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1. Introduction

Let H : D(H) € U — U be a nonlinear monotone operator, i.e.,
(H(v) — H(w),v—w) >0, Vov,we D(H),

defined on the real Hilbert space U. Here and below (.,.) and ||.||, respectively, denote the
inner product and corresponding norm in /; B(u,r) and B(u, r), respectively, denote open
and closed ball in ¢/ with center u € U and radius r > 0. We are concerned with finite
dimensional approximation of the ill-posed equation

H(u) =y, 1

which has a solution 7 for exact data y. However, we have y° € U for some 6 > 0, are the
available data, such that

ly —v°|| <. )

Due to the ill-posedness of (1), one has to apply regularization method to obtain an
approximation for i. For (1) with monotone H, Lavrentiev regularization (LR) method is
widely used (see [1-6]). In (LR) method the solution uf,i of the equation

H(u) +a(u—up) =y°, &)

is used as an approximation for 7. Here (and below) 1 is an initial approximation of 7
with ||ug — 7|| < ro for some rg > 0. The solution of (3), with y in place of y° is denoted by
Uy, i.e., (cf. [5])

H(ug) + a(uy — 1) = y. 4)
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Let ui and u, be as in Equations (3) and (4) , respectively. Then, we have the following
inequalities (cf. [5]).

lug —a|> < (up— i, 1y — 1),
1)
lug —uall <, )
and hence,
N R )
17 —uall = g —ual + - (6)
and
[0 —ual < 18— uol. @)

For proving our result, we assume that, either 7' (u) is self-adjoint or H'(u) is positive
type, ie,,
o(H' () € [0,0)

and
|(H () +sD)7Y| < g, s > 0, for some constant ¢ > 0, u € B(ug,7)

(see [7]). Here and below H'(u) is the Fréchet derivative of H (u) (if H'(u) is self-adjoint,
thenc = 1).

Remark 1. If H'(u) is positive type, then
I () +sI) 7 H )l = [T = s(H' () +sI) 71 < T+c.
Further as in [8] (Lemma 2.2) one can prove
R () + 1) ()] = O(s"), 0 < e < 1.

So, the results in this paper hold for positive type operator H'(u) up to a constant. Therefore,
for convenience, hereafter we assume H'(.) is self-adjoint.

In earlier studies such as [4-6,9,10], the following source condition:
ug— i =H @Mz, |z]| <p, 0<wu <1 (8)

or
wo— 1= H ()2, [z <p, 0<p2<1 ©)

was used to obtain an estimate for || — 1, ||. In fact, if the source condition (8) is satisfied,
then, we have [5]
17 = ua || = O(a?)

and if (9) is satisfied, then, we have [2]
10— ua| = O(a2).
In this study, we introduce a new source condition,
up—n=A", |z[| <p, 0<v<l, (10)

where p > 0and A = fol H' (4 + t(up — 1) )dt. We shall use this source condition (10) to
obtain a convergence rate for || — u,|| and to introduce a new parameter-choice strategy.
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Remark 2. (a) Note that in a posteriori parameter-choice strategy, the regularization parameter
w (depending on & and y°) is chosen at the time of computing ul (see [11]). The new source
condition (10) is used to choose the parameter « (depending on & and y°) and independent of
v, before computing uS (see Section 2) and also it gives the best known convergence order (see
Remark 4). This is the innovation of our approach.

(b) Notice that, the operator A and AV are used to obtain an estimate for ||l — uy||. In actual

ho.(see Equation (38)) and « (see Section 4) we do not require

computation of the approximation u,” ; .

the operator A or AY.

The following formula ([12], p. 287) for fractional power of positive type operators B
is used in our analysis.

Bix = M= / (= {(64— )y — %x+ et (—1)”®(:)B"1x] at
T Jo T T
sinmz [x  Bx a1 B'lx
+— L Z_1+...—|—( 1) Z_n+1,x€Z/{,
where
[0 if 0<¢<1
@(g)_{ 1 if 1<g<oeo
and z is a complex number such that 0 < Rez < n.
Letz = v,and B = #H'(.). Then, we have
sin7t(v) | x *® _ ® x
H()'x = % [v —l—/o ' (H' () + TI) 1xdT—/1 _L_l_vdr]. (11)

Note that, if #'(.) is self-adjoint, then, A is self-adjoint. Further, suppose H'(.) is
positive type, then we have

A+ = ) #G+ tag — a)dt+s1) )

1
= (] (@ + o — ) +sD)dp) |

IN

/01 I|(H (0 + t(ug — 22)) +sI) 1| dt
c

IN

S

ie., Ais positive type.
Next, we shall prove that (10) implies

! v
"o — i = { H (ug)"1¢2, ||Ez| < po for O<yy<v<l (12)

H'(10)Gz, (182 | < o1 for v=1,

for some constants py and p;. For this, we use the standard non-linear assumptions in the
literature (cf. [4,13]).

Assumption 1. For every u,v € B(up,r) and w € U, there exists kg > 0 and an element
®(u,v,w) € U with
[H'(u) — H'(0)]w =H (v)®(u,v,w)

and
[®(u, 0, w)[| < kollwllllu— 2.
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Suppose (10) holds for v < 1, then

u—1u = Az
= [AY = H (up)"]z+ H'(u9)"z
_ _Si“Z(”) /O (M (ug) + T1) L (A — H (1)) (A + 1) Lzdt

+H'(u9)"z,

so by the definition of A and Assumption 1, we have

ug—a = [AY—H (ug)")z+ H (up)'z
= O[3 ) 1)
x /01 (H (2 + t(ug — ) — H' (u0))dt (A + T1) " zdt
+H (ug)"z
_ _w /O°° o (H () + T1) " H (1)

X /Ol CI)(ﬁ + t(uO - ﬁ), Uuo, (A + TI)le)dth + 'H/(uo)”z
= H/(MO)[—W /Ooo (M (ug) + 1)t

1
X / (0 + tug — 1), 1, (A + 1) '2)dtdr] + H' (ug)'z
0

= H'(ug)"%, v1 <v,

where &, = H/ (1)1 (— 220 Joo T (H (ug) + 1)1 fo + t(ug — 1), ug, (A +I) ™1
z)dt)dt + H' (up)' "z Further note that

el < 21 ([0 e ) 4 o)
X /01 (1t + t(ug — 1), ug, (A + TI)lz)dt> at|| + | M (o) 1z
< L e ) o)+ o) ko P T g oyt
[T ) 0 o) + 1) kg 4 421
2 (o)
< %[/Olrvfwfldrkowuzn
I Gy w2k T e )
< LTI I T 0 4 oo = po
Suppose
uy—1u = Az

= [A — H/(uo) + ’H’(uo)]z
1
_ [/0 (H' (8 + Hug — 1)) — H' (ug) )dt + H' (ug)]z
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- H’(uo)[/o (1 + g — 1), g, 2)dt + 2]

= /H/(”O)(:Zl'
where §,, = fol O(h + H(ug — 10), up, z)dt + z. Observe that

[ — uo|

(@
2 2

182 1| < (ko +Dlz]l <

+1p = p1.
Soug— 1 = Azimplies ug — it = H'(u0)8z, [|8z || < p1ie., (10) implies (12). Similarly
one can show that (10) implies

u ﬁ:{ H ()82, |G| S p2for  0<vy <v<1
° H ()&, ||Ex || < o1 for v=1,

for some constant pp. Throughout the paper, we use the relation (Fundamental Theorem of
Integration),

1
M) = () = | [ ool ) e (=
for all x and u in a ball contained in D(H).

Remark 3. In general, it is believed that (see [5]) a priori parameter-choice strategy is not a good
strategy to choose w since the choice is depending on the unknown v. In this study, we introduce
a new parameter-choice strategy which is not depending on unknown v and gives the best known

_v_
convergence order O (67T ).

In some recent papers, the first author and his collaborators considered iterative
methods [14,15] for obtaining stable approximate solutions for (3) (see [8,16]). In most of
the iterative methods Fréchet derivative of the operator involved is used. In [10], Semenova
considered the iterative method defined for fixed «, 6, by

ufl+l,lx = ui,rx - ’)/['H(ui’a) + ‘X(ui,a - MO) - .]/5]' (13)

Note that, the above iterative method is derivative-free. Convergence analysis in
[10] is based on the assumption that H is Lipschitz continuous and the Lipschitz constant
R satisfies , "

O<fy<m1n{&,m}, (14)
where v is a constant. Contraction mapping arguments are used to prove the convergence
in [10].

In [16], George and Nair considered the method (13), but with  independent on the
regularization parameter a and the Lipschitz constant R, instead of y. The source condition
on ug — 1 in [16] depends on the known 1y and the analysis in [16] is not based on the
contraction mapping arguments as in [10].

The purpose of this paper is threefold: (1) introduce a new source condition, (2) intro-
duce a new parameter-choice strategy, and (3) apply the parameter-choice strategy to the
(finite-dimensional setting of the) method in [16].

The remainder of the paper is organized as follows. In Section 2, we present the error
bounds under the source condition (10) and a new parameter-choice strategy. In Section 3,
we present the finite dimensional realization of method (13). In Section 4, we present the
finite dimensional realization of (10). Section 5 contains the numerical example and the
conclusion is given in Section 6.

2. Error Bounds under (10) and a New Parameter Choice Strategy

First we obtain an estimate for || — u,|| using (10).
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Theorem 1. Let Skorg < 1, Assumption 1 and (10) be satisfied. Then,
R 2 + kor
18— el < 350 02
Proof. Since H (1) = y and H(uy) + a (uq — 119) = y, we have
H(ug) — H(A) + & (g —ug) =0,
ie.,
H(ug) — H() +a (ug — 1) = a (ug — 1), (15)
or
(My+al)(uy — 1) = a (ug — 1), (16)
where .
My = | H(0+t(uy — 1)) dt
0

Again (16) can be written as
(Ao +al)(uy — 1) = (Ao — Ma) (g — 1) + a(up — 1),
where Ag = H/(up). Thus, we have
Uy —1 = —(Ag+al) P (My—Ag) (g — 1) +a (Ag+a )71 (ug — 02)
= —(Ag+al) 1{/01 Uy — 1)) — H'(ug)] | (ug — 1) dt
+a(Ag+al)t(ug— 1)
= —(Ag+al)” AO/O D+ t (1t — 1), g, 1o — 1) dt

+a (Ag+al) ! (ug — 1)

and hence
. ||y — 1 N N
e =l < kol g — )
e (Ag+a 1)1 (g — )|
3 . _ .
< Skoro e — il + &l (A+aD) " (uo — )| by ()
+all[(Ag+al) ™t — (A +al) (g — )|
3 . _ N
< Skorollue — i +al (A +al) (g — )]
(Ao + D) (A — Ao)a(A +al) " (g — )]
3 . _ R
< Skorollue — il + &l (A+al) " (g — )]
1
| Ag(Ag + al) ! /0 D1+ (g — @), g, (A + al) Y (ug — 1))t |
3 . _ N
< Skorollue — il +al[(A+ad) " (g — )]

k
(A +an) (g — )]
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ie.,
3 N kQTO N
1—Zkoro | [lua =] < (1+7)|Ia(A+M) (uo — )|
2—3k07’0
i | < v
il = el <l (A+aD) A by (10 17)
o
< sop |
Aea(a)l AT
< afzf|.
O

Theorem 2. Suppose Assumption 1 and (10) hold. Then,

2+ korg

I = ) < max{1, 307 2l (5 + 0.

1
In particular, if « = 6v+1, then

Jug —all = 0(677).

Proof. Follows from (6) and Theorem 1. [

1
Remark 4. Note that the best value for + oY is attained when =aY, ie, a = 0v+1, and in this

case the optimal order is O ((5 v ) . However, the above choice of w is depending on the unknown v.

In view of this, our aim is to choose « (not depending on v), so that we obtain ||ud — || = O ((5#) .

A New Parameter Choice Strategy
For u € U, define

¢ u) = [|a® (Ao + al) =2 (H(ug) — u)l, (18)
where Ag = H/(ug).

Theorem 3. For each u € U, and « > 0 the function &« — ¢(«, u) is continuous, monotonically
increasing and
lim ¢(a,u) =0 and hrn Pla,u) = [|[H(uo) — ul|.

a—0

Proof. Note that

[ Aol 4
o= [ (12 ) AE ) - 0,

where E, is the spectral family of Ag. Note that for each A > 0,

o — a \'
At

4 4
is strictly increasing and satisfies lim, o (ﬁ) = 0and limy—e0 (ﬁ) = 1. Hence, by

Dominated Convergence Theorem ¢ («, u) is strictly increasing, continuous, lim,_,o ¢(«, )
=0 and limye ¢(a, 1) = ||H(1g) —ul|. O
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In addition to (2), we assume that
¢ < [H(uo) =’ (19)
for some ¢ > 1. The following theorem is a consequence of the intermediate value theorem.
Theorem 4. Let y° satisfies (2) and (19). Then,
Pay’) = co (20)
has a unique solution w.

Next, we shall show that if « = «(J, 1) satisfies (10) and (20) hold, then || — u,||
= O(677). Our proof is based on the following moment inequality for positive type
operator B (see [12], p. 290)

1B x| < ||B x|[* [lx['">, 0<u<o. (21)

Theorem 5. Let %koro < 1, Assumption 1 and (10) be satisfied. Let « = (6, ug) be the solution
of (20). Then,
11— uq|| < O(6751).

Proof. By taking B = a (A+al) ' Aand x = «’ V(A +al)~("") z in (17) and then
using (21) with u = v, v = 1 4+ v, we have
e RN Y
< B x| x| T
102 (A+aD) 2 AT 2| 157 |z T
la? (A+a )2 A (ug — )| 757 |1z]| 70
0% (A +a 1) (H(ug) — y)|| T ||z T

(lla? (A +a D)2 (A (o) = )| 22)

IN

e (A+aD2 @ —)]) ™ )
= (By+0)1 ||zl|
where By = [|a? (A+a )2 (H(up) — y°)|| and we used the inequality,
o (A+aD) (" —y)| < 6.

We have,
B = [e(A+al)(H(uo) -y
= ||e®[(A+al) 2 — (Ao +al) 2| (H(uo) — y°)
+a? (Ao + ) 72 (H(uo) — )|
[a®[(A+al) ™2 = (Ag + al) 2] (H(ug) —y°) |
+la(Ag + al) 2 (H(up) — 1) ||
= Di+¢(ay’) (23)

IN
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where Dy = ||a?[(A +al) ™2 — (Ag +aI) 2] (H(up) — y°)||. Let w = a®(Ag + al) ~2(H(uo)
—1°). Note that,
Dy = ||042[(1‘1+061)72 (Ao +aI) ] (H(uo) — v°)||
= |(A+al)2[AF — A% +2a(Ag — A)w||
= [[(A+al)” 2[(AJer)+20¢1](Ao— A)w||
= [(A+al) 2[Ag— A+2A+2aI)(Ag — A)w||
= |[[(A+al)"Y(Ag— A)Pw +2(A+al) LAy — A)w||
< (ITl*+ 2Tl = (IT]* +2/IT]) (e, v°), (24)
where T = (A +al)~!(Ag — A). By Assumption 1, we obtain
ITx[| < [[(A+al)™" = (Ag+al) (Ao — A)x||
+[[(Ag + )1 (Ag — A)x|
= ||(Ao+al)'[Ag— AJ(A+al) 1 (Ag— A)x]|
+[[(Ag +al) M (Ag — A)x|
< I(Ag +al)1Ag
1
x/ O (1 + t(ug — ), ug, (A+al) "1 (Ag — A)x)dt||
0
1
(Ao + D) Ag [ @(0+ g = ), o, )t
kor kor
< OOHF |+ 00|| Il
ie.,
kor
(1= =52 ITx]| < korol ||, (25)
and hence o o
070 070 5
< = .
Br < [0 (200 2) + 1ig(a, ) = O0) (26)

The result now follows from (23)-(26). O

Theorem 6. Suppose Assumption 1 and (10) hold and if &« = w(J,uq) is chosen as a solution

of (20). Then,

‘<ol

Proof. By (20), we have

SO

0 = |la? (Ao +al) 2 (H(u) — )|l
< o (Ao +a )2 (H(u0) — )|
+a? (Ao +a D)2 (y — )|
< la? (Ao +a 1) "2 (H(uo) —y)|| +6,

< e [(Ag+a D)2 = (A+aD) 2] (H(uo) - y)|
a2 (A +a 1) 2(H(uo) =)
-

= ||(A0+a1)-2[(A+a1 (A0+le)}
o (A+al)=> (H(ug) —y)l|
+la? (A+a D)2 (H(uo) —y)|.-

(27)
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Letw; = a? (A+a I)~2(H(ug) — y). Then, similar to (24), we have
(@ =16 < (T2 +2/Tal + 1) [Jwr]], (28)
where T'; = (Ag +aI)"1(A — Ap). Note that,
ITyxl] = [[(Ao+aD)~' (A= Ag)x]
1
= ||(A0+oc1)*1A0/0 D (11 + H(ug — 1), g, X)dt|
< By )
koro
S0 L
.
T < =5~ (29)
Therefore, by (10), (28) and (29), we have
[ koro o
(=10 < | (522 +koro +1 o]
- [ kot
= () T koro +1] a2 (A -+ & 1) 2 A (g — )
= (kozro) koro+1] a2 (A+al) 2 AL ]|
N 1
< |5 Fhoro 1 [@(A + 1) A%
. ]
< |ty +kro+1 a2,
or .
lxl—H/Z = c— (30)
(45092 4+ koro +1] Izl
Thus,
1
é w6 v v
" X 1(1)(‘/"‘1) —O((Svﬂ)
O

Combining Theorems 5 and 6, we obtain:

Theorem 7. Let Assumption 1 and (10) be satisfied and let & = (6, 1) be the solution of (20). Then,

|lug — a| = O(57%1).
In [16], the following estimates was given (see [16], Theorem 2.3)

g, — ol < Kai,

(31)

where g, = 1—paand k > ro+1 with p = 5= L, Bo > | (u)|l, Vu € B(u,2(ro + 1)).

Suppose
1,5 :=min{n € N: agy <5}

Theorem 8. Let Assumption 1 and (10) be satisfied and let & = (6, 1) be the solution of (20). Then,

13, — 1] = O(671).

Ny, 5,8
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Proof. Follows from the inequality

1t 0 = A < Na5, o — w0l + Nl — 22,

Ny 5,4 Ny, 5,4

Equation (31), Theorems 6 and 7. O

3. Finite Dimensional Realization of (13)

Consider a family {P;, }}~¢ of orthogonal projections of I/ onto the range R(P;) of Py.
Let there exists by > 0 such that

(I = Py)at|| := by < bo,

and let
r>2(2rg +max{||a|,1} +b,) with r:= [|d — up]|.

We assume that;

(1) B(Phu()/ 7') - D(H)/
(if) there exists By > 0 such that

HPhH,(M)PhH < ﬁo Yue B(Phuo, I’). (32)
(iii) there exists ¢g > 0 such that
[H (u)(I = Py)| := en(u) < ey < eo ¥V u € B(Pyug,r). (33)

Remark 5. (1)  Suppose H'(u) is self-adjoint for u € B(Pyuq,r). Then, ||H'(u)(I — P,)||
= |[(I = Py)H'(u)]|, and by Assumption 1, we have H' (u)v = H'(Pyug) (v + ¢(u, Pyug,v)).

Hence,
|H (u)(I=Py)oll = [[(I—Py)H (Pyuo)(v+ @(u, Pytto, v))||
< 1T = Py)H (Pyuo) || [Ilo]] + kollue — Pyuol[[[0]l]
< (T +kon)|I(I = Pyp)H'(Pyuo) |l[|2]l,

so, ||H"(u) (I = Py)|| < (1+kor) || (I = Py)H'(Pyuo) |-
Therefore, in this case, we can take, e, = (1 + kor)|| (I — P,)H' (Pyuo) |-

(b)  Suppose, H'(u) is not self-adjoint for u € B(Pyuo,r). In this case, under the additional
assumption (see [17])

H'(u) = RyH (Pyug), u € B(Pyug,r)

with ||I — Ry|| < Cr||lu — Pyuy||, we have

17 (u) (I = By) | IRy (Pyuo) (I — By) |

< [IRulllIH (Pyuo) (I — Py) |
< (L4 Crr)l[H (Pyuo) (I = Pp) |-

Therefore, in this case, we can take, e, = (1 + Crr)||H'(Pyuo) (I — Py)||-

From now on, we assume é € (0,d] and a € [§ + ¢}, a) witha > d + €.
First we shall prove that

(PyHPy) (1) + aPy(u — ug) = Py’ (34)
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has a unique solution ul? e R(Py,), under the assumption
R(P,) € D(H). (35)

Proposition 1. Suppose (35) holds. Then (34) has a unique solution ul® in B(Pyug,r) for all
up EUand y’ € U.

Proof. Since H is monotone, we have

((PyHPy)(u) — (PyHPy,) (v),u —v) = (H(Py(u)) — H(Py(v)), Pp(u) — Pp(v)) >0,

so P, H Py, is monotone and D (P, HP;,) = U. Hence by Minty-Browder Theorem(see [18,19]),
Equation (34) has a unique solution ul for all ug € U and Y eu.
Next, we shall prove that uld ¢ B(Pyug,r). Note that by (34), we have

PyM (Pyu®) + aPy (g — ) — Py () = Py(y” —y) + aPy(uo — ). (36)
Let M = fo (11 + t(Pyu® — 2))dt. Then by (36), we have

PyM(Pyu® — ) + Py (g — ) = Py(y° — y) +aPy(ug — ).

or
(PuMPy, + al) (ul® — Pyit) = P, (v° — y) + aPy(ug — 2) + P,M(I — By)d.
So, we have
ul? — Pyt = ||(PyMP, +al)~!
[Py (g — 1) + Py (y° —y) + (PuM(T — Py)) ()]
. P, (y° — P,M(I—P,)||||#
< ||Ph(u07”)”+ H h(y y)” + ” h ( h)HH H
14 14
5 .
ooy el
14 44
and hence
ho_p < ul® — Pya|| + || Py (i —
g ol < [[ug i =+ (| P (2 — uo) ||
d+e
< 219+ max{ ], 1} 2
< 2rg+ max{||d ||,1}<r, (37)

ie, ul € B(Pyug,r). O

The method: The rest of this section, #'(u), u € B(Pyug,r) is assumed to be positive
self-adjoint operator. We consider the sequence {uZ’,‘i} defined iteratively by

h,
W = uld — BPL[FP(ulS) + a(ult — ug) — 1] (38)
where .
an Phuo and ‘31: ,Bo—i-{)l

Note that if hmnﬂm{un a} exists, then the limit is the solution u % of (34).

Theorem 9. Let § € (0,d], a € [0+ ¢y, a), ul"® and ul are solutions of (3) and (34), respec-
tively. Then

h 1 €n N
g —ug | < 1a][=" + b +2|Jug — a].
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Proof. Note that by (3), we have
PyH(uf) + aPy (g — ug) = Pyy’. (39)
Therefore, by (34) and (39), we have
Py(H(uy?) — H(uy)) + Py (uyy’ — uy) = 0. (40)
Let Tj, := fo (1S + t(ul® — u%))dt. Then by (40), we have

PyTy (g — ) + Py (u® — ) = 0

" Py TPy (uy® — 1) + aPy (u® — ug) = Py Ty (I — Py)ug. (41)
Notice that
g + Hul® —ud) — Pyuo|l = [|(1—#)(ul — 2+ 10 — Pyug) + Hul® — Pyug)||
= ||(1—t)[(u — i) + (I = Pyp)d + Py (1 — uo)]
+(up? — Pyug)||
< (=0)[lug — @l + (T = Pl + || Pa(d — uo) ]
+([#(ul® — Pyug) ||
< (A =t)[[[ug — ]l + by + ro] + t|u® — Pyug|
< (-0 +2m) + byl + 12+ max{1, []})
by (7) and (37)
<

thatis u$ + t(ul® — u%) € B(Pyug, ). So, P, T, D, is self-adjoint and hence by (41),

[ulh® — Pul| = ||(PyTyPy + &) ' P Ty (1 — Py)ul|
| Py T3, (I — Py)ul|
4

€

]

€hia ~

=l + 2 = wgll) (42)

INIA

IN

and )
(1= Py)ug |l < [I(1 = Pu)a| + [lug - al. (43)
Smce L <1, by (42) and (43), we have
lup? —ugll < lud® = P ]| + [1(T = Pa)usd |

" .
Hullf + by + 2l|ug — 4.

A\

O
Remark 6. Ifaby, < d+¢pand a = (6 + sh)v%rl, then by Theorems 2 and 9, we have

[ — ] = O((6 +24) 7).

Theorem 10. Let § € (0,d] and « € [6 + €y, a). Then, {uﬁﬁ} € B(Pyug,r) and limy, o0 ulf{,‘;

= u,x‘s Further

s — w’|| < xal
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where g, :=1— P, k > 2rg + max{1, ||@||} and B :=1/(Bo +a).

Proof. We shall show the following using induction;

(1a) u’f{fé € B(Pyug, 1),
(1b) the operator

/7—[ (ult® + t(uld, — ul?))dt

is positive self-adjoint, well defined and
(1) [ty — el < (1= o) s — ug|| ¥ =0,1,2,.
Clearly, ug:i = DPyug € B(Pyug,r). Furthermore, we have by Proposition 1, u? e

B(Pyuo, ), soby (32), Al is a well defined and positive self-adjoint operator with || P, AP, || <
Bo- So (1a) and (1b) hold for n = 0.
Note that

ulfi uh‘s—ugi — BP,[H (an) H(ul )—O—tx(ugi ull].
Since,
M) ~ ) = [ 1l — ) — )t = Al — )

we have
h, h,
wy —ul® = [I— B(PLAGP, + )] (uy’ — ult®)]. (44)

Since P, AlP, is a positive self-adjoint operator ( cf. [20]),

1T — B(PLAGPy +al)| = ”51“1131 [([(1 = pa)T — PP, AGPyu, u)]
= IISIHIIBl (1= Ba) — B{PLAG Py, u)|

and since || P, ALP, || < Bo and B = 1/(Bo + a), we have
0 < B(PLAGPyu, u) < B|IPyAGP |l < BBo < 1 — pa Va € (0,a).

Therefore,
IT = B(PLAGPy +al)|| < 1— pa.

Thus, by (44), we have

ho , h,o
[uyy —u®ll < (1= Ba)fugy, —
Therefore, we have
1ol < gun(2 L|1a[}), by (37) =
[uyy — ug || < qun(2ro + max{1, [[@[}), by (37) = Kqu,.

and

A

ne _ . h, ,
ey — |+ || ug® — Py

2Pyt — ug” || < 2(2ro + max{1, [|a[|}) < r

s
1415 — Phttol|

IN

Thus, u?:i € B(P,uq, ). So, for n = 0, (1a)—(1c) hold. The induction for (1a) (1c) is

completed, if we simply replace ulf:f(, ugi in the preceding arguments with un L uﬁi,

respectively. The result now follows from (1c). O
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Theorem 11. Let 6 € (0,d], & € (5 + ¢y, a) with d +eg < a. Let ud and u, be solutions of (3)
and (4), respectively. For 6 € (0,d] and o € [6 + ¢y, a), let {uﬁ;‘i} be as in (38). Let

fnas:=min{m € N: aq, <d5+e} (45)
and
“bh <dé+ Ep.
Then,
. . N d+e
Il = 8l = e+ 1+ maxq(a],3)) (118 = wal| + =—L). (46)
Proof. By Theorems 9 and 10, we have
e = Al < g0 =l + Nl = ul |l + ug — @]
€ 1l A .
< wapy+ Il + by 3 ]uy — ] (47)
n En A Y ~
< gl Sl + b3 + e — )
N R S+e
< (ko 1+ max{3, )l }) (17— ua| + ). (48)

Here, we used the fact that ¢!, < ‘Sf% for n = ny s and by, < ‘H%. Thus, we obtain
the required estimate in the theorem. [

Finite dimensional realization of (20) is considered next.

4. Finite Dimensional Realization of the a New Parameter Choice Strategy (20)
For u € U, define

¢" (,u) = [|@®(Py AoPy + al) " Py (H (o) — u)]. (49)
The proof of the next theorem is similar to that of Theorem 3, so the proof is omitted.

Theorem 12. For each u € U, the function & — (])h(zx, u) for & > 0, defined in (49), is continuous,
monotonically increasing and

lim ¢ (a,u) =0, lim ¢"(a,u) = | Py(H(uo) )]

a—0

In addition to (2), we assume that
18+ diey, < || Pu(H(uo) —°) |, (50)

2
for some ¢y > 1and d; > ko% + r9. The proof of the following theorem follows from the
intermediate value theorem.

Theorem 13. Ify° satisfies (2) and (50). Then,
¢ (a,y°) = c10 + daey, (51)
has a unique solution & = «(J,h, ug).

Next, we shall show that if &« = a(4,h,ug) satisfies (51), then ||# — uy|| = O((6
+ep) w1 ). Our proof is based on the moment inequality (21).
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Theorem 14. Let Assumption 1 and (10) be satisfied and let « = (5, h, ug) satisfies (51). Then,

Proof. By (24), the result follows once we prove ||w||

as follows,

]l

IN

IN

IN

<

I — o] < O((6 +€4) 1)

= O(J + ¢3,). This can be seen

la?(Ag + aI) 2 (H(uo) —°) |
[a?[(Ag + al)~> — (P, AoPy + aPy) %] (H (o)
+[|a (Py Ao Py + &) 2Py (H(ug) — v°) |
la*(Ag + aI) "> [(Py Ao P + aPy)* — (Ao +al)?]
X (PyAoPy + aPy) "2 (H(uo) — v°) || + c16 + diey
1a2(Ag + al)2[(Py AoP,)? —i—szPhAoPh (A2 4 20A0) + a2(P, — )]
X (PyAoPy + aPy) > (H(u0) — y°) || + c16 + daey
la?(Ag + )~ [(PhAOPh + Ao)(PhAOPh — Ao) +2a(PyAgPy, — Ao)]
)~
(

ol

X (P APy + aby, yO)|| 4 16 + dyey,
|a®(Ag +al) 2] PhAOPh - Ao) +2(Ao +al)]
X (Py APy — Ao) (PyAoPy + aPy) 2 (H(uo) — y°)|| + 16 + dagy
I [[(A0 + D)~ (P AoP, — A0))2 +2(Ag +al) ™} (P Ao, — Ao) |
X o (Py APy + aPy) (M (o) — y°)|| + €16 + daey,
| {[(Ao +al) " (P APy — AoPy + APy — Ao)J?
+2(Ao + al) ™ (P APy — AoPy + AoPy — Ao) |
xa?(PyAoPy + aPy) "2 (H(ug) — )| + 16 + dyey,
(Ao +aI) (P, AoPy — AoPy)2 +2(Ag + al) ™ (P AgP, - AOPh)}
a?(PyAoPy + aPy) ™2 (M (1o) — y°)I| + €10 + diey
[(Ag+al) " (P, — D)AoP,) + 2(Ag +aI) " (P, — I)AoPh)}
o (P APy + aPy) "> (H(uo) — y°)|| + €16 + duey,
%” +2] %’1 +1)(c10 + drey,),

X

X

(52)

/N

where, we used (P, — I) P, = 0. Next, we shall show that %’1 is bounded. Note that,

€10 + d1gy,

|a®(Py Ao Py + &) 2
l*(Py Ao Py + )2
+[|a®(Py APy + al) 2 m(( o) — )l
6+ [|a?(P Ao Py + al) 2 Py A(ug — 1) |
5+ [|a® (P APy + ) 72 Py(A — Ag) (o — )
+[|a® (P APy + al) =2 Py A (ug — 1)

Py(H(ug) —°) ||
Ph(y ol

IN

IN A
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s Ug, U — ﬁ)”

1
- (S—i-Haz(PhAoPh—i—ocl)’zPhAo/o O + t(ug — 1)
)

+[|a® (Py Ao Py + al) 72 Py Ao [Py + I — Py]) (ug —

< 64 ||a®(PyAoP, + &) 2 PyAg[Py + I — Py] /01 (0 + g — 1), ug, 1o — i) |
+]ja? (P, AoPy + )2 PyAo[Py + I — Py]) (up — 1)
< ok (et Ao( = B [ @8+ tuo — ), g — )]
+(a+ | Ao (I — Py)|) [luo — 4l
< bt (ate) up—al?
+(a +ep) [luo — 1|
< 5+ (kozr% +10)en + (kozr% +ro)a
so, we have
(d — (kozr% +710))ep < (€1 —1)6 + (dy — (kozr% +70))en < (kozr(z) + o)
and hence 2
h o —% Rl = G- (53)

= o r2
Yd = (TR )

Now, the result follows from (52) and (53). O

Theorem 15. Suppose Assumption 1 and (10) hold and if « = « (5, h, ug) is chosen as a solution
of (51). Then,

5—;8;1 :O(((S‘Fsh)ﬁ)-

Proof. By (51), we have

c16+diey, = |a® (PyAgP, +al) 2P, (H(uo) — v°)||
< ||a® (PyAoPy + 1) 2Py (H(uo) — )|
+]|a? (PyAoPy + 1) 2Py (y — )|
< ||a® (PyAoPy + a 1) 2Py (H(up) — y)|| +6,
SO
(1 —1)0+diey, < [|a® (PyAoPy +a ) 2Py(H(uo) —y)||
< a? [(PiAoPy + & Py) 72 = (A +a)72| (H(uo) =)

+lo® (A+a )" (H(ug) —y)|
|(PyAoPy + a By) 2 [Ph(A +al)?— (PAgP, +a 1)2}

x o (A+al) % (H(ug) — )
+la? (A+aI)2(H(up) — y)||. (54)

Letw; = a? (A+a ) 2(H(up) — y). Then, similar to (24), we have

(c1 — 1)0 +dyey < (|| T2]|* +2||T2| + 1)[Jw1]], (55)
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where Ty = (P, AP, + a 1)~ (P,A — P,AgP,). Note that,

ITax| [(Py APy + & 1)1 [Py (A — Ag) + PyAo(I — Pp))x||

[(PyAoPy + a 1) '[Py (A — Ag)x|| + || (P APy + & 1)~ P Ag(I — Py)]x|
1

| (PuAP, +a 1) [Pyddo | (it + (g — i), o, x)dt

IA I

+| (P AP, + & 1) P A (I — Py)]x||
1
= [(PyAOP, + a 1) [P Ao[Py + I — Py)] /0 (it + t(ug — @), g, )it

+|(PL AP, + 2 1)1 P Ao (I — Py)]x||
ko

& - &
[+ o~ + %

IN

IN

k
(1 Co) 20+ G

SO
k
ITall < |+ Go) o+ G| = . 56

Therefore, by (10), (55) and (56), we have
(1 — 1)8 +dyey, < [CE +2Cr, + 1] || |

= c%z +2Cr, +1||a? (A+al) 2 A(ug— )|

[c%z +2Cr, + 1} |a® (A +a)~2 ATV

IN

C2, +2Cr, + 1] [|0?(A +al) 1 A%z|

IN

CE, +2Cr, + 1| & ||z,

or .
0(1+v > mln{cl - 1r dl}

~ e, +2cr, +1]l12)

(6 +¢p). (57)

Thus
6+¢gy
14

1
v (O+ep\ VT v
=@+ e) 1 (ZEE) ™ =0+ e ),

O

By combining Theorems 11, 14 and 15, we have the following Theorem.

Theorem 16. Suppose Assumption 1 and (10) hold and if « = (5, h, ug) is chosen as a solution
of (51). Then

o = all = O (6 +e4)777).

Remark 7. Note that in the proposed method a system of equation is solved to obtain the parameter
o and used it for computing uﬁfw. Whereas in the classical discrepancy principle one has to compute

o and uﬁfw in each iteration step. This is an advantage of our proposed approach.

5. Numerical Examples

The following steps are involved in the computation of uﬁ'ﬂfw.
Step I Compute « = a (9, 1, ug) =: «(J, €,) satisfying (51)

Step Il Choose 7 such that g% , = (1 — pa(4,¢,))" < ats(:;;:)'
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Step III Compute uﬁf{w using (38).

To compute u’ﬁ,j‘;, consider a sequence (V},), of finite dimensional subspaces, where
Vi = span{vy,vy,..., 041} with v;,i = 1,2,...,m + 1 as the linear splines (in a uni-
form grld of m + 1 points in [0, 1]), so that dlmensmn Viw = m + 1. Since un 2 €V, u h 5
= ijl A )vl, Ai,i=1,2,...m+ 1 are some scalars. Then, from (38), we have

m+1 m+1 m+1

2 Ay, 2 Mo, — BPuH 2 M0 +a Z A0~y (8)

where Py, := P, is the projection on to Vy, with by, = % In this case one can prove as
in [21] that [|H'(u)(I — Pu)|| = i) So we have taken ¢, = # in our computation.
Since P,,H (ZmH )\(") i) € Vi, Pmy € Viu, we approximate

m+1 m+1 m+1 m+1

Z )t(” Z H( Z A(” )vi, Pmy Z y )i,

_ (AY’H),Aé”“) )L(n+1)

where t;,i = 1,2,...,m + 1 are grid points. So Alnt1) R S )T

satisfies (58), if A("+1) satisfies the equation

QY — AT = QB — (My +a(A™ = A1),

where Q= ((Uz, >)1]/ J=12,...m+1,
Y= (' (h),y (tz),--~y‘5(tm+1))T,
and
m+1 (n) m+1 m+1 T
Hy=(H(Y A" ZA 2/\ )(tmgr))'

i=1

To compute the « satisfying (51), we follow the following steps:

Let z = (PuAoPy + al) "2 Py (H(uo) — y°), Then z € Vi, so z = Y141 &v; for some
scalars &,i = 1,2,...m + 1. Note that (P, AgPy + aI)?z = Py (H(uo) — y°) or (P AoPy
+al)Z = Py (H(ug) — y°), where Z = (PmAOPm +al)z.

Since Z € V,, we have Z Z;"l ¢;v;. Further ¢ = (¢1,62,.-+,6ms1)! and &
= (&1,8&, ..., Eny1)T satisfies the equations

(M +aQ)¢ = QB,
and
(M+aQ)¢ = Qg,
respectively, where
M = ((oni,vj>)l-,]-,i,j =1,2,..m+1
and )
B = ((H(uo) —y°)(t), (H(u0) —¥°)(t2), -, (H(uo) = y¥*) (tm11))"

We compute « in (51), using Newton’s method as follows. Let f(a) = a*||z||2 — (c16
+d1€h)2. Then
() = 4a®||z| + 4a(z, 27),

where ZZ = (PyAgPy + 1) 3 Py (H(u9) — y°). Let ZZ = Y11 00,
The ® = (©1,0,...,0,,,1)" satisfies the equation

(M +aQ)0 = QC.

So,
fla) = a*ETQE — (c16 + dyep)?
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and

f'(w) = 40°¢TQE + 40T QO.
Then, using Newton'’s iteration we compute the (k + 1) iterate as; a1 = oy — %

In our computation, we stop the iterate when a1 — a; < 107°.

We consider a simple one dimensional example studied in [5,7,22,23] to illustrate
our results in the previous sections. We also compare our computational results with
that adaptive method considered in [16,24]. Let us briefly explain the adaptive method
considered in [16]. Choose ag = 6 + €),, aj = thxo. For each j find n; such that n; = min{i :

i 1
T = a} :
Then, find k such that

o _ e

k := max{i : ||uni,5/“i e

| <4l],,j=o,1,...,z'—1}.
0

Choose, & = aj as the regularization parameter.

Example 1. Let ¢ > 0 be a constant. Consider the inverse problem of identifying the distributed
growth law u(t), t € (0,1), in the initial value problem

Y~ u(ty(t), y0) = t(01) (59)

from the noisy data y°(t) € L?(0,1). One can reformulate the above problem as an (ill-posed)
operator equation H(u) = y with

[H(u)](t) = celo @48 1 [2(0,1), t € (0,1). (60)
Then H' is given by
(MG (6) = M) [ ne)ae. 61

It is proved in [7], that H' is positive type (sectorial) and spectrum of H'(u) is the singleton
set {0}. Further it is proved in [5] that H' satisfies Assumption 1 and that it — ug € R(H'(11))
provided u* := 0 — uy € H'(0,1) and u*(0) = 0. Now since it — ug = H'(i1)w, we have

- uol(t) = [H@)(E) [ w(e)ds
= ceﬁ)tf‘(e)de /Otw((?)d(?

fol celo[A+T(uo—)])(0)d0 1 fot w(6)do
f01 efot [t(uo—)](0)d6 7.
= [AD](t),

w

where® = ——4%———
S elolrluo=mI©)de 4

. This shows the source condition (10) is satisfied. For our computation

2
we have taken 1(t) = t,up(t) = 0 and y(t) = eT. In Table 1, we present the relative error
hé -
%"‘f“, and « values using a new method (51) and adaptive method considered in [16]
nz

flu
E, =
ny 0,0

for different values of 6 and n. Furthermore, we provide computational time (CT) for both the
methods mentioned above. The relative error obtained for our a new method (51) is lesser than that
the adaptive method in [16] for various & values. As the relative error decreases the accuracy of
reconstruction increases.

The solutions obtained for different 6 values (6 = 0.01,0.001,0.0001) for n = 500 are shown
in Figures 1-3, respectively, and for n = 1000 and 6 = 0.01,0.001,0.0001 are shown in Figures
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4-6, respectively. The exact and noisy data are shown in subfigure (a) of these figures and the
computed solution is shown in subfigure(b) (C.5-A priori denotes the figure corresponding to the
method (51)). The computed solution for the new method is closer to the actual solution.

Table 1. Relative errors using discrepancy principle.

hod n = 500 n = 1000
Metho
J =0.01 J = 0.001 6 = 0.0001 J =0.01 d = 0.001 6 = 0.0001
1) N 4.283954 x 4.283969 x 4.283972 x 3.602506 x 3.602505 x 3.602536 x
10738 1073 10738 10738 1073 10738
E 1.225477 x 1.225481 x 1.225482 x 1.036919 x 1.036919 x 1.036927 x
« 1072 1072 1072 1072 1072 1072
CT 3'7%9,510 x 3'281f)‘f()10 8 3'3231,110 % 1.879650 1.870468 1.802014
N 1.040604 x 1.040604 x 1.040604 x 1.040604 x 1.040604 x 1.040604 x
—4 —6 -8 —4 —6 -8
Adaptive method 10 10 10 10 10 10
E 2.182110 x 2.173007 x 2.172918 x 2.183745 x 2.174636 x 2.174546 x
“ 1072 1072 1072 1072 102 1072
. 1.246600 x 1.159500 x 4.501330 x 1.352600 x 1.191300 x 8.252000 x
in [16] T 10-2 10-2 10-1 10-2 10-2 10-3
. ‘ (@) : (b)
exact sol.
16 0.9 f |[—— C. S.-Adaptive
—— CS-Apriori
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
1 00 0.2 0.4 0.6 0.8 1
Figure 1. (a) data and (b) Solution with § = 0.01 and n = 500.
17 @) ; (b)
s ::Iascet d:: 0.9 eé(a;l rs/f;aptive
CS-Apriori
0.8
1.5
0.7
1.4
0.6
13 0.5
1.2 04
0.3
1.1
0.2
1 0.1
% 02 0.4 06 08 1 0 0 04‘2 0.‘4 0.‘6 0.‘8 1

Figure 2. (a) data and (b) Solution with § = 0.001 and n = 500.
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(a)

oise data
xact data

0 0.2

0.4

0.6

0.8

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

(b)

exact sol.
——— C. S.-Adaptive

CS-Apriori

0.2 0.4

Figure 3. (a) data and (b) Solution with § = 0.0001 and n = 500.

17 T

(@)

oise data
exact data

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.6 0.8

(b)

exact sol.
C. S.-Adaptive
CS-Apriori

0.2 0.4

Figure 4. (a) data and (b) Solution with § = 0.01 and n = 1000.

(a)

17
ise data
xact data
16
15
1.4
13
12
1.1
1
0.9 L
0 0.2

0.4

0.6

0.8

0.6 0.8

(b)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

exact sol.
C. S.-Adaptive
CS-Apriori

0.2 0.4

Figure 5. (a) data and (b) Solution with § = 0.001 and n = 1000.

0.6 0.8
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1.7 : G : 4 (b)
noise data
exact data 09 exact sol. )
1.6 8 C. S.-Adaptive
CS-Apriori
0.8
15
0.7
1.4
0.6
1.3 0.5
04
1.2
0.3
11
0.2
! 0.1
0.9 0
0 0.2 0.4 06 0.8 1 Y 0.2 0.4 06 0.8 1

Figure 6. (a) data and (b) Solution with § = 0.0001 and n = 1000.

6. Conclusions

We introduced a new source condition and a new parameter-choice strategy. The
proposed a new parameter-choice strategy is independent of the unknown parameter v

and it provides the optimal order O(571), for 0 < v < 1.
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