was proposed that allows jobs
to be scheduled in a preemptive-restart mode, which can improve the social welfare and
resource utilization of clouds. In [27], a dominant-resource-based allocation algorithm was
proposed for batch virtual machine allocation in clouds, which has high social welfare
and a high served user ratio. In [28], they proposed a truthful online auction mechanism
based on user evaluation and cost for a multirequirement, single-minded scenario in
which a user can submit multiple requirements but only one can be satisfied. They also
investigated machine learning-based allocation algorithms in [29] and extended the above
methodology to collaboration between clouds and edges. In [30], an online strategy-
proof allocation mechanism for live video webcast services, which includes individual
rationality and truthfulness and has high social welfare, was proposed. In [31], considering
the combination of the Internet of Vehicles and blockchain, an auction mechanism was
proposed to encourage users to undertake mining computing.

In VEC, task scheduling has been researched considering specific vehicular features.
Liwang et al. [32] presented a game theory-based method to conduct opportunistic computa-
tion allocation to achieve efficient utilization of vehicles’ resources. Chen et al. [33] proposed
a hybrid dynamic scheduling scheme that combines queue-based dynamic scheduling and
time-based dynamic scheduling to realize adaptive scheduling. Wan et al. [34] considered
EC scheduling for CAVs in 5G networks and proposed a computation offloading algo-
rithm to solve the multiobjective optimization problem for appropriate allocation decisions.
Liu et al. [35] proposed a deep Q-learning-based algorithm that considers allocation target
servers and vehicle data transmission modes to realize optimal allocation. Zhou et al. [36]
proposed an alternating direction method of a multiplier-based distributed algorithm with
low complexity to realize energy-efficient workload allocation. Xu et al. [37] considered
the privacy protection of task scheduling to EC devices among CAVs and proposed a
multiobjective optimization algorithm to reduce energy consumption and prevent privacy
conflicts. The above studies conducted scheduling among CAVs to satisfy the requirements
of computation-intensive and response-constrained applications. However, the formulated
problems do not consider multiple types of resources and the differences in connectivity of
each vehicle in the network, which are included in our formulated problem. Furthermore,
the vehicles in these studies can only be service providers or requestors, whereas vehicles
can be both in our model.

In our paper, we comprehensively consider the design of the VEC-based architecture
for cooperative perception and propose a task scheduling algorithm to realize the efficient
utilization of AV resources to process more detected sensing data, thereby improving
road safety.

Mathematics 2022, 10, 3328 6 of 23

3. System Model and Problem Formulation

In this section, we first present a VEC-based architecture for cooperative perception.
Then, the formulation of task scheduling in the architecture is presented in detail. Finally,
we discuss the optimal solution of the formulated problem and prove its NP-hardness.

3.1. Hybrid VEC-Based Architecture for Cooperative Perception

Figure 2 shows a hybrid VEC-based architecture for cooperative perception. In our
research, urban areas are divided into several small regions, and there is one RSU located
in the center of the region. The region size is determined by the communication capability
of the RSU, and a wide region size implies that more AVs could participate in cooperative
perception. Therefore, the number of participating AVs is a key parameter behind the
region size. We focus on one of these regions, and the research results of the region can be
applied to the others. The RSU is equipped with communication devices and connected
to edge servers; it acts as a scheduler to provide services to AVs in the region. In a region,
assuming that there are M AVs that are participating in cooperative perception, we use
M = {1, 2, · · ·, M} to denote the AV set. AVs can connect to the RSU via V2I links and
can connect to each other via V2V links. We assume that an AV or RSU can communicate
with several AVs simultaneously, and there is no interference in these communication links.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 24

3. System Model and Problem Formulation

In this section, we first present a VEC-based architecture for cooperative perception.

Then, the formulation of task scheduling in the architecture is presented in detail. Finally,

we discuss the optimal solution of the formulated problem and prove its NP-hardness.

3.1. Hybrid VEC-Based Architecture for Cooperative Perception

Figure 2 shows a hybrid VEC-based architecture for cooperative perception. In our

research, urban areas are divided into several small regions, and there is one RSU located

in the center of the region. The region size is determined by the communication capability

of the RSU, and a wide region size implies that more AVs could participate in cooperative

perception. Therefore, the number of participating AVs is a key parameter behind the re-

gion size. We focus on one of these regions, and the research results of the region can be

applied to the others. The RSU is equipped with communication devices and connected

to edge servers; it acts as a scheduler to provide services to AVs in the region. In a region,

assuming that there are M AVs that are participating in cooperative perception, we use
= {1, 2, , }M to denote the AV set. AVs can connect to the RSU via V2I links and

can connect to each other via V2V links. We assume that an AV or RSU can communicate

with several AVs simultaneously, and there is no interference in these communication

links.

Figure 2. Tasks scheduling procedure in a hybrid VEC-based architecture for cooperative percep-

tion.

AVs are equipped with communication and computation devices and can be re-

garded as small servers with radio ability. There are R types of resources, denoted as
= {1, 2, , }R , e.g., CPU, RAM and disk size. AVs can possess different amounts of

different types of resources due to many factors, e.g., the price of vehicles and software

carried on vehicles. We use = 1 2(, , ,)R T
i i i i

c c cc to denote the amount of different re-

sources possessed by AV ,i i and use =
1

(, ,)
M

c cC to denote the resource ma-

trix of all AVs in the region. AVs can not only execute tasks on themselves but also tasks

from other connected vehicles in a virtualized manner, e.g., virtual machines.

Figure 2. Tasks scheduling procedure in a hybrid VEC-based architecture for cooperative perception.

AVs are equipped with communication and computation devices and can be re-
garded as small servers with radio ability. There are R types of resources, denoted as
R = {1, 2, · · ·, R}, e.g., CPU, RAM and disk size. AVs can possess different amounts of
different types of resources due to many factors, e.g., the price of vehicles and software
carried on vehicles. We use ci = (c1

i , c2
i , · · ·, cR

i)
T to denote the amount of different resources

Mathematics 2022, 10, 3328 7 of 23

possessed by AV i, i ∈ M and use C = (c1, · · ·, cM) to denote the resource matrix of all
AVs in the region. AVs can not only execute tasks on themselves but also tasks from other
connected vehicles in a virtualized manner, e.g., virtual machines.

The role of the RSU is as a scheduler in the region, and the role of AVs that form the
VEC is undertaking the computation of tasks. In reference [5], there were two architec-
tures for communication and computation in CAVs, i.e., centralized and decentralized
architectures. Centralized architectures refer to the RSU acting as a scheduler to provide
service to CAVs. Its advantages are twofold: (1) The communication coverage of the RSU is
larger, and different communication technologies can coexist. (2) The necessary information
of all CAVs can be acquired, and “global” optimization can be performed. However, its
disadvantages are that it is costly, and the connection between the RSU and CAVs can
be unstable because of the distance and mobility of vehicles. Decentralized architectures
refer to vehicles mutually transmitting necessary information and complete computational
tasks by themselves. Its advantages are less of a transmission delay and more stable V2V
communication. Its disadvantage is that the negotiation between vehicles is not “global”.
A hybrid architecture is promising; for cooperative maneuvers, such an architecture would
mean that vehicles can coordinate among themselves, and centralized entities (such as
mobile edge computing (MEC) servers) are also capable of sending proposals to (groups
of) vehicles [5]. Inspired by these ideas, we propose a hybrid VEC-based architecture for
cooperative perception. Tasks of cooperative perception are time constrained and of high
spatial and temporal locality, and these tasks are offloaded among CAVs. The scheduling
of tasks, in which information of all participating vehicles is needed, is global, and RSUs
with wide coverage act as schedulers to schedule tasks.

In cooperative perception, environmental information is derived from processing data
of different types of sensors, e.g., camera, LiDAR and radar. Different sensors have different
data production rates, e.g., 10–70 MB per second for LiDAR and 10–100 KB per second for
radar. Each type of sensor corresponds to a type of task, and we assume that there are K
types of tasks denoted as K = {1, 2, · · ·, K}. A specific task can be represented by a vector
ωk = (ω1

k , ω2
k , · · ·, ωR

k)
T , where ωR

k denotes the amount of R type resources needed by a
task of type K. We use W = (ω1, ω2, · · ·, ωK) to denote the resource requirement matrix of
all task types. Vehicles can produce different numbers of tasks of different types, and these
tasks can be executed on ego AVs or offloaded to connected AVs for partial or full execution
via V2V links. We assume that tasks can only be transmitted in a one-hop manner, i.e., tasks
cannot be transmitted to other AVs by a multihop relay.

Task scheduling and offloading are based on time slots, as shown in Figure 2. The
block diagram shows the implementation procedure of the central RSU and an AV in time
slot t. Vehicles synchronize their time slots and report necessary information with the RSU
after entering the region. When a vehicle establishes a connection with the RSU during the
RSU’s time slot t, the vehicle will attend the next scheduling decision at the RSU’s time slot
t + 1, which means that the reported information will be utilized for task scheduling in the
next time slot. Here, the length of the RSU’s time slot should be the same as every vehicle’s
time slot. The whole cooperative perception procedure can be divided into three steps:

• First, vehicles conduct neighbor detection via V2V links. A vehicle sends detection
packets to other vehicles, and vehicles without packet loss and with low round-trip
time are regarded as neighbors. We assume that the neighbors detected in a time slot
will not change because of the short length of the time slot, but neighbors in different
time slots can change because of vehicle mobility. For vehicle i ∈ M, j ∈ M\{i};
δij = δji = 1 means that vehicles are mutual neighbors; otherwise, δij = δji = 0. We
use δi = (δi1, · · ·, δiM)T to denote the neighbor vector of AV i and ∆∆∆ = (δ1, · · ·, δM)
to denote the neighbor matrix of all vehicles in the region in a time slot. In addition to
the neighbor vector, the available resources ci possessed by AVs and the task vector
si produced by vehicles need to be reported to the RSU in every time slot. Here,
si = (si1, · · ·, siK)

T ; siK denotes the number of K-type tasks produced by AV i, and

Mathematics 2022, 10, 3328 8 of 23

S = (s1, · · ·, sM) denotes the task matrix of all vehicles in the region. These correspond
to procedures 1–2 in the block diagram.

• Second, the RSU makes scheduling decisions according to the collected information
(S, C, ∆) in a time slot and sends the results back to vehicles in the region. These
correspond to procedures 3–5 in the block diagram.

• Finally, AVs conduct task offloading according to the decision result and report the
task results to the RSU after completion for further acquisition of other vehicles. These
correspond to procedures 6–8 in the block diagram.

Table 2 summarizes the main annotations used in the paper.

Table 2. Main annotations used in the paper.

Term Description

M,M Number and set of AVs in cooperative perception
K, K Number and set of task types
R, R Number and set of resource types
si, S Task request vector of vehicle i and task request matrix of all AVs in a time slot

ωωωi, W Resource requirement vector of task type i, and the resource requirement matrix of
all types of tasks

ci, C Available resources of AV i used in cooperative perception and those resources of all
vehicles in a time slot

δi, ∆ Neighbor vector of AV i and those of all vehicles

xi
Decision variable of AV i, which indicates whether its tasks are completed with
assistance from other vehicles. xi ∈ {0, 1}.

yijk
Latent decision variable of k-type tasks that are transmitted to AV i from AV j for
execution.yijk ∈ Z+ ∪ {0}.

3.2. Problem Formulation

Under the context of better resource utilization and achieving road safety improvement
in our model, the more vehicles that accomplish sensing data processing tasks in a time slot,
the more environmental information is acquired, and road safety is improved. However,
because of the high spatial and temporal locality of environmental information, if most
AVs can accomplish their tasks, the remaining AVs can still perceive the environment by
the accomplished tasks in the proposed architecture. Therefore, we use the number of AVs
that accomplish their tasks in a time slot to represent the degree of sensed environment
information that can be obtained, and our aim is to maximize the number.

In a given time slot, for decision variable xi, i ∈ M is used to denote whether tasks of
AV i can complete, xi = 1 represents that tasks of the AV i are accomplished with assistance
from neighbor vehicles or by itself. The latent variable yijk denotes the number of k-type
tasks that need to be offloaded by AV j for execution on AV i.

The scheduling problem in a particular time slot is represented as follows.

max ∑
i:i∈M

xi (1a)

s.t. sik · xi = ∑
j:j∈M

yjik · δij, ∀i ∈ M, ∀k ∈ K (1b)

∑
j:j∈M

∑
j:j∈K

δij · yijk ·ωr
k ≤ cr

i , ∀r ∈ R, ∀i ∈ M (1c)

xi ∈ {0, 1}, yijk ∈ Z+ ∪ {0} (1d)

Formula (1b) represents the number of each type of task of AV i, i ∈ M, whose tasks
can be successfully accomplished with the assistance of other vehicles, and is equal to the
number of tasks actually executed by its corresponding neighbors. Formula (1c) indicates
that the resources’ occupation of all tasks executed on every AV cannot exceed the AV’s

Mathematics 2022, 10, 3328 9 of 23

capacity for any type of resource. Formula (1d) indicates that the value of xi is 0 or 1 and
that yijk is a nonnegative integer.

Here, we give an example of task scheduling in the proposed model to illustrate the
effectiveness induced by task offloading in the architecture, as shown in Figure 3. There
are three participating AVs, and the resources possessed by the three are c1 = (8, 11, 16)T ,
c2 = (2, 3, 4)T and c3 = (2, 4, 5)T . There are two types of tasks, and the resource re-
quirements of each type of task are ω1 = (2, 3, 4)T and ω2 = (3, 4, 5)T . The numbers of
the two types of tasks produced by the three vehicles are s1 = (1, 0)T , s2 = (1, 1)T and
s3 = (1, 1)T . If no task scheduling is performed, the number of AVs whose produced tasks
can be completed is one, i.e., AV 1. Data sensed by other vehicles cannot be processed in a
timely manner, so valuable environmental information cannot be obtained by AV 1 from
other AVs, which decreases road safety. With task scheduling in cooperative perception,
task 2 of vehicles 2 and 3 can be assigned to vehicle 1 to execute so that all vehicles’ tasks
can be accomplished in a timely manner; thus, road safety is improved.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 24

+ {0,1}, {0}
i ijk

x y Z (1d)

Formula (1b) represents the number of each type of task of AV , i i , whose

tasks can be successfully accomplished with the assistance of other vehicles, and is equal

to the number of tasks actually executed by its corresponding neighbors. Formula (1c)

indicates that the resources’ occupation of all tasks executed on every AV cannot exceed

the AV’s capacity for any type of resource. Formula (1d) indicates that the value of
i

x is

0 or 1 and that
ijk

y is a nonnegative integer.

Here, we give an example of task scheduling in the proposed model to illustrate the

effectiveness induced by task offloading in the architecture, as shown in Figure 3. There

are three participating AVs, and the resources possessed by the three are =
1

(8, 11, 16)Tc

, =
2

(2, 3, 4)Tc and =
3

(2, 4, 5)Tc . There are two types of tasks, and the resource re-

quirements of each type of task are =
1

(2, 3, 4)T and =
2

(3, 4, 5)T . The numbers of

the two types of tasks produced by the three vehicles are =
1

(1, 0)Ts , =
2

(1, 1)Ts and

=
3

(1, 1)Ts . If no task scheduling is performed, the number of AVs whose produced tasks

can be completed is one, i.e., AV 1. Data sensed by other vehicles cannot be processed in

a timely manner, so valuable environmental information cannot be obtained by AV 1 from

other AVs, which decreases road safety. With task scheduling in cooperative perception,

task 2 of vehicles 2 and 3 can be assigned to vehicle 1 to execute so that all vehicles’ tasks

can be accomplished in a timely manner; thus, road safety is improved.

Figure 3. Road safety improvement via task scheduling in cooperative perception. (a) No task sched-

uling performed. (b) Conduct task scheduling.

3.3. Optimal Solution

Here, we give a brief discussion about the optimal solution. In fact, when there is

only one type of resource and we ignore the difference in connectivity, the scheduling

problem can be considered a multiple knapsack problem. It is strongly NP-hard according

to paper [38]. We prove that the problem presented in Formula (1a) is NP-hard.

Proposition 1. The multidimensional multitask multitarget task scheduling problem listed in For-

mula (1a) is NP-hard.

Proof. When there is only one type of resource in the architecture, the problem in Formula

(1a) can be regarded as a multiple knapsack problem with assignment restriction (MKAS),

Figure 3. Road safety improvement via task scheduling in cooperative perception. (a) No task
scheduling performed. (b) Conduct task scheduling.

3.3. Optimal Solution

Here, we give a brief discussion about the optimal solution. In fact, when there is
only one type of resource and we ignore the difference in connectivity, the scheduling
problem can be considered a multiple knapsack problem. It is strongly NP-hard according
to paper [38]. We prove that the problem presented in Formula (1a) is NP-hard.

Proposition 1. The multidimensional multitask multitarget task scheduling problem listed in
Formula (1a) is NP-hard.

Proof. When there is only one type of resource in the architecture, the problem in
Formula (1a) can be regarded as a multiple knapsack problem with assignment restriction
(MKAS), i.e., participating AVs can be regarded as knapsacks in which resources possessed
by AVs are the capacity of the knapsack; tasks produced by AVs are the items in which tasks

Mathematics 2022, 10, 3328 10 of 23

produced by the same vehicle have the same assignment restriction and not for diverse
vehicles. In the paper [38] by M. Dawande et al., the NP-hardness of MKAS was proven. In
our research, we consider multidimensional resources, and MKAS can be reduced to our
problem in Formula (1a). If there is a polynomial algorithm for our problem, MKAS can be
solved in polynomial time. Therefore, the problem in Formula (1a) is NP-hard. �

It is very difficult to acquire an optimal result in an acceptable time, especially in
the autonomous driving domain, because of its strict response time constraint when the
number of participating AVs becomes large. Therefore, we design a heuristic algorithm
to conduct task scheduling decisions. However, for small-scale simulation experiments,
e.g., the number of AVs is relatively small, we can use some optimization tools, e.g., ILOG-
CPLEX [39], to obtain the optimal result of the task scheduling decision with the purpose of
maximizing the total number of vehicles whose tasks can be accomplished. ILOG-CPLEX
is a tool to solve problems such as linear programming and constraint programming.

4. Two-Stage Heuristic Scheme (TSHS)

For the NP-hardness of the problem in Formula (1a), i.e., there has not yet been a
polynomial algorithm, we instead propose a TSHS, which will be detailed in this section.

Two stages are included in the TSHS:

• Determination of the priority of participating AVs in cooperative perception. In this
stage, the priority of AVs that need task scheduling is determined based on the status
of the vehicles, e.g., produced tasks, available resources and neighbors.

• Determination of execution target vehicles of tasks produced by participating AVs. In
this stage, target vehicles of tasks are determined, i.e., which neighbors hold that task
is confirmed.

We introduce the highlighted ideas in the algorithm, detail the algorithm and finally
present the proof of the algorithm approximation ratio and time complexity.

4.1. Highlighted Ideas

In the scheduling problem of Formula (1a), whether the vehicle accomplishes its tasks
via other AVs should be determined. In addition, the target vehicle of each task should be
determined. We design the TSHS as a two-stage algorithm based on the two goals. We
introduce the highlighted ideas of the two stages in the TSHS.

4.1.1. Stage of Determination of AV Priorities

In this stage, the sequence of AVs to be scheduled is considered, i.e., the priority. In the
problem in Formula (1a), the goal is maximizing the number of AVs that can complete their
tasks. We start by analyzing the status of AVs and construct the criteria for determining
the scheduling priority of AVs. We introduce the number of neighbors, the balance degree
of the task and their impacts on the vehicle’s priority and then construct the formula of
priority determination.

The number of neighbors (NoN): As mentioned above, the definition of a vehicle’s
neighbors is a set of AVs with stable connections detected by vehicles at the beginning of a
certain time slot. For AV i, i ∈ M, we denote hi = ∑

j∈M\{i}
δij as its number of neighbors.

The number is a property of a certain AV in a time slot, and it can determine the priority
to a certain degree. Specifically, for two AVs i, j ∈ M, i 6= j with the same task requests,
i.e., si = sj if hi < hj, vehicle i should have higher priority than j because the selectivity of
neighbors of vehicle i is small.

Here, we give an example to explain this. The tasks’ target vehicle is determined
according to the fitness resource proposed in stage two. There are three Avs, 1, 2 and 3, and
their resources are c1 = (2, 3, 4)T , c2 = (3, 4, 5)T and c3 = (5, 7, 9)T , respectively. AVs
generate two types of tasks. The resource requirements of the tasks are ω1 = (2, 3, 4)T

and ω2 = (3, 4, 5)T , and the task requests of the three are s1 = (1, 1)T , s2 = (1, 1)T

Mathematics 2022, 10, 3328 11 of 23

and s3 = (0, 0)T . Vehicles 1 and 3 only possess one neighbor, i.e., vehicle 2, and vehicle
2 possesses two neighbors, i.e., vehicles 1 and 3. If vehicle 2 offloads its tasks first, as shown
in Figure 4a, the tasks of vehicle 2 will be partly offloaded to vehicle 1; finally, only vehicle
2 can complete its tasks. If vehicle 1, which possesses fewer neighbors, offloads its tasks
first, as shown in Figure 4b, the tasks of vehicle 1 are partly offloaded to vehicle 2, and
the tasks of vehicle 2 can be offloaded to vehicle 3. The number of vehicles whose tasks
can be completed is two. Obviously, vehicles that possess fewer neighbors should have
higher priority, and it is beneficial to improve the number of vehicles whose tasks can
be completed.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 24

Here, we give an example to explain this. The tasks’ target vehicle is determined ac-

cording to the fitness resource proposed in stage two. There are three Avs, 1, 2 and 3, and

their resources are =
1

(2, 3, 4)Tc , =
2

(3, 4, 5)Tc and =
3

(5, 7, 9)Tc , respectively. AVs

generate two types of tasks. The resource requirements of the tasks are =
1

(2, 3, 4)T

and =
2

(3, 4, 5)T , and the task requests of the three are =
1

(1, 1)Ts , =
2

(1, 1)Ts and

=
3

(0, 0)Ts . Vehicles 1 and 3 only possess one neighbor, i.e., vehicle 2, and vehicle 2 pos-

sesses two neighbors, i.e., vehicles 1 and 3. If vehicle 2 offloads its tasks first, as shown in

Figure 4a, the tasks of vehicle 2 will be partly offloaded to vehicle 1; finally, only vehicle

2 can complete its tasks. If vehicle 1, which possesses fewer neighbors, offloads its tasks

first, as shown in Figure 4b, the tasks of vehicle 1 are partly offloaded to vehicle 2, and the

tasks of vehicle 2 can be offloaded to vehicle 3. The number of vehicles whose tasks can

be completed is two. Obviously, vehicles that possess fewer neighbors should have higher

priority, and it is beneficial to improve the number of vehicles whose tasks can be com-

pleted.

Figure 4. Example: impacts of NoN on the number of AVs whose tasks can be completed. (a) Vehicle

with more NoN offloads first; (b) otherwise.

Balance degree of resources (BDR): Different sensors in AVs generate diverse data,

and the resource requirements of different data processing tasks are different. The re-

source requirements of tasks also impact the goal in Formula (1a). For a task of type

 , k k , BDR is denoted as

= −() (max min)/ minr r r
k k kr r r

B k (2)

It is the maximal difference in dimensional resource requirements for a k -type task

after normalization; a larger value indicates a greater imbalance. If there are many unbal-

anced tasks generated by a vehicle, the successful offloading of these tasks results in rapid

exhaustion of a particular type of resource in the target vehicle. Finally, no more tasks can

be completed, and the number of vehicles whose tasks can be completed declines.

We now provide an example to explain this. There are three AVs, AVs 1, 2 and 3. The

resources they possess are =
1

(2, 2, 2)Tc , =
2

(2, 3, 5)Tc and =
3

(2, 3, 5)Tc , and they

are connected to each other. There are two types of tasks produced by the vehicle, i.e.,

=
1

(1, 1, 1)T and =
2

(1, 1, 5)T , and the task requests of the three vehicles are

=
1

(0, 2)Ts , =
2

(2, 0)Ts and =
3

(2, 0)Ts . If vehicle 1 has higher ()B k offloading first,

its two tasks will execute on vehicles 2 and 3, which will exhaust the resources of type 3

possessed by vehicles 2 and 3, so the tasks of vehicles 2 and 3 cannot be completed. Then,

the number of vehicles whose tasks can be completed is one. If vehicles 2 or 3, which

Figure 4. Example: impacts of NoN on the number of AVs whose tasks can be completed. (a) Vehicle
with more NoN offloads first; (b) otherwise.

Balance degree of resources (BDR): Different sensors in AVs generate diverse data,
and the resource requirements of different data processing tasks are different. The resource
requirements of tasks also impact the goal in Formula (1a). For a task of type k, ∀k ∈ K,
BDR is denoted as

B(k) =
(

max
r∈R

ωr
k −min

r∈R
ωr

k

)
/min

r∈R
ωr

k (2)

It is the maximal difference in dimensional resource requirements for a k-type task after
normalization; a larger value indicates a greater imbalance. If there are many unbalanced
tasks generated by a vehicle, the successful offloading of these tasks results in rapid
exhaustion of a particular type of resource in the target vehicle. Finally, no more tasks can
be completed, and the number of vehicles whose tasks can be completed declines.

We now provide an example to explain this. There are three AVs, AVs 1, 2 and 3.
The resources they possess are c1 = (2, 2, 2)T , c2 = (2, 3, 5)T and c3 = (2, 3, 5)T , and
they are connected to each other. There are two types of tasks produced by the vehicle,
i.e., ω1 = (1, 1, 1)T and ω2 = (1, 1, 5)T , and the task requests of the three vehicles are
s1 = (0, 2)T , s2 = (2, 0)T and s3 = (2, 0)T . If vehicle 1 has higher B(k) offloading first,
its two tasks will execute on vehicles 2 and 3, which will exhaust the resources of type
3 possessed by vehicles 2 and 3, so the tasks of vehicles 2 and 3 cannot be completed. Then,
the number of vehicles whose tasks can be completed is one. If vehicles 2 or 3, which
possess relatively balanced tasks, offload first, their tasks can be completed. Then, the
final number of vehicles whose tasks can be completed is two, which helps to improve
road safety.

Vehicle priority determination: In addition to the above two factors, the total resource
requirements of all tasks (RRAT) generated by an AV are also an important factor that

Mathematics 2022, 10, 3328 12 of 23

influences the number of vehicles whose tasks can be completed. Under the condition that
the total amount of resources owned by AVs in the region remains unchanged, the fewer
the resources required by the task, the greater the number of completed tasks.

We design a formula of priority determination based on RRAT and BDR of the task
and NoN, as shown in Formula (3),

di =
1

q(hi) · ∑
k∈K

(g(B(k)) · sik ∑
r∈R

ωr
k)

, ∀i ∈ M (3)

where q(hi) is the contribution function of the NoN, and hi is the number of neighbors of
AV i. g(B(k)) is the contribution function of the BDR, and B(k) is the BDR of the k-type task.
The two functions are defined in Section 5, and they are both monotonically increasing
functions. Formula (3) is a method of vehicle priority determination based on BDR, NoN
and RRAT; the smaller di is, the lower the priority.

4.1.2. Determination of the Target Vehicle of Tasks

We use resource fitness between tasks and vehicles for target vehicle determination. In
the proposed model, an AV possesses R types of resources and generates K types of tasks
that represent data processing from different sensors. Different task types k, ∀k ∈ K require
different amounts of R-type resources, denoted by ωk = (ω1

k , ω2
k , · · ·, ωR

k)
T . An AV

i, i ∈ M that needs task offloading, similar to paper [24], determines the target vehicle for
its tasks based on the resource fitness of the task and vehicle. For a task of type k ∈ K and
candidate of the target vehicle j ∈

{
s
∣∣s ∈ M, δij = 1

}
, resource fitness f (k, j) is denoted as

f (k, j) = ‖cj/c1
j −ωk/ω1

k‖1

= ∑
r∈R

∣∣∣cr
j /c1

j −ωr
k/ω1

k

∣∣∣ (4)

A task of type k will choose a vehicle with the smallest f (k, j) from its neighbor set. The
smaller f (k, j) is, the higher the degree of consistency between the resource requirements
of the task to be offloaded and the resources currently available on the target vehicle. This
helps to reduce the resource fraction and waste.

4.2. Algorithm

In the proposed TSHS, there are two stages, as shown in Algorithm 1. (a) Determina-
tion of the priority of the vehicles that need task scheduling and formation of a priority
list that will be used in stage two. (b) According to the input vehicles’ priority list, assess
whether the vehicle can offload all its tasks to neighbors in turn. If so, the task selects the
target vehicle according to the resource fitness based on the remaining resources of vehicles
in the neighbor set, and the result is returned when all the vehicles are tested.

Algorithm 1 TSHS (S, W, ∆∆∆, C)

1: x, y, list← Vehicle_determination ((S, W, ∆∆∆, C))
2: x, y←Task_schedule ((S, W, ∆∆∆, C, x, y, list))
3: /* schedule tasks from origin vehicle to target vehicle for execution */
4: /* integrate results and transmit them to RSU */

Finally, every participating vehicle conducts offloading according to the decision result
and sends the acquired environment information to the RSU for the acquisition of other
vehicles after task completion. We detail the two algorithms in this section.

Vehicle_determination in TSHS is shown in Algorithm 2. There are four inputs, i.e.,
the task matrix of all vehicles S, resource requirement matrix of all task types W, neighbor
matrix of all vehicles ∆∆∆ and available resource matrix C, and three outputs, i.e., decision

Mathematics 2022, 10, 3328 13 of 23

variables x, y and the sorted list of vehicles that need task offloading based on priority. First,
decision variables x, y are initialized: vehicles whose tasks can be completed by themselves
directly execute their tasks, and vehicles whose tasks cannot be completed by themselves
are stored in setMmid (lines 1–7). Then, the algorithm sorts vehicles inMmid in ascending
order based on priority, which is calculated by Formula (3). A vehicle at the front ofMmid is
higher in di, which means the vehicle has higher priority considering NoN, BDR and RRAT,
and it will offload its tasks prior to other vehicles with lower priority in the Task_schedule
algorithm. Finally, the algorithm returns the decision vector x, y, which is a partly modified
and sorted list of AVs that need task scheduling.

Algorithm 2 Vehicle_determination ((S, W, ∆∆∆, C))

1: x← 0, y← 0
2: for each i ∈ M:
3: if ∑

k∈K
skiω

r
k ≤ cr

i , ∀r ∈ R:

4: cr
i ← cr

i − ∑
k∈K

sikωr
k, ∀r ∈ R

5: xi ← 1
6: yijk ← sik
7: Mmid ←M\{i}
8: for each i ∈ Mmid:
9: di =

1
q(hi)· ∑

k∈K
(g(B(k))·sik ∑

r∈R
ωr

k)

10: sortMmid in decreasing order of di
11: return x, y,Mmid

Task_schedule is shown in Algorithm 3. In addition to inputs S, W, ∆∆∆, C, which are
the same as those for Vehicle_determination, the outputs of Vehicle_determination are
input into Task_schedule. The outputs of the algorithm are a list of AVs and whether
their tasks can be completed, i.e., decision vector x, and the target vehicles of tasks, i.e.,
latent decision vector y. First, the algorithm selects vehicles from list one by one, sets a
success_flag and backs up the decision vector y and available resource matrix C, which are
utilized for restoration when offloading fails (lines 1–4). For tasks of type k, the algorithm
calculates the resource fitness of other AVs and sorts the AVs in ascending order of resource
fitness. Then, for every task of the same type, the algorithm chooses the vehicle with
the lowest resource fitness and checks whether the available resources of the vehicle are
sufficient for the task and whether the vehicles are mutual neighbors. If these conditions are
satisfied, the latent decision vector y and available resource matrix C of the target vehicle
are modified, the resource fitness between the type and target vehicle is recalculated, and
the vehicle is inserted into the vehicle list according to the new resource fitness. This
process is iterated until all tasks are scheduled (lines 5–16). If there is a task that cannot be
assigned to any vehicle, y and C are restored using backups (lines 17–19). In the algorithm,
we set success_flag to examine the failure of any task scheduling decision: it is set as False
when a task is starting, which denotes that no target vehicle is appropriate for the task. If
an appropriate target vehicle is available, success_flag is set to True. All decision loops are
aborted for a vehicle if any task cannot be offloaded to another vehicle (line 5, lines 17–22).
Finally, decision variable x is also modified according to the value of success_flag, and
decision variable x corresponding to a vehicle is set to 1 if success_flag is True; otherwise, it
is set to 0.

Mathematics 2022, 10, 3328 14 of 23

Algorithm 3 Task_schedule ((S, W, ∆∆∆, C, x, y, list))

1: for each i ∈ list:
2: success_flag ← True
3: y′ ← y
4: C′ ← C
5: for each k ∈ K:
6: sort j ∈ M in increasing order of f (k, j)
7: for each m ∈ 1, · · ·, sik:
8: success_flag ← False
9: for each j ∈ M:
10: if cr

j ≥ ωr
k and δij = 1, ∀r ∈ R :

11: yjik ← yjik + 1
12: cr

j ← cr
j −ωr

k, ∀r ∈ R
13: recalculate f (k, j)
14: resortM in increasing order of recalculate f (k, j)
15: success_flag← True
16: break
17: if success_flag = False:
18: y← y′
19: C← C′
20: break
21: if success_flag = False:
22: break
23: if success_flag = True:
24: xi = 1
25: else:
26: xi = 0
27: return x, y

4.3. Properties

We now detail some properties of the TSHS.

Theorem 1. The TSHS algorithm is a pmin/(pmaxM) approximate algorithm, in which
pmin = mini∈Mpi, pmax = maxi∈Mpi and M is the number of participating vehicles in co-

operative perception. pi = q(hi)· ∑
k∈K

(
g(B(k))·sik ∑

r∈R
ωr

k

)
.

Proof. LetWopt be the set of AVs whose tasks can be completely generated by the optimal
algorithm; let OPT denote the number of vehicles in the set, OPT = ∑

i∈WOPT

1. LetWTSHS be

the set of AVs whose tasks can be completely generated by the TSHS algorithm, and let TS
denote the number of vehicles in the set, TS = ∑

i∈WTSHS

1. We need to prove α ·OPT ≤ TS,

where α is the approximate ratio of TSHS. If the same vehicles are in setsWopt andWTSHS,
we can remove these vehicles from both sets, and the proof of the approximate ratio of the
TSHS is not affected.

First, we consider TS,

TS = ∑
i∈WTSHS

1

= ∑
i∈WTSHS

pidi

≥ pmin ∑
i∈WTSHS

idi

(5)

where the second equality follows from vehicle priority Formula (3), and it is obvious that
the third inequality holds.

Mathematics 2022, 10, 3328 15 of 23

Second, for OPT,
OPT = ∑

i∈WOPT

1

= ∑
i∈WOPT

pidi

≤ pmax ∑
i∈WOPT

di

(6)

where, similar to Formula (5), the second equality follows from vehicle priority Formula (3),
and it is also obvious that the third inequality holds.

Notably, there are no common vehicles in the setsWopt andWTSHS. Thus, for any
vehicle i, i ∈ WOPT that acquires resources from its neighbors, some parts of the resources
are allocated to vehicle j, j ∈ WTSHS, and we have dj ≥ di in the TSHS; otherwise, vehicle
should be inWTSHS.

Let OP j be a subset of Wopt that includes vehicles whose requested resources are
partly assigned to vehicle j, j ∈ WTSHS, and dj ≥ di, ∀i ∈ OP j. OP j is a subset ofWopt
relating to vehicle j, in which the requested resources of these vehicles can be assigned to
at most M other vehicles. Therefore:

∑
i∈OP j

di ≤ ∑
i∈OP j

dj ≤ dj
∣∣OP j

∣∣ ≤ Mdj (7)

Because OP j is a part ofWopt andWopt = ∪j∈WTSHSOP j, we have:

∑
i∈WOPT

di ≤ ∑
j∈WTSHS

∑
i∈OP j

di ≤ M ∑
i∈WTSHS

dj (8)

Thus, we have
OPT ≤ pmax ∑

i∈WOPT

di

≤ pmaxM ∑
j∈WTSHS

dj

≤ TS(pmax/pmin)M

TS ≥ (pmin/pmaxM)OPT

where the first inequality follows from Formula (6), the second formula follows from
Formula (8) and the third follows from Formula (5). Therefore, TSHS is a (pmin/pmaxM)
algorithm. �

Theorem 2. The time complexity of TSHS is polynomial.

Proof. The TSHS algorithm consists of Vehicle_determination and Task_schedule. In our
analysis, we regard the number of task types K and resource types R as constants whose
values are unknown, and we analyze the impact of the number of participating vehicles on
the time complexity. For the Vehicle_determination algorithm, the process of excluding
vehicles whose tasks can be completed by themselves involves search and delete operations;
it consumes O(log M) by binary search, and the whole process consumes O(M log M). The
calculation of vehicle priority and sorting consumes at least O(M log M); therefore, the
time complexity of Vehicle_determination is O(M log M). For Task_schedule, although
there are four-layer loops, only two of the four loops involve the number of vehicles
(innermost and outermost loops). In the innermost loop, insertion consumes O(log M)
(binary insertion algorithm), and all four loops consume O(M2 log M), which is the same
as the time complexity O(M2 log M) of sorting in line 6; therefore, the time complexity
of Task_schedule is O(M2 log M). Thus, the TSHS consumes O(M2 log M), and the time
complexity of the TSHS is polynomial. �

Mathematics 2022, 10, 3328 16 of 23

5. Experiment and Discussion

In this section, we use a generated dataset to simulate task scheduling in the proposed
architecture for cooperative perception and compare the results with FirstMatch and the
optimal algorithm. The optimal algorithm is designed with CPLEX tools, which can be
used to solve the constraint optimization problem. The simulation platform environment
uses Python in PyCharm. The code is run on a machine with a 2.90 GHz Intel (R) Core
(TM) i5-9400 CPU and 16 GB RAM.

5.1. Experimental Setup

Due to the lack of a standard dataset for task scheduling in cooperative perception,
we generate a dataset for simulation. According to the proposed model in Section 3 and
the proposed architecture in Section 4, four types of data need to be generated, i.e., the
task request matrix of all AVs S, the resource requirement matrix of all types of tasks W,
the available resources of all AVs C and the neighbor vector of all vehicles ∆∆∆. Because
the proposed architecture is time slot-based, we need to generate the data used for task
scheduling in a time slot. We can regard the participating AVs as a cluster. For simplicity,
we refer to the number of participating AVs as the cluster scale, and we use these two
terms interchangeably.

To make the generated dataset more convincing, we analyze some real conditions
in cooperative perception and VEC and set rules to generate the dataset according to the
analysis. Because AVs need to process tasks related to cooperative perception, there are
three types of resources possessed by participating AVs. We can assign different units for
these resources, i.e., 1 core for CPU, 128 MB for RAM and 256 MB for DISK capability,
which are used to quantify the number of generated resources. This is only one of the
possible assignments of the unit.

• For all participating AVs, three types of resources are needed. Although some main-
stream AVs can possess 30 CPU cores or more, utilizing parts of cores to conduct
cooperative perception is more rational because of the unreliability of communica-
tion and the demands of other users’ and AV applications. The available resources
of different vehicles should be diverse because of price differences. We can divide
participating vehicles into high-level vehicles and medium-level vehicles. Further-
more, the available number of CPU cores of AVs at the same level could be slightly
different due to different users’ habits. We set the resource domains of the three types
of resources to (7–10, 37–43, 58–64) for high-level vehicles and (4–6, 18–23, 28–32) for
medium-level vehicles: an AVs’ possessed available resources are randomly generated
from the domain’s scope based on its level. The randomness reflects the fact that the
available resources of different vehicles of the same level can still be slightly different.
Meanwhile, the fact that the number of high-level vehicles is less than the number of
medium-level vehicles needs to be considered, and the ratio is set to 30%.

• As stated in Section 1, cameras, LiDAR and radar can be installed on AVs for envi-
ronmental perception, and the resource requirements corresponding to the LiDAR,
camera and radar data processing tasks are different. We can regard them as different
tasks. For a more realistic scenario, we consider three types of tasks that can be profiled
by a triple tuple. The needed CPU cores of a task are determined according to its
corresponding sensors’ data production rate in our paper, i.e., the larger the data
production rate is, the more CPU cores used to process those data are needed. The
resource requirements corresponding to the LiDAR, camera and radar data processing
tasks are ωωω1 = (3, 16, 10)T , ωωω2 = (2, 10, 8)T and ωωω3 = (1, 3, 4)T , respectively. The
settings of the three types of profiles mainly consider the relationship of the resource
requirements among the tasks from LiDAR, cameras and radar and the maximum
number of CPU cores of an AV. The absolute resource requirement of each task is
related to the specific machine and the length of the time slot, which are not consid-
ered in this paper. There are indeed more specific and scientific descriptions for tasks’
computation intensity, e.g., the amount of computation, latency/energy consumption

Mathematics 2022, 10, 3328 17 of 23

for finishing a workload or needed instruction cycles of CPU. For simplicity and ease
of calculation, we define the resource requirement of tasks (computationally intensive)
as a triple tuple that includes the number of CPU cores. We assume that every CPU
core needed by a task runs with full loads in our model.

• Neighbors are determined by sending detection packets by V2V links (DSRC). The
results of neighbor detection can be represented by a neighbor vector. We can generate
these neighbor vectors. Two facts should be considered. First, a vehicle cannot connect
to too many other vehicles. Second, the distribution of AV numbers of neighbors is
almost normal distribution. We set the generating rules as follows: An AV should have
at least two neighbors. The number of participating vehicles is referred to as the cluster
scale, and the two terms are used interchangeably. When the scale is 5–10, an AV can
have up to five neighbors; when the scale is 10–20, the maximum number of neighbors
of the AV is half of the scale; and when the scale exceeds 20, the maximum number of
neighbors is 10. The number of neighbors of each vehicle is randomly chosen between
the maximum and minimum values according to a normal distribution.

• Determining the number of every vehicle’s generated tasks is slightly complex. For
participating vehicles, the distribution of the proportion of the number of AVs whose
available resources cannot meet the requirement of tasks generated by themselves to
the total number of participating vehicles is unknown. We assume that the probability
of every proportion is the same. We use the resource satisfaction degree (RSD), i.e.,
the proportion of vehicles whose tasks can be completed by themselves, in the cluster
to denote the distribution in a discrete manner. The value of RSD ranges from 90%
to 10%. For a particular value of RSD, we randomly generate task requests of each
AV, which guarantees that the proportion of vehicles whose tasks can be completed
by itself in the cluster is equal to the value of RSD. Each RSD value of each cluster
scale generates 25 groups of data, and each group contains the task requests of each
participating vehicle in cooperative perception.

Based on the above rules, we generate a dataset that contains the needed data of task
scheduling determination in the cluster scale from 5 to 50. Theoretically, in a particular
region, the minimum number of participating vehicles is 0, and the maximum number of
participating vehicles depends on many factors, e.g., the size of vehicles and the capability of
communication devices. The size of vehicles determines the maximum number of vehicles
existing in the physical space of the region. The capability of communication devices
determines how many existing vehicles in the region can be serviced by communication
devices to participate in cooperative perception. We use Mmax to denote the maximum
number of participating vehicles. In reality, the actual number of participating vehicles is
between 0 and Mmax, and it could obey some kind of probability distribution, e.g., normal
distribution. Investigating the relation between region size and the number of participating
vehicles (which probability distribution) is indeed an interesting and important topic,
but it is not our main concern of this paper. Therefore, we generate a dataset from 5–50
to simulate these possible cluster scales. We use the generated dataset to simulate the
task scheduling of a time slot at different scales and analyze the performance of TSHS
by comparison with FirstMatch and Optimal. Function q(hi) = lg(hi + 9) in Formula (3)
denotes the degree of contribution of vehicle neighbors; g(B(k)) = 1.2B(k) denotes the
degree of contribution of the balance degree. We choose one from many other choices, and
the chosen two functions have shown good performance in simulation. This paper did not
conduct additional research on the selection of the two functions, which will be included in
our future work.

For a better understanding, the structure and content of the dataset are illustrated in
Figure 5. For example, there are vehicle connectivity, available resources and task requests
in nine RSDs when the cluster scale is 5. We can use the neighbor vector, available resources
and 25 groups of task requests in different RSDs to synthesize 255 groups of data, which
can denote task requests under different vehicle loads in a time slot. The data of other
cluster scales can be synthesized in the same way.

Mathematics 2022, 10, 3328 18 of 23

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 24

cluster to denote the distribution in a discrete manner. The value of RSD ranges from

90% to 10%. For a particular value of RSD, we randomly generate task requests of

each AV, which guarantees that the proportion of vehicles whose tasks can be com-

pleted by itself in the cluster is equal to the value of RSD. Each RSD value of each

cluster scale generates 25 groups of data, and each group contains the task requests

of each participating vehicle in cooperative perception.

Based on the above rules, we generate a dataset that contains the needed data of task

scheduling determination in the cluster scale from 5 to 50. Theoretically, in a particular

region, the minimum number of participating vehicles is 0, and the maximum number of

participating vehicles depends on many factors, e.g., the size of vehicles and the capability

of communication devices. The size of vehicles determines the maximum number of ve-

hicles existing in the physical space of the region. The capability of communication de-

vices determines how many existing vehicles in the region can be serviced by communi-

cation devices to participate in cooperative perception. We use maxM to denote the max-

imum number of participating vehicles. In reality, the actual number of participating ve-

hicles is between 0 and maxM , and it could obey some kind of probability distribution,

e.g., normal distribution. Investigating the relation between region size and the number

of participating vehicles (which probability distribution) is indeed an interesting and im-

portant topic, but it is not our main concern of this paper. Therefore, we generate a dataset

from 5–50 to simulate these possible cluster scales. We use the generated dataset to simu-

late the task scheduling of a time slot at different scales and analyze the performance of

TSHS by comparison with FirstMatch and Optimal. Function = +() lg(9)
i i

q h h in For-

mula (3) denotes the degree of contribution of vehicle neighbors; = ()(()) 1.2B kg B k de-

notes the degree of contribution of the balance degree. We choose one from many other

choices, and the chosen two functions have shown good performance in simulation. This

paper did not conduct additional research on the selection of the two functions, which

will be included in our future work.

For a better understanding, the structure and content of the dataset are illustrated in

Figure 5. For example, there are vehicle connectivity, available resources and task requests

in nine RSDs when the cluster scale is 5. We can use the neighbor vector, available re-

sources and 25 groups of task requests in different RSDs to synthesize 255 groups of data,

which can denote task requests under different vehicle loads in a time slot. The data of

other cluster scales can be synthesized in the same way.

Figure 5. Diagram of the generated dataset. Figure 5. Diagram of the generated dataset.

Based on the generated dataset, we compare the TSHS with two other algorithms:

• Optimal: optimal tasks scheduling scheme, which is solved by CPLEX.
• FirstMatch (FM): Vehicles are numbered starting from 0, and FM selects vehicles in

order from small to large for task scheduling determination. For the selected vehicle, a
neighbor is also selected from the neighbor set according to the number from small to
large, and as many tasks as possible are scheduled. If the vehicle cannot schedule its
tasks in this way, it fails; otherwise, it succeeds.

5.2. Results and Discussion
5.2.1. Performance over Time

Before comparing the time performance of different scheduling algorithms, we first
analyze the ratio of successful computations of the three algorithms in the simulation. A task
scheduling decision is regarded as successful when it can be determined in an hour, and a
long determination time is not sufficient because of the real-time and mobility requirements
in the autonomous driving domain. Figure 6 illustrates the successful computation ratio
of all simulations (a total of 255 in a scale) for three different algorithms under various
cluster scales. The successful computation ratio of TSHS and FM is always 100% with the
increasing cluster scale, but it declines with the increasing cluster scale for the optimal
algorithm. When the cluster scale is 11, only 80% of the simulations can be completed
within a fixed time. To detail the impact of RSD on the successful computation ratio,
Figure 7 illustrates the successful computation ratio of the optimal algorithm along with
the decrease in RSD under different cluster scales. The ratio of successful computation
decreases rapidly with the increase in RSD when the cluster scale is large. Thus, the optimal
offloading result cannot be acquired within a short period when the cluster scale is large,
especially for vehicles in clusters with heavy loads. On the other hand, the TSHS can still
acquire a good scheduling scheme within a short period.

Mathematics 2022, 10, 3328 19 of 23

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 24

Based on the generated dataset, we compare the TSHS with two other algorithms:

• Optimal: optimal tasks scheduling scheme, which is solved by CPLEX.

• FirstMatch (FM): Vehicles are numbered starting from 0, and FM selects vehicles in

order from small to large for task scheduling determination. For the selected vehicle,

a neighbor is also selected from the neighbor set according to the number from small

to large, and as many tasks as possible are scheduled. If the vehicle cannot schedule

its tasks in this way, it fails; otherwise, it succeeds.

5.2. Results and Discussion

5.2.1. Performance over Time

Before comparing the time performance of different scheduling algorithms, we first

analyze the ratio of successful computations of the three algorithms in the simulation. A

task scheduling decision is regarded as successful when it can be determined in an hour,

and a long determination time is not sufficient because of the real-time and mobility re-

quirements in the autonomous driving domain. Figure 6 illustrates the successful compu-

tation ratio of all simulations (a total of 255 in a scale) for three different algorithms under

various cluster scales. The successful computation ratio of TSHS and FM is always 100%

with the increasing cluster scale, but it declines with the increasing cluster scale for the

optimal algorithm. When the cluster scale is 11, only 80% of the simulations can be com-

pleted within a fixed time. To detail the impact of RSD on the successful computation

ratio, Figure 7 illustrates the successful computation ratio of the optimal algorithm along

with the decrease in RSD under different cluster scales. The ratio of successful computa-

tion decreases rapidly with the increase in RSD when the cluster scale is large. Thus, the

optimal offloading result cannot be acquired within a short period when the cluster scale

is large, especially for vehicles in clusters with heavy loads. On the other hand, the TSHS

can still acquire a good scheduling scheme within a short period.

Figure 6. Successful computation ratio of different algorithms under diverse cluster scales. Figure 6. Successful computation ratio of different algorithms under diverse cluster scales.

Mathematics 2022, 10, x FOR PEER REVIEW 20 of 24

Figure 7. Successful computation ratio of optima under different RSDs and cluster scales. The two

lines, blue and orange, coincide with each other.

Figure 8 illustrates the mean time consumption for acquiring results with different

algorithms when the cluster scale changes, in which blue denotes optimal, red denotes the

TSHS and green denotes FM. The mean time of each cluster scale is the mean value of the

times of all RSDs, which denotes the average performance of the algorithm under different

cluster loads. The time of each RSD is calculated by averaging the values of its 25 simula-

tions to reduce the influence of randomness on the analysis. The optimal time increases

rapidly with increasing cluster scale. Because of the long running time of the optimal al-

gorithm, we conduct simulations using the optimal algorithm when the cluster scale is

less than 12. The optimal algorithm is aborted because of memory overflow or cannot

finish because of a very long execution time. Therefore, the blue bars are missing when

there is a large number of participating vehicles. On the other hand, the running time of

the TSHS is much less than optimal and does not increase significantly with increasing

cluster scale. The TSHS is also better than FM in the simulation. Therefore, the proposed

TSHS has good time performance and can be used when the cluster scale is large.

Figure 8. Average running time of different algorithms.

Figure 7. Successful computation ratio of optima under different RSDs and cluster scales. The two
lines, blue and orange, coincide with each other.

Figure 8 illustrates the mean time consumption for acquiring results with different
algorithms when the cluster scale changes, in which blue denotes optimal, red denotes
the TSHS and green denotes FM. The mean time of each cluster scale is the mean value
of the times of all RSDs, which denotes the average performance of the algorithm under
different cluster loads. The time of each RSD is calculated by averaging the values of its
25 simulations to reduce the influence of randomness on the analysis. The optimal time
increases rapidly with increasing cluster scale. Because of the long running time of the
optimal algorithm, we conduct simulations using the optimal algorithm when the cluster
scale is less than 12. The optimal algorithm is aborted because of memory overflow or
cannot finish because of a very long execution time. Therefore, the blue bars are missing
when there is a large number of participating vehicles. On the other hand, the running time
of the TSHS is much less than optimal and does not increase significantly with increasing
cluster scale. The TSHS is also better than FM in the simulation. Therefore, the proposed
TSHS has good time performance and can be used when the cluster scale is large.

Mathematics 2022, 10, 3328 20 of 23

Mathematics 2022, 10, x FOR PEER REVIEW 20 of 24

Figure 7. Successful computation ratio of optima under different RSDs and cluster scales. The two

lines, blue and orange, coincide with each other.

Figure 8 illustrates the mean time consumption for acquiring results with different

algorithms when the cluster scale changes, in which blue denotes optimal, red denotes the

TSHS and green denotes FM. The mean time of each cluster scale is the mean value of the

times of all RSDs, which denotes the average performance of the algorithm under different

cluster loads. The time of each RSD is calculated by averaging the values of its 25 simula-

tions to reduce the influence of randomness on the analysis. The optimal time increases

rapidly with increasing cluster scale. Because of the long running time of the optimal al-

gorithm, we conduct simulations using the optimal algorithm when the cluster scale is

less than 12. The optimal algorithm is aborted because of memory overflow or cannot

finish because of a very long execution time. Therefore, the blue bars are missing when

there is a large number of participating vehicles. On the other hand, the running time of

the TSHS is much less than optimal and does not increase significantly with increasing

cluster scale. The TSHS is also better than FM in the simulation. Therefore, the proposed

TSHS has good time performance and can be used when the cluster scale is large.

Figure 8. Average running time of different algorithms.

Figure 8. Average running time of different algorithms.

5.2.2. Improvement in Road Safety in the VEC-Based Architecture with Scheduling

First, we compare the average number of vehicles whose tasks can be completed in
cooperative perception using the TSHS, FM and optimal when the cluster scale changes
between 5 and 11, as shown in Figure 9. As above, the number of vehicles whose tasks can
be completed in each cluster scale is derived by averaging the numbers of all RSDs of the
scale, which denotes the mean performance of the algorithms under different cluster loads.
The number of each RSD is calculated by averaging the numbers of its 25 simulations,
which reduces the influence of randomness on the analysis. In Figure 9, red denotes the
TSHS algorithm, green denotes FM and blue denotes the optimal algorithm. The difference
between the TSHS and the optimal algorithm does not increase significantly as the scale
increases, and the TSHS outperforms FM.

Mathematics 2022, 10, x FOR PEER REVIEW 21 of 24

5.2.2. Improvement in Road Safety in the VEC-Based Architecture with Scheduling

First, we compare the average number of vehicles whose tasks can be completed in

cooperative perception using the TSHS, FM and optimal when the cluster scale changes

between 5 and 11, as shown in Figure 9. As above, the number of vehicles whose tasks can

be completed in each cluster scale is derived by averaging the numbers of all RSDs of the

scale, which denotes the mean performance of the algorithms under different cluster

loads. The number of each RSD is calculated by averaging the numbers of its 25 simula-

tions, which reduces the influence of randomness on the analysis. In Figure 9, red denotes

the TSHS algorithm, green denotes FM and blue denotes the optimal algorithm. The dif-

ference between the TSHS and the optimal algorithm does not increase significantly as the

scale increases, and the TSHS outperforms FM.

Figure 9. Differences in the number of vehicles whose tasks can be completed among different al-

gorithms under different numbers of participating vehicles.

Figure 10 illustrates the average number of vehicles whose tasks can be completed

under different RSDs, where green, red and blue indicate cooperative perception using

FM, the TSHS and without offloading, respectively. The number decreases linearly with

the decrease in the RSD without offloading, and a few vehicles can still complete their

tasks by scheduling in the architecture with the TSHS, even under a larger cluster scale

and heavy cluster load. At least 55% of vehicles in a cluster can complete their tasks with

the TSHS, even when the RSD of a cluster is 10%. Although there is no significant differ-

ence between FM and the TSHS when the RSD is large, the TSHS is much better than FM

when the RSD is lower because the property of neighbors is considered in TSHS. There-

fore, the proposed TSHS can improve the number of vehicles whose tasks can be com-

pleted in cooperative perception, especially under heavy cluster loads, which means that

road safety is improved by utilizing the resources of connected vehicles in a better way.

Figure 9. Differences in the number of vehicles whose tasks can be completed among different
algorithms under different numbers of participating vehicles.

Figure 10 illustrates the average number of vehicles whose tasks can be completed
under different RSDs, where green, red and blue indicate cooperative perception using FM,
the TSHS and without offloading, respectively. The number decreases linearly with the
decrease in the RSD without offloading, and a few vehicles can still complete their tasks by
scheduling in the architecture with the TSHS, even under a larger cluster scale and heavy

Mathematics 2022, 10, 3328 21 of 23

cluster load. At least 55% of vehicles in a cluster can complete their tasks with the TSHS,
even when the RSD of a cluster is 10%. Although there is no significant difference between
FM and the TSHS when the RSD is large, the TSHS is much better than FM when the RSD
is lower because the property of neighbors is considered in TSHS. Therefore, the proposed
TSHS can improve the number of vehicles whose tasks can be completed in cooperative
perception, especially under heavy cluster loads, which means that road safety is improved
by utilizing the resources of connected vehicles in a better way.

Mathematics 2022, 10, x FOR PEER REVIEW 22 of 24

Figure 10. Average number of vehicles whose tasks can be completed under different RSDs. (a)

Cluster scale is 18. (b) Cluster scale is 28. (c) Cluster scale is 48.

5.2.3. Resource Utilization

Finally, we compare the average resource utilization of the TSHS, FM and the optimal

algorithm under different cluster scales. The CPU utilization is the proportion of the num-

ber of used CPU cores to the number of total CPU cores. Similarly, the average resource

utilization is calculated by averaging the value of all RSDs of a cluster scale. As shown in

Figure 11, although there is a gap between the TSHS and optimal, it is not large, and the

TSHS outperforms FM. Considering the time consumed for acquiring g results, the TSHS

is still a good algorithm.

Figure 11. Utilization of different resources. (a) Utilization of CPU cores. (b)Utilization of RAM.

(c)Utilization of disk.

6. Conclusions

In this paper, we propose a hybrid VEC-based architecture to improve the utilization

of AVs for better cooperative perception and investigate the key task scheduling problem.

It is modeled as a multidimensional multitask multitarget task scheduling problem with

assignment restrictions. We prove its NP-hardness and propose a heuristic scheme (TSHS)

to solve the problem. Substantial experiments show that the proposed TSHS is close to

optimal, and at least 55% of vehicles in a cluster can complete their tasks based on our

dataset, even under heavy cluster loads. Moreover, the fast running time of the TSHS is

suitable for the autonomous domain. However, only one-hop offloading and a single RSU

are considered in our paper, and multihop and multi-RSU collaboration will be consid-

ered in future papers. Second, designing a fair scheduling policy according to the contri-

butions of participating AVs is also a promising direction. Third, our proposed architec-

ture for cooperative perception does not consider the impact of communication, which is

very important for cooperative perception in reality. Communication is the basis for real-

izing a cooperative, and its reliability directly impacts AV safety on the road, especially

when high channel loads and packet collisions occur. Furthermore, the sync overhead is

considerable and critical for driving safety, which means the tradeoff of gains and loss of

sync should be concerned. These questions should receive deeper research.

Figure 10. Average number of vehicles whose tasks can be completed under different RSDs. (a) Clus-
ter scale is 18. (b) Cluster scale is 28. (c) Cluster scale is 48.

5.2.3. Resource Utilization

Finally, we compare the average resource utilization of the TSHS, FM and the optimal
algorithm under different cluster scales. The CPU utilization is the proportion of the
number of used CPU cores to the number of total CPU cores. Similarly, the average
resource utilization is calculated by averaging the value of all RSDs of a cluster scale. As
shown in Figure 11, although there is a gap between the TSHS and optimal, it is not large,
and the TSHS outperforms FM. Considering the time consumed for acquiring g results, the
TSHS is still a good algorithm.

Mathematics 2022, 10, x FOR PEER REVIEW 22 of 24

Figure 10. Average number of vehicles whose tasks can be completed under different RSDs. (a)

Cluster scale is 18. (b) Cluster scale is 28. (c) Cluster scale is 48.

5.2.3. Resource Utilization

Finally, we compare the average resource utilization of the TSHS, FM and the optimal

algorithm under different cluster scales. The CPU utilization is the proportion of the num-

ber of used CPU cores to the number of total CPU cores. Similarly, the average resource

utilization is calculated by averaging the value of all RSDs of a cluster scale. As shown in

Figure 11, although there is a gap between the TSHS and optimal, it is not large, and the

TSHS outperforms FM. Considering the time consumed for acquiring g results, the TSHS

is still a good algorithm.

Figure 11. Utilization of different resources. (a) Utilization of CPU cores. (b)Utilization of RAM.

(c)Utilization of disk.

6. Conclusions

In this paper, we propose a hybrid VEC-based architecture to improve the utilization

of AVs for better cooperative perception and investigate the key task scheduling problem.

It is modeled as a multidimensional multitask multitarget task scheduling problem with

assignment restrictions. We prove its NP-hardness and propose a heuristic scheme (TSHS)

to solve the problem. Substantial experiments show that the proposed TSHS is close to

optimal, and at least 55% of vehicles in a cluster can complete their tasks based on our

dataset, even under heavy cluster loads. Moreover, the fast running time of the TSHS is

suitable for the autonomous domain. However, only one-hop offloading and a single RSU

are considered in our paper, and multihop and multi-RSU collaboration will be consid-

ered in future papers. Second, designing a fair scheduling policy according to the contri-

butions of participating AVs is also a promising direction. Third, our proposed architec-

ture for cooperative perception does not consider the impact of communication, which is

very important for cooperative perception in reality. Communication is the basis for real-

izing a cooperative, and its reliability directly impacts AV safety on the road, especially

when high channel loads and packet collisions occur. Furthermore, the sync overhead is

considerable and critical for driving safety, which means the tradeoff of gains and loss of

sync should be concerned. These questions should receive deeper research.

Figure 11. Utilization of different resources. (a) Utilization of CPU cores. (b) Utilization of RAM.
(c) Utilization of disk.

6. Conclusions

In this paper, we propose a hybrid VEC-based architecture to improve the utilization
of AVs for better cooperative perception and investigate the key task scheduling problem.
It is modeled as a multidimensional multitask multitarget task scheduling problem with
assignment restrictions. We prove its NP-hardness and propose a heuristic scheme (TSHS)
to solve the problem. Substantial experiments show that the proposed TSHS is close to
optimal, and at least 55% of vehicles in a cluster can complete their tasks based on our
dataset, even under heavy cluster loads. Moreover, the fast running time of the TSHS is
suitable for the autonomous domain. However, only one-hop offloading and a single RSU
are considered in our paper, and multihop and multi-RSU collaboration will be considered
in future papers. Second, designing a fair scheduling policy according to the contributions

Mathematics 2022, 10, 3328 22 of 23

of participating AVs is also a promising direction. Third, our proposed architecture for
cooperative perception does not consider the impact of communication, which is very
important for cooperative perception in reality. Communication is the basis for realizing a
cooperative, and its reliability directly impacts AV safety on the road, especially when high
channel loads and packet collisions occur. Furthermore, the sync overhead is considerable
and critical for driving safety, which means the tradeoff of gains and loss of sync should be
concerned. These questions should receive deeper research.

Author Contributions: Conceptualization, Y.W. and J.Z.; methodology, Y.W. and J.Z.; software, Y.W.;
formal analysis, Y.W.; investigation, Y.W.; resources, Y.W.; data curation, Y.W.; writing—original
draft preparation, Y.W.; writing—review and editing, Y.W. and J.Z.; visualization, Y.W.; supervision,
J.Z.; project administration, J.Z.; funding acquisition, J.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported in part by the National Natural Science Foundation of China (Nos.
62062065, 12071417, 61962061), a project of the Natural Science Foundation of Yunnan Province of
China (2019FB142 and 2018ZF017), the Education Foundation of Yunnan Province of China (2022J002)
and the Program for Excellent Young Talents, Yunnan, China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code used in the experiment can be obtained through the e-mail of
the first author or corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eskandarian, A.; Wu, C.X.; Sun, C.Y. Research Advances and Challenges of Autonomous and Connected Ground Vehicles. IEEE

Trans. Intell. Transp. Syst. 2021, 22, 683–711. [CrossRef]
2. Caillot, A.; Ouerghi, S.; Vasseur, P.; Boutteau, R.; Dupuis, Y. Survey on Cooperative Perception in an Automotive Context. IEEE

Trans. Intell. Transp. Syst. 2022, 1–20. [CrossRef]
3. Kenney, J.B. Dedicated Short-Range Communications (DSRC) Standards in the United States. Proc. IEEE 2011, 99, 1162–1182.

[CrossRef]
4. Liu, L.K.; Lu, S.D.; Zhong, R.; Wu, B.F.; Yao, Y.T.; Zhang, Q.Y.; Shi, W.S. Computing Systems for Autonomous Driving: State of the

Art and Challenges. IEEE Internet Things 2021, 8, 6469–6486. [CrossRef]
5. Hafner, B.; Bajpai, V.; Ott, J.; Schmitt, G.A. A Survey on Cooperative Architectures and Maneuvers for Connected and Automated

Vehicles. IEEE Commun. Surv. Tutor. 2022, 24, 380–403. [CrossRef]
6. Shen, Z.P.; Liu, Y.G.; Li, Z.M.; Nabin, M.H. Cooperative Spacing Sampled Control of Vehicle Platoon Considering Undirected

Topology and Analog Fading Networks. IEEE Trans. Intell. Transp. Syst. 2022, 1–14. [CrossRef]
7. Kim, S.W.; Qin, B.X.; Chong, Z.J.; Shen, X.T.; Liu, W.; Ang, M.H.; Frazzoli, E.; Rus, D. Multivehicle Cooperative Driving Using

Cooperative Perception: Design and Experimental Validation. IEEE Trans. Intell. Transp. Syst. 2015, 16, 663–680. [CrossRef]
8. Zhou, P.Y.; Kortoci, P.; Yau, Y.P.; Finley, B.; Wang, X.J.; Braud, T.; Lee, L.H.; Tarkoma, S.; Kangasharju, J.; Hui, P. AICP: Augmented

Informative Cooperative Perception. IEEE Trans. Intell. Transp. Syst. 2022, 1–14. [CrossRef]
9. Lin, L.; Liao, X.F.; Jin, H.; Li, P. Computation Offloading Toward Edge Computing. Proc. IEEE 2019, 107, 1584–1607. [CrossRef]
10. Amadeo, M.; Campolo, C.; Molinaro, A. Information-Centric Networking for Connected Vehicles: A Survey and Future

Perspectives. IEEE Commun. Mag. 2016, 54, 98–104. [CrossRef]
11. Feng, J.Y.; Liu, Z.; Wu, C.; Ji, Y.S. AVE: Autonomous Vehicular Edge Computing Framework with ACO-Based Scheduling. IEEE

Trans. Veh. Technol. 2017, 66, 10660–10675. [CrossRef]
12. Zhu, C.; Chiang, Y.H.; Xiao, Y.; Ji, Y.S. FlexSensing: A QoI and Latency-Aware Task Allocation Scheme for Vehicle-Based Visual

Crowdsourcing via Deep Q-Network. IEEE Internet Things 2021, 8, 7625–7637. [CrossRef]
13. Lai, Y.X.; Xu, Y.F.; Mai, D.J.; Fan, Y.; Yang, F. Optimized Large-Scale Road Sensing Through Crowdsourced Vehicles. IEEE Trans.

Intell. Transp. Syst. 2022, 23, 3878–3889. [CrossRef]
14. Hui, Y.L.; Huang, Y.H.; Su, Z.; Luan, T.H.; Cheng, N.; Xiao, X.; Ding, G.R. BCC: Blockchain-Based Collaborative Crowdsensing in

Autonomous Vehicular Networks. IEEE Internet Things 2022, 9, 4518–4532. [CrossRef]
15. Zhao, H.Y.; Zhang, Y.B.; Meng, P.F.; Shi, H.; Li, L.E.R.; Lou, T.C.; Zhao, J.S. Safety Score: A Quantitative Approach to Guiding

Safety-Aware Autonomous Vehicle Computing System Design. In Proceedings of the 31st IEEE Intelligent Vehicles Symposium
(IV), Las Vegas, NV, USA, 23–26 June 2020; pp. 1479–1485.

16. Tissljaric, L.; Vrbanic, F.; Ivanjko, E.; Caric, T. Motorway Bottleneck Probability Estimation in Connected Vehicles Environment
Using Speed Transition Matrices. Sensors 2022, 22, 20. [CrossRef]

http://doi.org/10.1109/TITS.2019.2958352
http://doi.org/10.1109/TITS.2022.3153815
http://doi.org/10.1109/JPROC.2011.2132790
http://doi.org/10.1109/JIOT.2020.3043716
http://doi.org/10.1109/COMST.2021.3138275
http://doi.org/10.1109/TITS.2022.3150565
http://doi.org/10.1109/TITS.2014.2337316
http://doi.org/10.1109/TITS.2022.3155175
http://doi.org/10.1109/JPROC.2019.2922285
http://doi.org/10.1109/MCOM.2016.7402268
http://doi.org/10.1109/TVT.2017.2714704
http://doi.org/10.1109/JIOT.2020.3040615
http://doi.org/10.1109/TITS.2022.3147211
http://doi.org/10.1109/JIOT.2021.3105547
http://doi.org/10.3390/s22072807

Mathematics 2022, 10, 3328 23 of 23

17. Shan, M.; Narula, K.; Wong, Y.F.; Worrall, S.; Khan, M.; Alexander, P.; Nebot, E. Demonstrations of Cooperative Perception: Safety
and Robustness in Connected and Automated Vehicle Operations. Sensors 2021, 21, 31. [CrossRef]

18. Gani, S.M.O.; Fallah, Y.P.; Bansal, G.; Shimizu, T. A Study of the Effectiveness of Message Content, Length, and Rate Control for
Improving Map Accuracy in Automated Driving Systems. IEEE Trans. Intell. Transp. Syst. 2019, 20, 405–420. [CrossRef]

19. Higuchi, T.; Giordani, M.; Zanella, A.; Zorzi, M.; Altintas, O. Value-Anticipating V2V Communications for Cooperative Perception.
In Proceedings of the 30th IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1947–1952.

20. Thandavarayan, G.; Sepulcre, M.; Gozalvez, J. Cooperative Perception for Connected and Automated Vehicles: Evaluation and
Impact of Congestion Control. IEEE Access 2020, 8, 197665–197683. [CrossRef]

21. Rohani, M.; Gingras, D.; Vigneron, V.; Gruyer, D. A New Decentralized Bayesian Approach for Cooperative Vehicle Localization
Based on Fusion of GPS and VANET Based Inter-Vehicle Distance Measurement. IEEE Intell. Transp. Syst. Mag. 2015, 7, 85–95.
[CrossRef]

22. Miller, A.; Rim, K.; Chopra, P.; Kelkar, P.; Likhachev, M. Cooperative Perception and Localization for Cooperative Driving. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–15 June 2020;
pp. 1256–1262.

23. Krämmer, A.; Schöller, C.; Gulati, D.; Knoll, A. Providentia—A Large Scale Sensing System for the Assistance of Autonomous
Vehicles. 2019. Available online: https://mediatum.ub.tum.de/1510403 (accessed on 6 July 2021).

24. Liu, X.; Li, W.D.; Zhang, X.J. Strategy-Proof Mechanism for Provisioning and Allocation Virtual Machines in Heterogeneous
Clouds. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 1650–1663. [CrossRef]

25. Zhang, J.X.; Yang, X.T.; Xie, N.; Zhang, X.J.; Vasilakos, A.V.; Li, W.D. An online auction mechanism for time-varying multidimen-
sional resource allocation in clouds. Future Gener. Comp. Syst. 2020, 111, 27–38. [CrossRef]

26. Zhang, J.X.; Xie, N.; Zhang, X.J.; Li, W.D. Strategy-Proof Mechanism for Online Time-Varying Resource Allocation with Restart.
J. Comput. 2021, 19, 20. [CrossRef]

27. Zhang, J.X.; Xie, N.; Yang, X.T.; Zhang, X.J.; Li, W.D. Strategy-proof mechanism for time-varying batch virtual machine allocation
in clouds. Clust. Comput. 2021, 24, 3709–3724. [CrossRef]

28. Zhang, J.X.; Xie, N.; Zhang, X.J.; Li, W.D. An online auction mechanism for cloud computing resource allocation and pricing
based on user evaluation and cost. Future Gener. Comp. Syst. 2018, 89, 286–299. [CrossRef]

29. Zhang, J.X.; Xie, N.; Zhang, X.J.; Yue, K.; Li, W.D.; Kumar, D. Machine Learning Based Resource Allocation of Cloud Computing
in Auction. CMC-Comput. Mat. Contin. 2018, 56, 123–135. [CrossRef]

30. Zhang, J.X.; Chi, L.X.; Xie, N.; Yang, X.T.; Zhang, X.J.; Li, W.D. Strategy-proof mechanism for online resource allocation in cloud
and edge collaboration. Computing 2022, 104, 383–412. [CrossRef]

31. Zhang, J.X.; Lou, W.L.; Sun, H.; Su, Q.; Li, W.D. Truthful auction mechanisms for resource allocation in the Internet of Vehicles
with public blockchain networks. Future Gener. Comp. Syst. 2022, 132, 11–24. [CrossRef]

32. Liwang, M.H.; Wang, J.X.; Gao, Z.B.; Du, X.J.; Guizani, M. Game Theory Based Opportunistic Computation Offloading in
Cloud-Enabled IoV. IEEE Access 2019, 7, 32551–32561. [CrossRef]

33. Chen, X.; Thomas, N.; Zhan, T.M.; Ding, J. A Hybrid Task Scheduling Scheme for Heterogeneous Vehicular Edge Systems. IEEE
Access 2019, 7, 117088–117099. [CrossRef]

34. Wan, S.H.; Li, X.; Xue, Y.; Lin, W.M.; Xu, X.L. Efficient computation offloading for Internet of Vehicles in edge computing-assisted
5G networks. J. Supercomput. 2020, 76, 2518–2547. [CrossRef]

35. Liu, Y.; Yu, H.M.; Xie, S.L.; Zhang, Y. Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge
Computing and Networks. IEEE Trans. Veh. Technol. 2019, 68, 11158–11168. [CrossRef]

36. Zhou, Z.Y.; Feng, J.H.; Chang, Z.; Shen, X.M. Energy-Efficient Edge Computing Service Provisioning for Vehicular Networks: A
Consensus ADMM Approach. IEEE Trans. Veh. Technol. 2019, 68, 5087–5099. [CrossRef]

37. Xu, X.L.; Xue, Y.; Qi, L.Y.; Yuan, Y.; Zhang, X.Y.; Umer, T.; Wan, S.H. An edge computing-enabled computation offloading method
with privacy preservation for internet of connected vehicles. Future Gener. Comp. Syst. 2019, 96, 89–100. [CrossRef]

38. Jansen, K. A Fast Approximation Scheme for the Multiple Knapsack Problem. In International Conference on Current Trends in
Theory and Practice of Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7147, pp. 313–324.

39. Available online: https://www.ibm.com/products/ilog-cplex-optimization-studio (accessed on 2 June 2021).

http://doi.org/10.3390/s21010200
http://doi.org/10.1109/TITS.2018.2812847
http://doi.org/10.1109/ACCESS.2020.3035119
http://doi.org/10.1109/MITS.2015.2408171
https://mediatum.ub.tum.de/1510403
http://doi.org/10.1109/TPDS.2017.2785815
http://doi.org/10.1016/j.future.2020.04.029
http://doi.org/10.1007/s10723-021-09563-1
http://doi.org/10.1007/s10586-021-03360-x
http://doi.org/10.1016/j.future.2018.06.034
http://doi.org/10.3970/cmc.2018.03728
http://doi.org/10.1007/s00607-021-00962-6
http://doi.org/10.1016/j.future.2022.02.002
http://doi.org/10.1109/ACCESS.2019.2897617
http://doi.org/10.1109/ACCESS.2019.2934890
http://doi.org/10.1007/s11227-019-03011-4
http://doi.org/10.1109/TVT.2019.2935450
http://doi.org/10.1109/TVT.2019.2905432
http://doi.org/10.1016/j.future.2019.01.012
https://www.ibm.com/products/ilog-cplex-optimization-studio

	Introduction
	Related Works
	Vehicular Edge Computing and Cooperative Perception
	Task Scheduling among CAVs

	System Model and Problem Formulation
	Hybrid VEC-Based Architecture for Cooperative Perception
	Problem Formulation
	Optimal Solution

	Two-Stage Heuristic Scheme (TSHS)
	Highlighted Ideas
	Stage of Determination of AV Priorities
	Determination of the Target Vehicle of Tasks

	Algorithm
	Properties

	Experiment and Discussion
	Experimental Setup
	Results and Discussion
	Performance over Time
	Improvement in Road Safety in the VEC-Based Architecture with Scheduling
	Resource Utilization

	Conclusions
	References

