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Abstract: An unknown nonlinear disturbance seriously affects the trajectory tracking of autonomous
underwater vehicles (AUVs). Thus, it is critical to eliminate the influence of such disturbances on
AUVs. To address this problem, this paper proposes a double-loop proportional–integral–differential
(PID) neural network sliding mode control (DLNNSMC). First, a double-loop PID sliding mode sur-
face is proposed, which has a faster convergence speed than other PID sliding mode surfaces. Second,
a nonlinear high-order observer and a neural network are combined to observe and compensate for
the nonlinear disturbance of the AUV system. Then, the bounded stability of an AUV closed-loop
system is analyzed and demonstrated using the Lyapunov method, and the time-domain method is
used to verify that the velocity- and position-tracking errors of AUVs converge to zero exponentially.
Finally, the radial basis function (RBF) neural network PID sliding mode control (RBFPIDSMC) and
the RBF neural network PID sliding mode control (RBFPDSMC) are compared with this method in
two trajectory tracking control simulation experiments. In the first experiment, the average Euclidean
distance of the position-tracking error for this method was reduced by approximately 73.6% and
75.3%, respectively, compared to those for RBFPDSMC and RBFPIDSMC. In the second experiment,
the average Euclidean distance of the position tracking error for this method was reduced by ap-
proximately 86.8% and 88.8%, respectively. The two experiments showed that the proposed control
method has a strong anti-jamming ability and tracking effect. The simulation results obtained in the
Gazebo environment validated the superiority of this method.

Keywords: autonomous underwater vehicles (AUVs); PID sliding mode surface; neural network;
observer; sliding mode control

MSC: 70E60

1. Introduction

In the past decades, considerable progress has been made in submarine engineering
technology in fields such as oceanographic observations, undersea oil detection, geologi-
cal sampling, deep-sea archaeology, and minesweeping [1–4]. Autonomous underwater
vehicles (AUVs) have become the most popular solution for many submarine missions. Tra-
jectory tracking control is an important part of the abovementioned applications. However,
due to the complex hydrodynamic characteristics of AUVs, especially the inherent high
nonlinearity, strong coupling, and time-varying and uncertain characteristics of fully actu-
ated AUVs, and the existence of time-varying external disturbances [5,6], which are chaotic
and difficult to measure or estimate in an underwater environment, the AUV trajectory
is difficult to track. Therefore, a control method that can address the inherent nonlinear
dynamics, imprecise model parameters, and time-varying external disturbances of AUVs
is required.
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The problem of inherent nonlinear dynamics has been extensively researched. The
proportional–integral–differential (PID) control consists of proportional, integral, and
differential terms and does not need to establish a nonlinear dynamic model for the control
object. Therefore, PID control can be applied to nonlinear systems and has been widely
used for AUV trajectory tracking control [7–9]. However, for complex underwater trajectory
tracking, PID control cannot provide accurate tracking. Moreover, as Kim et al. [9] indicated,
PID control can only provide set-point regulation if the disturbances are constant. Many
engineers and researchers have significantly contributed to improving the tracking accuracy
of the AUV trajectory and to enhancing the robustness to dynamic uncertainties and time-
varying ocean disturbances. So far, many advanced control methods have been proposed
for AUV trajectory tracking, including backward control [10–12], adaptive control [13,14],
neural network control [15–17], model predictive control [18], boundary control [19–21],
and sliding mode control (SMC) [22–25]. Of these, SMC has attracted much attention due
to its excellent and concise characteristics. Because of its strong robustness in relation to
model uncertainty and the suppression of external interference, SMC is highly suitable for
AUV trajectory tracking control in a complex ocean environment. However, the design of a
traditional SMC uses a linear sliding surface, a discontinuous symbolic function, and an
assumed uncertainty upper-bound value. Thus, the application of the traditional SMC can
easily cause a slow response, and the position tracking error cannot converge in limited
time when applied to AUV trajectory tracking control.

To overcome the shortcomings of SMC, many advanced technologies have been pro-
posed. For example, Guerrero used the high-order sliding mode control (HOSMC) to
address the chattering phenomenon of AUVs in trajectory tracking control [26]; however,
HOSMC cannot facilitate the convergence of the AUV trajectory tracking error to a smaller
bounded area within limited time. Terminal SMC (TSMC) can overcome finite-time track-
ing [27]. However, in this control method, all tracking errors can only be guaranteed to be
bounded and require an upper bound of parameter uncertainty, which is difficult to obtain
in practical engineering. Wang proposed an adaptive non-singular terminal sliding mode
control (ANTSMC) method for the 3D trajectory tracking control of AUVs [28]. Because of
the use of an adaptive algorithm, this method does not require an upper bound of parameter
uncertainty. Compared to TSMC, this method enhances the system robustness and over-
comes the drawbacks of SMC. However, this method does not facilitate the convergence
of the errors to the neighborhood of zero, although it guarantees boundedness between
the position and the speed tracking errors. Although the aforementioned improved SMC
overcomes the shortcomings of the traditional SMC and obtains effective solutions, in the
actual application of AUV trajectory tracking control, the AUV system must solve the
respective problems of HOSMC, TSMC, and ANTSMC simultaneously.

To address the above problems, Chen proposed a PID sliding mode surface [29], which
has the advantages of both PID control and SMC, with a fast convergence speed and
strong robustness. However, the speed and position tracking errors cannot be converged
simultaneously. Based on [29], this paper proposes a double-loop PID sliding mode surface
to compensate for the disadvantage of the PID sliding mode surface and design a new
double-loop neural network PID sliding mode control (DLNNSMC) method based on a
nonlinear high-order observer so that the position and velocity tracking errors of the AUV
trajectory tracking control can converge to zero in limited time. However, this method
has a breakthrough point: the control law requires an accurate dynamic model and its
derivation. An accurate dynamic model is difficult to derive in research and development.
To solve this problem, in this study, a radial basis function (RBF) neural network was
used to approximate the AUV dynamic model. This neural network has been widely
used in trajectory tracking control [30,31] and can fit many functions well. In addition,
we designed a high-order nonlinear observer to compensate for the disturbance of the
AUV dynamic model caused by complex external currents and model uncertainty in the
differential terms of the PID sliding surface. Moreover, since the high-order nonlinear
observer is a supplement to the uncertainties, the control law does not need to assume the
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upper bound of parameter uncertainty. The main contributions of the proposed control
method are as follows:

(1) The proposed double-loop PID sliding surface can make the speed and position
tracking errors of the AUV trajectory tracking control converge to the neighborhood
of zero in limited time.

(2) In the control design, a high-order nonlinear observer is presented, which compensates
for the disturbance caused by complex external currents and model uncertainty in the
AUV dynamic model in the differential term of the PID sliding surface. In addition,
there is no need to depend on the dynamic model differentiation caused by the inner-
loop PID sliding mode surface; we only need to use the neural network strategy to
obtain a fast approximation and realize the practicability of the proposed control law.

(3) The convergence of the velocity and position tracking errors to the neighborhood of
zero is proved by the Lyapunov method and time-domain method, respectively.

2. AUV Modeling

Figure 1 shows the markers for the Earth-fixed (EF) frame and underwater vehicle
Body-fixed (BF) frame. The linear and angular velocities of the BF frame can be expressed
as v = [u, v, w, p, q, r]T ∈ R6×1, and those of the EF frame can be expressed as

.
η, where

η = [x, y, z, ϕ, Θ, ψ]T ∈ R6×1.
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The body velocity v of an object can be converted to the inertial velocity
.
η by using

the following kinematic equation:
.
η = J(η) (1)

where J(η) ∈ R6×6 is in the form of a Jacobian matrix:

J(η) =

[
J1(η1) 03×3
03×3 J2(η2)

]
. (2)

J1(η) : R6 → R3×3 and J2(η) : R6 → R3×3 are defined as

J1(η1) =

cψcΘ −sψcϕ + sΘsϕcψ sψsϕ + cψcϕsΘ
sψcΘ cψcϕ + sψsϕsΘ −cψsϕ + sψcϕsΘ
−sΘ cΘsϕ cΘcϕ

, (3)
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J2(η2) =

1 sϕtΘ cϕtΘ
0 cϕ −sϕ
0 sϕ/cΘ cϕ/cΘ

, (4)

where s (·), c (·), and t (·) are abbreviations of sin (·), cos (·), and tan (·), respectively.
The AUV dynamics in the BF frame are expressed as

M
.
v + C(v)v + D(v)v + g(η) = τ + τd, (5)

where M ∈ R6×6 is the inertia matrix; C(v) ∈ R6×6 is the Coriolis matrix and centripetal
matrix; D(v) ∈ R6×6 is the damping matrix; g(η) ∈ R6 is the restoring force and moment
matrix; τ ∈ R6 represents the virtual forces and moments; and τd ∈ R6 represents the
model uncertainty effects.

In many practical applications, an AUV dynamic model cannot be obtained accurately.
Therefore, the coefficient matrix in the AUV dynamic model (5) is divided into a standard
part and an uncertainty part:

M = M̂ + M
C(v) = Ĉ(v) + C(v)
D(v) = D̂(v) + D(v)
g(η) = ĝ(η) + g(η),

(6)

where M̂, Ĉ(v), D̂(v), and ĝ(η) are standard terms, and M, C(v), D(v), and g(η) are
interference terms.

Now, the AUV dynamic model can be rewritten as

M̂
.
v + Ĉ(v)v + D̂(v)v + ĝ(η) = τ + τdη , (7)

where τdη is expressed as lumped system uncertainty:

τdη = −M
.
v− C(v)v−D(v)v− g(η)− τd. (8)

3. Controller Design
3.1. Preliminaries

We now provide the related lemmas and assumptions for facilitating the subsequent
analysis and design.

Lemma 1 [19]. Let ω1(x, t), ω2(x, t) ∈ R, with (x, t) ∈ [0, L]× [0,+∞) ; then, there exists
σ > 0 such that

ω1(x, t)ω2(x, t) ≤ 1
σ

ω2
1(x, t) + σω2

2(x, t). (9)

3.2. DLNNSMC Scheme

Figure 2 shows a schematic of the proposed DLNNSMC scheme for AUVs. Consider-
ing the time-varying reference trajectories ηd ∈ R6, we define the position tracking error as
η̃ = η− ηd and, after combining with (1), we obtain

.
η̃ = J(η)v− .

ηd. (10)

Then, we define the surface of the speed-tracking error as

Sṽ = v− vc. (11)
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To convert Sṽ into a PID sliding surface, the virtual speed control command vc ∈ R6 is
obtained as follows:

vc = J−1(η)
.
ηd − J−1(η)

(
K1η̃+ K2

∫ t

0
η̃dt
)

, (12)

where K1 = diag[k11, k12, . . . , k16] ∈ R6×6 and K2 = diag[k21, k22, . . . , k26] ∈ R6×6 are con-
stant positive-definite matrices that need to be designed, and k1i, k2i (i = 1, . . . , 6) satisfies
the discriminant k2

1i − 4k2i ≥ 0 of the quadratic equation of one variable. Combining (11)
and (12), an outer-loop PID sliding surface is designed:

Sṽ =
.
η̃+ K1η̃+ K2

∫ t

0
η̃dt. (13)
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Based on (13), an inner-loop PID sliding surface is designed:

SPID = KPSṽ + Ki

∫ t

0
Sṽdt + Kd

dSṽ
dt

, (14)

where KP = diag[kP1, kP2, . . . , kP6] ∈ R6×6, KI = diag[kI1, . . . , . . . , kI6] ∈ R6×6, and
KD = diag[kD1, kD2, . . . , kD6] are the diagonal matrices of the proportional, integral, and
differential gain coefficients, respectively.

From (7), the differential of v can be expressed as

dv
dt

= M̂−1(
τ + τdη − Ĉ(v)v− D̂(v)v− ĝ(η)

)
. (15)

Differentiating (11) and combining it with (15), we obtain

dSṽ
dt

=
dv
dt
− dvc

dt
= M̂−1(

τ + τdη − Ĉ(v)v− D̂(v)v− ĝ(η)
)
− .

vc. (16)

Substituting (16) into (14), we obtain

SPID = KPSṽ + Ki

∫ t

0
Sṽdt + Kd

[
M̂−1

(
τdη − Ĉ(v)v− D̂(v)v− ĝ(η)

)
− .

vc + M̂−1
τ
]
. (17)

SPID can be differentiated as follows:
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.
SPID = KP

.
Sṽ + KiSṽ + Kd

[
M̂−1

(
.
τdη −

.
Ĉ(v)v− Ĉ(v)

.
v−

.
D̂(v)v− D̂(v)

.
v−

.
ĝ(η)

)
− ..

vc + M̂−1 .
τ

]
= −

{
−KP

.
Sṽ −KiSṽ + Kd

[
M̂−1

( .
Ĉ(v)v + Ĉ(v)

.
v +

.
D̂(v)v + D̂(v)

.
v +

.
ĝ(η)

)
+

..
vc

]}
+

KdM̂−1 .
τ + KdM̂−1 .

τdη

. (18)

Let f = −KP
.
Sṽ−KiSṽ +Kd

[
M̂−1

( .
Ĉ(v)v + Ĉ(v)

.
v +

.
D̂(v)v + D̂(v)

.
v +

.
ĝ(η)

)
+

..
vc

]
+

KdM̂−1 .
τdη be a lumped unknown function, and G = KdM̂−1. Then, (18) can be simplified as

.
SPID = −f + G

.
τ. (19)

The Gaussian RBFNN [30,32] possesses the function approximation ability and has
been widely utilized in the control of complex nonlinear systems with uncertainties. In this
paper, six identical RBFNNs were designed; Figure 3 shows the schematic of the RBFNN
structure. The unknown function f to be approximated can be described as

f = W∗Tφ(SPID)− ε, (20)

where φ(SPID) ∈ R30, SPID = [SPID1, SPID2, . . . , SPID6] is a neural network input vector,
W∗ = [W∗1 , W∗2 , . . . , W∗6 ]

T is an ideal weight vector, W∗i =
[
W∗i1, W∗i2, . . . , W∗i5

]T(i = 1 · · · 6, 5
is the number of hidden nodes), and φ(SPID) = [φ1(SPID1), φ2(SPID2), . . . , φ6(SPID6)]

T

is a vector with a basic function φi(SPIDi) = [φi1(SPIDi), φi2(SPIDi), . . . , φi5(SPIDi)]
T. In

addition, ε = [ε1, ε2, . . . , ε6]
T is a vector of bounded approximation errors. Therefore, we have

ε ≤ ε and ε > 0. The Gaussian RBF considered in this paper is expressed as follows:

φik(si) = exp
[
(si−cik)

T(si−cik)

b2
ik

]
i = 1, 2, . . . , 6, k = 1, 2, . . . , 5,

(21)

where cik and bik represent the center and the width of the Gaussian function, respectively.
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The vector of the estimated weight is expressed as

Ŵ = W∗ + W̃, (22)

where W̃ represents the error vector of the estimated weight.
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Setting the unknown function f ∈ R6 as the RBF output, the approximate value of f
can be expressed as

f̂ = ŴT
φ(SPID). (23)

The design method of the proposed SMC law can be expressed as follows:

.
τ =

1
G
(
f̂−KSPID

)
, (24)

where K = diag[K1, K2, . . . , K6] is a constant diagonal matrix; (24) is substituted into (19)
to obtain .

SPID = f̃−KSPID, (25)

where f̃ = f̂− f.
Let us consider the following Lyapunov function candidate:

V = V1 + V2 + V3, (26)

where

V1 =
1
2

6

∑
i = 1

(
W̃i

Tγi
−1W̃i

)
(27)

V2 =
1
2

SPID
TSPID (28)

V3 =
1
2 ∑6

i = 1 Θ̃T
i Θ̃i. (29)

Lemma 2 [19]. The time derivative of (26) has the following upper bound:

.
V ≤ −ρV + µ, (30)

where ρ, µ > 0.

Proof. We differentiate (27) as follows:

.
V1 = ∑6

i = 1 W̃i
Tγi
−1

.
W̃i, (31)

As W∗ is a constant, and
.

W̃ =
.

Ŵ, (31) becomes

.
V1 = ∑6

i = 1 W̃i
Tγi
−1

.
Ŵi. (32)

The update law can now be proposed as

.
Ŵi = −γi

(
SPIDiφi(SPIDi) + αiŴi

)
, i = 1, 2, . . . , 6, (33)

where αi is a small constant used to represent an amendment that helps improve the
robustness of the control system.

By substituting the update law (33) into (32),
.

V becomes

.
V1 = −∑6

i = 1 SPIDiW̃i
Tφi(SPIDi)−∑6

i = 1 αiW̃i
TŴi, (34)

where
− W̃i

TŴi = −W̃i
TW∗i − W̃i

TW̃i. (35)
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From (35), we obtain

− 1
2

(
W̃i

TW̃i + W∗i
TW∗i

)
≤ −W̃i

TW∗i ≤
1
2

(
W̃i

TW̃i + W∗i
TW∗i

)
. (36)

Combining (36) with (35), we obtain

−W̃i
TŴi ≤

1
2

W̃i
TW̃i +

1
2

W∗i
TW∗i − W̃i

TW̃i≤ −
1
2

W̃i
TW̃i +

1
2

W∗i
TW∗i . (37)

From (37), the following inequality holds:

.
V1 ≤ −∑6

i = 1 SPIDiW̃i
Tφi(SPIDi)−∑6

i = 1
αi
2

W̃i
TW̃i + ∑6

i = 1
αi
2

W∗i
TW∗i . (38)

We take the derivative of (28) to derive

.
V2 = SPID

T
.
SPID

= SPID
T
(̃

f−KSPID

) . (39)

Then, we invoke (20) and (23) to obtain

.
V2 = ∑6

i = 1 SPIDi

(
ŴT

i φi(SPID)−W∗i
Tφi(SPID)

)
+ SPID

T(ε−KSPID)

= ∑6
i = 1 SPIDiW̃

T
i φi(SPID) + SPID

Tε− SPID
TKSPID

. (40)

Here, W̃
T

= ŴT
i −W∗i

T .
From (40), the PID sliding surface error can be obtained as follows:

SPID
Tε ≤ 1

2
SPID

TSPID +
1
2

εTε. (41)

From (41), (40) yields the following inequality:

.
V2 ≤∑6

i = 1 SPIDiW̃
T

φi(SPIDi) +
1
2

SPID
TSPID +

1
2

εTε− SPID
TKSPID. (42)

The differential term of the PID sliding mode surface corresponds to the dynamic
equation of AUVs (7), which can be divided into a standard term and an uncertainty
term. Because AUVs exhibit high nonlinearity, high coupling, and strong interference, the
dynamic equation of the standard term is inaccurate, and the PID sliding mode surface
requires a high model accuracy; thus, an observer needs to be designed to compensate for
the uncertainty term. From (14), we obtain

.
v = τ̌ + τ̌dη − Č(v)v− Ď(v)v− ǧ(η), (43)

where τ̌ = M̂−1
τ, Č(v) = M̂−1Ĉ(v), Ď(v) = M̂−1D̂(v), ǧ(η) = M̂−1ĝ(η),

ˇ
τdη = M̂−1

τdη.
As τ̌idη of

.
vi in (43) is an unknown term, a high-order nonlinear observer πi was

designed, and the observer is referenced from [25]:

.
πi0 = πi1 − Či(vi)vi − Ďi(vi)vi − ǧi(ηi) + ϑi0(vi − πi0).
πi1 = πi2 + ϑi1(vi − πi0).
πi2 = πi3 + ϑi2(vi − πi0)
...
.

πim = ϑim(vi − πi0),

(44)
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where πi0, πi1, πi2, . . . , πim is the estimated value of vi, τ̌idη ,
.

τ̌idη , . . . , τ(m)
idη , and

ϑi0, . . . , ϑim > 0. We obtain Θi0(t) = vi−πi0, Θi1(t) = τ̌idη −πi1, . . . , Θim(t) = τ̌
(m)
idη −

πim, and by combining it with (44), we obtain

.
Θ̃i0 = Θ̃i1 − ϑi0Θ̃i0.
Θ̃i1 = Θ̃i2 − ϑi1Θ̃i0.
Θ̃i2 = Θ̃i3 − ϑi2Θ̃i0

...
.

Θ̃im = τ̌
(m)
idη − ϑimΘ̃i0

. (45)

Combining (44) and (45), we obtain

.
Θ̃i = ϕiΘ̃i + Γiτ̌

(m)
idη , (46)

where

ϕi =


−ϑi0 1 0 · · · 0
−ϑi1 1 1 · · · 0

...
...

...
. . .

...
−ϑim−1 0 0 · · · 1
−ϑim 0 0 · · · 0

, Γi =



0
...
...
...
1


. (47)

Then, we select a positive definite function (29):

V3i =
1
2

Θ̃T
i Θ̃i. (48)

Differentiating V3i and combining it with (46), we have

.
V3i = Θ̃T

i

.
Θ̃i = Θ̃T

i

(
ϕiΘ̃i + Γiτ̌

(m)
idη

)
. (49)

Combining (49) and the result of lemma 1, we obtain

.
V3i ≤ Θ̃T

i (ϕi + δiI)Θ̃i +
1
δi

σ2
i , (50)

where δi > 0, i = 1, 2, . . . , 6, σ2
i is the quadratic square of τ̌

(m)
idη .

Now, we can differentiate V3 as follows:

.
V3 = ∑6

i = 1 Θ̃T
i

.
Θ̃i. (51)

Substituting (50) into (51), we obtain

.
V3 ≤∑6

i = 1 Θ̃T
i (ϕi + δiI)Θ̃i +

1
δi

σ2
i . (52)

Differentiating (26) and combining (38), (42), and (52), we obtain
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.
V =

.
V1 +

.
V2 +

.
V3

≤ −∑6
i = 1 SPIDiW̃i

Tφi(SPIDi)−∑6
i = 1

αi
2 W̃i

TW̃i + ∑6
i = 1

αi
2 W∗i

TW∗i +

∑6
i = 1 SPIDiW̃

T
φi(SPID) +

1
2 SPID

TSPID + 1
2 εTε− SPID

TKSPID + ∑6
i = 1 Θ̃T

i (ϕi + δiI)Θ̃i+

∑6
i = 1

1
δi

σ2
i

≤ −SPID
T
(

K− 1
2 I
)

SPID −∑6
i = 1

αi
2 W̃i

TW̃i −∑6
i = 1 Θ̃T

i (−ϕi − δiI)Θ̃i + ∑6
i = 1

1
δi

σ2
i +

∑6
i = 1

αi
2 W∗i

TW∗i +
1
2 εTε

. (53)

Then, citing lemma 2, we obtain

.
V ≤ −ρ(V1 + V2 + V3) + µ, (54)

where

ρ = min
(

min
i = 1, 2,...,6

(αi), 2λmin

(
K− 1

2
I
)

,−2λmin(ϕi + δiI)
)

(55)

µ = ∑6
i = 1

1
δi

σ2
i + ∑6

i = 1
αi
2

W∗i
TW∗i +

1
2

εTε. (56)

The variable λmin(·) represents the minimum eigenvalue of the matrix. We assume
λmin

(
K− 1

2 I
)
> 0 and λmin(ϕi + δiI) < 0 to ensure that ρ > 0. The variable µ is a scalar

and µ > 0.
Thus, the proof is complete.

Theorem 1. For the AUV system described in (7), under the control law (24) and the update law
(33), as long as the initial conditions are bounded, the sliding surface errors and their derivatives are
semi-globally uniformly bounded.

Proof. Multiplying (54) with eρt, we obtain

d
dt
(
Veρt) ≤ µeρt. (57)

Integrating (57), we obtain

V ≤ µ

ρ
+ e−ρt

(
V(0)− µ

ρ

)
≤ µ

ρ
+ V(0)e−ρt. (58)

Substituting (27), (28), and (29) separately into (58), we obtain

V1 =
1
2

6

∑
i = 1

(
W̃i

Tγi
−1W̃i

)
≤ V ≤ µ

ρ
+ V(0)e−ρt (59)

V2 =
1
2

SPID
TSPID ≤ V ≤ µ

ρ
+ V(0)e−ρt (60)

V3 =
1
2

6

∑
i = 1

Θ̃T
i Θ̃i ≤ V ≤ µ

ρ
+ V(0)e−ρt (61)

ΩW̃i : =

W̃i ∈ R6

∣∣∣∣∣∣∣ ‖ W̃i ‖≤
√

2

√√√√√
(

µ
ρ + V(0)e−ρt

)
min

i = 1, 2,...,6
(γi
−1)

, i = 1, . . . , 6 ∀t ∈ [0,+∞)

(62)

ΩSPID : =
{

SPID ∈ R6
∣∣∣∣ ‖ SPID ‖≤

√
2
√

µ

ρ
+ V(0)e−ρt

}
∀t ∈ [0,+∞) (63)
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ΩΘ̃i : =
{

Θ̃i ∈ R6
∣∣∣∣ ‖ Θ̃i ‖≤

√
2
√

µ

ρ
+ V(0)e−ρt)

}
, i = 1, . . . , 6 ∀t ∈ [0,+∞). (64)

Thus, the proof is complete.
Based on Theorem 2, we can verify that SPID can reach the neighborhood of zero in a

finite time treach; thus, we obtain

KPSṽ + KI
∫ t

0 Sṽdt + KD
dSṽ
dt = 0

KPiSṽ i + KIi
∫ t

0 Sṽ idt + KDi
dSṽ i
dt = 0, i = 1, . . . , 6.

(65)

As long as K2
Pi − 4KIiKDi ≥ 0 , i = 1, . . . , 6, is satisfied; the second-order differential

equation for (65) can be expressed as

∫ t

0
Sṽ idt = C1e

−KPi+
√

K2
Pi−4KIiKDi

2KDi
t
+ C2e

−KPi−
√

K2
Pi−4KIiKDi

2KDi
t. (66)

From (66),
∫ t

0 Sṽ idt can have a time limit of tci exponent converging to the neighbor-
hood of zero, which proves that Sṽ i can also be a finite-time tci exponent, converging to the
neighborhood of zero.

From the above analysis, we have a speed-tracking error that converges to the neigh-
borhood of zero in limited time, and the total time spent to converge to the neighborhood
of zero is initially Sṽ(0); thus, the total time can be expressed as

tsum = treach + max
i = 1,2,...,6

(tc). (67)

At t > tsum, we obtain the following from (13):

v = vc. (68)

We can obtain the region where Sṽ can converge to the neighborhood of zero from (68)
and, by substituting it into (13), we obtain

.
η̃+ K1η̃+ K2

∫ t
0 η̃dt = 0

.
η̃i + K1iη̃i + K2i

∫ t
0 η̃idt = 0, i = 1, . . . , 6

. (69)

As long as K2
1i − 4K2i ≥ 0 ,

∫ t
0 η̃idt (i = 1, . . . , 6) is satisfied, η̃ can converge to the

neighborhood of zero in limited time. Therefore, similar to the speed-tracking error of (66),
the position-tracking error will also converge to the neighborhood of zero exponentially
after tsum.

Remark 1. Equation (69) can be regarded as a second-order system with zero input, and its natural

frequency and damping ratio can be expressed as ωn =
√

K2
1 and ζ = K1

2
√

K2∗1
, respectively.

By using the time-domain method, we assume K2
1i − 4K2i ≥ 0 , i = 1, . . . , 6 . The system can

converge exponentially. When the damping ratio ζ is closer to 0.707, the convergence speed of the
second-order system is relatively fast, while the overshoot is relatively small, which is the state with
the best comprehensive performance of the second-order system.
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4. Simulation Results

Because the AUV dynamic model is complex and unstable under uncertain condi-
tions and ocean current disturbances, the simulation control of AUV motion behavior is
challenging. This paper verified the effectiveness of this method by using the new AUV
model, presented in Figure 4, to conduct a Gazebo visual real-time simulation. This is a
fully actuated AUV, which is driven with six degrees of freedom through the configuration
of eight propeller groups, as shown in Figure 4. This is a universal model and thus can
be used to verify the superiority of various control methods. Its parameters are listed in
Table 1.
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Gazebo comprises an AUV simulator, which is a functional package developed under
the robot operating system (ROS) and has the function of simulating a real underwater
environment. We added ocean current interference to the underwater environment to
make it more realistic. Dave is a derivative plug-in developed based on the AUV simulator,
which can simulate the effects of underwater ocean currents.

As shown in Figure 5, the 3D model of an AUV was imported into the Gazebo
underwater simulation environment. In this environment, the trajectory-tracking control
simulation could easily verify whether the control system operated as expected. The
proposed control method was compared with the methods of RBF neural network PID
sliding mode control (RBFPIDSMC) and RBF neural network PD sliding mode control
(RBFPDSMC) proposed in [29] and [32], respectively. The three control methods operated in
the same initial conditions and the same external disturbance in the two trajectory-tracking
control simulations. Moreover, all three methods selected a group of well-performing
parameters through Lyapunov stability theory and multiple simulations. The controller
parameters used in this paper are shown in Table 2.
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Table 1. Control parameters used in the simulation.

Parameters Units Value Description

X .
u kg −5.5 Added mass

Xu kg/s −4.03 Linear damping
Xu|u| kg/m −18.18 Axial drag

Y .
v kg −12.7 Added mass

Y.
r kg m 1.93 Added mass

Yv kg/s −6.22 Linear damping
Yv|v| kg/m −21.66 Axial drag
Z .

w kg −14.57 Added mass
Z .

q kg m −1.7 Added mass
Zw kg/s −5.18 Linear damping

Zw|w| kg/m −36.99 Axial drag
K .

p kg m −0.12 Added mass
Kp kg m/s −0.07 Linear damping

Kp|p| kg m −1.55 Crossflow drag
M .

q kg m −0.12 Added mass
M .

w Kg −0.04 Added mass
Mq kg m/s −0.07 Linear damping

Mq|q| kg m −1.55 Crossflow drag
N .

r kg m −0.12 Added mass
N .

v kg 0.04 Added mass
Nr kg m/s −0.07 Linear damping

Nr|r| kg m −1.55 Crossflow drag
m kg 11.5 Center of gravity
Ixx kg m2 0.099 Inertia tensor on the x-axis
Iyy kg m2 0.129 Inertia tensor on the y-axis
Izz kg m2 0.16 Inertia tensor on the z-axis
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Table 2. Control parameters used in the simulations.

Controller Parameters

RBFPDSMC
Kp = diag[0.0035, 0.0014, 0.0016, 0.004, 0.0048, 0.0025],

KD = diag[0.3, 0.15, 0.15, 0.07, 0.07, 0.08]
K = diag [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

RBFPIDSMC

Kp = diag[0.0045, 0.0017, 0.002, 0.005, 0.0068, 0.0015],
KI = diag[0.00012, 0.00012, 0.00012, 0.0001, 0.0001, 0.00012]

KD = diag[0.2, 0.13, 0.218, 0.07, 0.06, 0.1]
κ = diag[0 .1, 0.1, 0.1, 0.1, 0.1, 0.1],

η = diag[0.2, 0.2, 0.2, 0.05, 0.05, 0.05]

DLNNSMC

γ = [0.37, 0.35, 0.45, 25, 25, 32],
α = [0.005, 0.005, 0.005, 0.005, 0.005, 0.0035],

K = diag[0.3, 0.3, 0.3, 0.3, 0.3, 0.3],
K1 = diag[1.05, 1, 0.5, 1, 1, 2.1],

K2 = diag[0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
Kp = diag[0.05, 0.05, 0.07, 0.05, 0.03, 0.084],

KI = diag[0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
KD = diag[4.4, 4.4, 4.4, 0.5, 0.5, 0.3],
ϑ0 = [0.00038, 0.0008, 0.0008, 1, 1, 1],

ϑ1 = [0.21, 0.5, 0.6, 0.3, 0.4, 0.08],
ϑ2 = [0.00021, 0.0004, 0.0006]

The RBFNN parameters of the three control methods were the same:
cik = [−0.2− 0.1 0 0.1 0.2] and bik = 5.

4.1. Helix Track Tracking Control

First, the effectiveness and superiority of the control law were verified by tracking a
spatial helical reference track. The tracked spirals are expressed as

xd(t) = sin(0.025t) + 25.1 m
yd(t) = cos(0.025t)− 1.05 m

zd(t) = 0.0184t− 93.7 m
. (70)

The initial motion state of AUVs can be expressed as u0 = 0(m/s), v0 = 0(m/s),
w0 = 0(m/s), p0 = 0(rad/s), and q0 = 0(rad/s), where r0 is a random variable, and the
initial position and angle are x = 25(m), y = 0(m), z = −94.8(m) and ϕ = 0(rad),
Θ = 0(rad), ψ = 2.4(rad), respectively. Because the Dave plug-in can simulate the
effect of ocean currents, the current in this experiment was considered a high-frequency
random current in all directions: Vc = rand(0 ∼ 0.1 m/s), βc = rand(−1.57 ∼ 1.57rad),
αc = rand(−1.57 ∼ 1.57rad), where Vc is the current velocity, βc is the sideslip angle, and
αc is the angle of attack. Thus, the linear velocity of the ocean current on the three axes of
the EF frame can be defined as 

vx = Vccosαcosβ
vy = Vcsinβ

vz = Vcsinαcosβ
. (71)

Figure 6 shows a 3D view of AUV position tracking using these three control methods.
All three methods could successfully make the underwater robot track the target trajectory.
DLNNSMC yielded the best result. According to Section 3, η̃ ∈ R6 is the position error
vector, where η̃1, η̃2, and η̃3 are the position errors of the x-axis, y-axis, and z-axis of the EF
frame, respectively. Now, we define the Euclidean distance of the position tracking error

DE =
√

η̃2
1 + η̃2

2 + η̃2
3 ; the average values of DE for the three methods are listed in Table 3.
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Table 3. Average values of DE .

RBFPDSMC RBFPIDSMC DLNNSMC

0.442594 0.472352 0.116747

Table 3 shows that the average value of DE for DLNNSMC was approximately 73.6%
and 75.3% lower than that of RBFPDSMC and RBFPIDSMC, respectively.

Figure 7 shows the position tracking errors of six degrees of freedom: xe, ye, ze, ϕe, Θe,
and ψe. We analyzed the position tracking error and found that (1) The results obtained for
all three methods indicated that the six degrees of freedom converged in a bounded region,
while DLNNSMC could maintain a smaller range and a more stable bounded region; (2) In
the degree of freedom with a large position tracking error (z-axis direction motion and yaw
angle), the convergence time for the position tracking error on the z-axis was 150 s, while
those for RBFPDSMC and RBFPIDSMC were both beyond 250 s. The convergence time for
the yaw angle was 50 s, while RBFPDSMC and RBFPIDSMC could not achieve a complete
convergence within 300 s. This showed that DLNNSMC had a faster convergence speed of
position-tracking error.

Figure 8 shows the speed-tracking errors of six degrees of freedom: ue, ve, we, pe, qe,
and re. We analyzed the velocity tracking error and found that (1) The velocity tracking
errors of the three methods could converge to a certain range of bounded regions. Although
the velocity tracking errors of the three Euler angles of DLNNSMC fluctuated considerably
in the beginning, they could converge to a stable range in 100 s, and the velocity tracking
errors in the three directions of motion evidently converged to a smaller range of bounded
regions than with RBFPDSMC and RBFPIDSMC. (2) The convergence time of the velocity
tracking error for DLNNSMC in the x-and z-axis directions was 50 s; RBFPDSMC and
RBFPIDSMC could not achieve convergence on the x-axis, while the convergence time on
the z-axis was 100 s. This indicated that DLNNSMC converged faster and more stably as
regards the speed-tracking error.



Mathematics 2022, 10, 3332 16 of 24Mathematics 2022, 10, x FOR PEER REVIEW 15 of 24 
 

 

 

 

(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

Figure 7. AUV position−tracking errors. (a) 𝑥𝑒; (b) 𝜑𝑒; (c) 𝑦𝑒; (d) 𝜃𝑒; (e) z𝑒; (f) 𝜓𝑒. 

Figure 8 shows the speed-tracking errors of six degrees of freedom: 𝑢𝑒, 𝑣𝑒, 𝑤𝑒, 𝑝𝑒, 𝑞𝑒, and 𝑟𝑒. We analyzed the velocity tracking error and found that (1) The velocity track-
ing errors of the three methods could converge to a certain range of bounded regions. 
Although the velocity tracking errors of the three Euler angles of DLNNSMC fluctuated 
considerably in the beginning, they could converge to a stable range in 100 s, and the 
velocity tracking errors in the three directions of motion evidently converged to a smaller 
range of bounded regions than with RBFPDSMC and RBFPIDSMC. (2) The convergence 
time of the velocity tracking error for DLNNSMC in the x-and z-axis directions was 50 s; 
RBFPDSMC and RBFPIDSMC could not achieve convergence on the x-axis, while the con-
vergence time on the z-axis was 100 s. This indicated that DLNNSMC converged faster 
and more stably as regards the speed-tracking error. 

  
(a) (b) 

Figure 7. AUV position−tracking errors. (a) xe; (b) ϕe; (c) ye; (d) Θe; (e) ze; (f) ψe.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 24 
 

 

 

 

(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

Figure 7. AUV position−tracking errors. (a) 𝑥𝑒; (b) 𝜑𝑒; (c) 𝑦𝑒; (d) 𝜃𝑒; (e) z𝑒; (f) 𝜓𝑒. 

Figure 8 shows the speed-tracking errors of six degrees of freedom: 𝑢𝑒, 𝑣𝑒, 𝑤𝑒, 𝑝𝑒, 𝑞𝑒, and 𝑟𝑒. We analyzed the velocity tracking error and found that (1) The velocity track-
ing errors of the three methods could converge to a certain range of bounded regions. 
Although the velocity tracking errors of the three Euler angles of DLNNSMC fluctuated 
considerably in the beginning, they could converge to a stable range in 100 s, and the 
velocity tracking errors in the three directions of motion evidently converged to a smaller 
range of bounded regions than with RBFPDSMC and RBFPIDSMC. (2) The convergence 
time of the velocity tracking error for DLNNSMC in the x-and z-axis directions was 50 s; 
RBFPDSMC and RBFPIDSMC could not achieve convergence on the x-axis, while the con-
vergence time on the z-axis was 100 s. This indicated that DLNNSMC converged faster 
and more stably as regards the speed-tracking error. 

  
(a) (b) 

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 24 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 8. AUV velocity−tracking errors. (a) 𝑢𝑒; (b) 𝑝𝑒; (c) 𝑣𝑒; (d) 𝑞𝑒; (e) 𝑤𝑒; (f) 𝑟𝑒. 
Figure 9 shows the change in the inner-loop PID sliding mode surface 𝑺𝑃𝐼𝐷  of 

DLNNSMC. 𝑺𝑃𝐼𝐷 continued to converge within a limited area. When the inner loop ap-
proached zero, the outer-loop PID sliding mode surface 𝑺𝒗෤  converged to the neighbor-
hood of zero as an exponential function, as shown in Figure 10. 

 
 

(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

Figure 9. Inner−loop PID sliding surface 𝑺𝑃𝐼𝐷. (a) 𝑆𝑥; (b) 𝑆𝜑; (c) 𝑆𝑦; (d) 𝑆𝜃; (e) 𝑆𝑧; (f) 𝑆𝜓. 

Figure 8. AUV velocity−tracking errors. (a) ue; (b) pe; (c) ve; (d) qe; (e) we; (f) re.



Mathematics 2022, 10, 3332 17 of 24

Figure 9 shows the change in the inner-loop PID sliding mode surface SPID of DLNNSMC.
SPID continued to converge within a limited area. When the inner loop approached zero,
the outer-loop PID sliding mode surface Sṽ converged to the neighborhood of zero as an
exponential function, as shown in Figure 10.
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In the initial state of AUVs, the position error of the z-axis was 1 m, and the error
of the yaw angle ψ was 0.24 rad. Figure 10 shows that Sṽ gradually converged to the
neighborhood of zero. From (69), we concluded that the position- and velocity-tracking
errors of AUVs can converge to the neighborhood of zero.

4.2. Sinusoidal Trajectory Tracking Control

Second, the effectiveness and superiority of the control law were tested by tracking a
spatial sinusoidal reference trajectory. The tracked sine line can be expressed as follows:

xd(t) = 0.0184t + 26 m
yd(t) = sin(0.025t)− 0.3 m

zd(t) = 0.0167t− 93.7 m
ψd(t) = 0.1 ∗ sin(0.025t) rad

. (72)

Figure 11 shows a 3D view of AUV position tracking using the three control methods.
Figures 12 and 13 show the tracking effect of the corresponding position- and speed-
tracking errors, respectively. According to the tracking results shown in these figures, even
if the yaw angle ψ also had angle tracking, the proposed DLNNSMC could still effectively
track the required trajectory, had a faster convergence speed and higher tracking accuracy,
and was stable in a smaller limited area. For DLNNSMC, the convergence times of position
and velocity tracking errors were, approximately, 100 and 50 s, respectively. However,
RBFPDSMC and RBFPIDSMC could not achieve an accurate convergence in six degrees
of freedom at the same time. The average values of DE for the three methods are listed in
Table 4.
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Table 4. Average values of DE .

RBFPDSMC RBFPIDSMC DLNNSMC

0.804427 0.949559 0.105999

The initial motion state of AUVs can be expressed as u0 = 0 (m/s), v0 = 0 (m/s),
w0 = 0 (m/s) and p0 = 0 (rad/s), q0 = 0 (rad/s); r0 is a random variable, and the
initial position and angle are x = 25 (m), y = 0 (m), z = −94.8 (m) and ϕ = 0 (rad),
Θ = 0 (rad), ψ = 2.4 (rad), respectively. The current in this experiment was a high-
frequency random current in all directions: Vc = rand(0–0.1 m/s), βc = rand(−1.57–1.57rad),
αc = rand(−1.57–1.57rad).

Table 4 shows that the average value of DE for DLNNSMC was approximately 86.8%
and 88.8% lower than that for RBFPDSMC and RBFPIDSMC, respectively.

Figure 14 shows the change in the inner-loop PID sliding mode surface SPID of
DLNNSMC. SPID continued to converge in a limited region. Figure 15 shows the outer-loop
PID sliding surface Sṽ, which could gradually converge exponentially to the neighbor-
hood of zero even if it had a larger error. From (69), we concluded that the position-and
speed-tracking errors of AUVs can converge to the neighborhood of zero.
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To further verify the controller’s performance, the disturbance of the ocean current
was further increased on the basis of (72). The attack angle and sideslip angle of the
current were αc = rand(−1.57 ∼ 1.57rad) and βc = rand(−3.14 ∼ 3.14rad), respectively.
Equation (71) shows that such random changes in the angle of attack and sideslip angle
could make the linear velocity components of the ocean current on the three axes of the
EF frame have positive and negative directions. The EF frame is shown in Figure 1. Then,
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the current velocity was Vc = rand(0–0.1 m/s) from 0 to 100 s, Vc = rand(0–0.12 m/s)
from 100 to 200 s, Vc = rand(0–0.13 m/s) from 200 to 250 s, Vc = rand(0–0.14 m/s) from
250 to 300 s, and Vc = rand(0–0.15 m/s) from 300 s.
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Figure 16 shows a 3D view of the underwater robot position tracking using the three
control methods. The average values of DE for the three methods are shown in Table 5.
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Table 5. Average values of DE .

RBFPDSMC RBFPIDSMC DLNNSMC

0.54099 0.620367 0.285587

Table 5 shows that the average value of DE for DLNNSMC was approximately 47.2%
and 54.0% lower than that for RBFPDSMC and RBFPIDSMC, respectively. Figure 17 shows
the position-tracking error. From the tracking results shown in these diagrams and tables,
DLNNSMC exhibited a better tracking performance than the other two controllers under
stronger interference. In addition, it exhibited a faster convergence rate and converged to a
smaller range.
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5. Discussion

This paper proposes a double-loop PID sliding mode surface, based on which DLNNSMC
was designed by combining a nonlinear high-order observer with the RBF neural network.
A trajectory-tracking control simulation experiment was carried out in an underwater
simulation environment of Gazebo. Although the experimental results proved the effec-
tiveness and superiority of DLNNSMC for trajectory tracking control under the influence
of complex ocean currents, there are two aspects worth discussing. First, although our
control method achieved good results in position-tracking error, there was some jitter in
speed-tracking error. This is attributable to the design parameters and is worth studying
in the future. Second, the control method could achieve a good convergence effect in the
presence of strong ocean current effects; however, the convergence speed was slower, and
the convergence range was larger. Therefore, this requires further research and discussion.
A possible solution to the current implementation is to improve the nonlinear high-order
observer and add reinforcement learning, adaptive law, and other algorithms. We will
leave this problem of improving the robustness and stability of the controller to future
work. In addition, we will try to apply the proposed control method to underactuated
AUVs.

6. Conclusions

Here, we studied the trajectory tracking control problem of fully actuated AUVs with
nonlinear disturbances. A new double-loop PID sliding surface is proposed to improve
the convergence speed and robustness of the position- and velocity-tracking errors of an
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ordinary PID sliding surface. Then, using this method, an adaptive control method for
DLNNSMC is proposed. This method, combined with a nonlinear high-order observer
and a neural network, could compensate for the uncertainty and unknown external dis-
turbances of the model without an upper bound. Finally, DLNNSMC was compared with
RBFPDSMC and RBFPIDSMC in two simulation experiments. Because DLNNSMC has two
PID sliding surfaces that simultaneously tend to zero and compensate for the higher-order
observer, the average value of DE for DLNNSMC in the first experiment was 73.6% less
than that for RBFPDSMC and 75.3% less than that for RBFPIDSMC. The average value
of DE for DLNNSMC in the second experiment was 86.8% less than that for RBFPDSMC
and 88.8% less than that for RBFPIDSMC. Thus, the proposed method provides a faster
convergence speed and a stronger robustness of position- and velocity-tracking errors.
The effectiveness and superiority of this control method were verified in a more realistic
simulation environment of Gazebo.
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