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Abstract: This paper studies an alternating direction implicit orthogonal spline collocation (ADIOSC)
technique for calculating the numerical solution of the hyperbolic integrodifferential problem with
a weakly singular kernel in the two-dimensional domain. The integral term is approximated with
the help of the second-order fractional quadrature formula introduced by Lubich. The stability and
convergence analysis of the proposed strategy are proven in L2-norm. Numerical results highlight
the high accuracy and efficiency of the proposed strategy and clarify the theoretical prediction.
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1. Introduction

In this paper, we study the hyperbolic integrodifferential equation with a weakly
singular kernel [1] as:

utt(x, y, t)− µ∆u(x, y, t) =
∫ t

0
β(t− s)∆u(x, y, s)ds +f (x, y, t), t ∈ (0, T], (x, y) ∈ Ω. (1)

The initial conditions (ICs) and boundary condition (BC) are prescribed as:

u(x, y, 0) = v(x, y), ut(x, y, 0) = ν(x, y), (x, y) ∈ Ω, (2)

u(x, y, t) = 0, t ∈ (0, T], (x, y) ∈ ∂Ω, (3)

respectively, where Ω = (0, L1)× (0, L2) is a bounded convex domain with continuous
boundary ∂Ω, two functions v(x, y) and f (x, y, t) represent sufficiently smooth functions,
the kernel β(t) = tα−1

Γ(α) denotes the weakly singular function (0 < α < 1), and µ is a positive
constant. The problem (1)–(3) is used to model wave propagation subject to heat flow
in materials with memory [2] and viscoelastic mechanics [3,4] and heat conduction in
shape-memory materials, among other applications [5–10] and references therein.

Due to the potential applications in various fileds, considerable attention has been
assigned to the progress of the theoretical and numerical solutions for the hyperbolic equa-
tion. Hlavacek [11] analyzed and proved the stability, uniqueness and existence of solutions
for a class of problems, including hyperbolic problems. Heard [12] studied the problem
of global solvability for the hyperbolic Volterra integrodifferential equation in a Banach
space. Xu [13] studied the observability virtues of the temporal discrete approximation
formula for hyperbolic integrodifferential equations. Fairweather [14] formulated and rig-
orously analyzed an alternating direction implicit orthogonal spline collocation (ADIOSC)
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formulation applied to the inhomogeneous hyperbolic equation on the unit square subject
to appropriate ICs and homogeneous Dirichlet BC. Bialecki [15] proposed and analyzed an
ADIOSC approach for the linear second-order hyperbolic initial-boundary value problem.
Yannik [16] developed the finite element technique for certain hyperbolic and parabolic par-
tial integrodifferential equations. Inoan et al. [17,18] studied the semi-Hyers–Ulam–Rassias
stability for a class of integro-differential equations.

To the best of our knowledge, so far, there are no research papers on the hyperbolic
integrodifferential equations, including a weakly singular kernel in the two-dimensional
domain. The main purpose of the this paper is to introduce an efficient numerical scheme
for Equation (1). The ADIOSC approach is a valuable and robust algorithm for obtaining
the approximate solutions of a broad category of the ordinary and partial differential
equations (ODEs and PDEs, respectively), which have been introduced in [19–22]; be-
sides, this method also has some competitiveness and vitality compared to some classical
methods [23–30].

Our main contributions are as follows: (I) We extended applications of an ADIOSC ap-
proach to the solution of the second-order hyperbolic problem containing a weakly singular
kernel. The difficulty of theoretical analysis comes from the viscoelasticity term, which is
essentially an integral with the time introduced in (1). For this new hyperbolic integrodif-
ferential Equation (1), some traditional numerical quadrature rules such as the compound
quadrature rules becomes difficult to analyze. Therefore, some standard approaches to treat
the observability problems, such as the non-negativity skill [31], can not be used directly.
We propose a new technique to handle the discrete integral term in the theoretical analysis,
which is different from the method in [32,33]. (II) The ADI algorithm we considered can
solve the high-dimensional problem of space into a series of one-dimensional sub-problems,
which greatly reduces the computational cost [34–38]; in addition, the proposed OSC tech-
nology can obtain the fourth-order spatial convergence [19], which can greatly improve
the numerical precision. (III) The theoretical results proved by us are validated by several
numerical examples.

The layout of this paper is as follows: Section 2 introduces some basic notations and
mathematical preliminaries. Section 3 proposes an ADIOSC approach for computing the
solution of the problems (1)–(3). Section 4 examines the stability and convergence analysis
of the full discretization. Section 5 presents two numerical examples to show high accuracy
and performance for the ADIOSC approach and support the theoretical analysis. Finally,
Section 6 contains some concluding remarks.

Remark 1. Throughout this article, C represents a generic positive constant as a generic constant
free of the time-space step parameters at every occurrence.

2. Notations and Auxiliary Results

In this section, we provide the basic concepts, and definitions needed to use the main
results in the subsequent paper. For any bounded region Ω ⊂ R2, let us define the inner
product:

〈u, υ〉 =
∫

Ω
u(x, y)υ(x, y)dxdy,

with the Hm(Ω) norm on Sobolev:

‖u‖Hm =

(
∑

0≤α1+α2≤m

∥∥∥∥ ∂α1+α2 u
∂xα1 ∂yα2

∥∥∥∥2
) 1

2

, m > 0.

Suppose that I = (0, L1) and J = (0, L2). Let δx = {xi}Nx
i=0 and δy = {yj}

Ny
j=0 be two

partitions of I ≡ [0, L1] and J ≡ [0, L2], so that:

0 = x0 < x1 < · · · < xNx = L1, 0 = y0 < y1 < · · · < yNy = L2.
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δy × δx = δ represents the partition of Ω. For the sake of convenience, we denote:

h(δx) = max
1≤i≤Nx

(xi − xi−1), h(δy) = max
1≤j≤Ny

(yj − yj−1),

γij = (xi−1, xi)× (yj−1, yj), h = max(h(δx), h(δy)), j = 1, . . . , Ny, i = 1, . . . , Nx.

Suppose that M(r, δy) and M(r, δx) are the spaces of piecewise polynomials of degree
≤ r(r ≥ 3), represented by:

M(r, δx) = {υ|υ ∈ C1(I), υ ∈ Mr([xi−1, xi]), 1 ≤ i ≤ Nx, υ(0) = υ(L1) = 0},

and,

M(r, δy) = {υ|υ ∈ C1(I), υ ∈ Mr([yj−1, yj]), 1 ≤ j ≤ Ny, υ(0) = υ(L2) = 0},

in which Mr represents the set of polynomials of degree at most r.
Let:

M(r, δx)⊗M(r, δy) = M(δ),

to be the set of all functions that represent finite linear combinations of products in the case
of υ1υ2, such that υ2 ∈ M(r, δy) and υ1 ∈ M(r, δx).

Suppose that {σl}r−1
l=1 and {σk}r−1

k=1 are the nodal points of the two-point Gaussian
quadrature rule over I and J, respectively, and let:

σli(δx) = σlhi + xi−1, l = 1, . . . , r− 1, i = 1, . . . , Nx,

and,
σkj(δy) = σkhj + yj−1, k = 1, . . . , r− 1, j = 1, . . . , Ny,

be two collection of Gauss nodes in the x-direction and the y-direction, respectively.

Γ = {(σli(δx), σkj(δy))}, l, k = 1, . . . , r− 1, i = 1, . . . , Nx, j = 1, . . . , Ny,

is the set of Gauss nodes on the domain Ω.
Here, let us introduce the discrete inner product 〈·, ·〉 as:

〈u, υ〉 =
Nx

∑
i=1

Ny

∑
j=1

hihj

r−1

∑
l=1

r−1

∑
k=1

γlγk(uυ)(σli(δx), σkj(δy)),

with the norm | · |D
|υ|2D = 〈υ, υ〉.

such that u and v are defined on Γ.
If X represents a norm space having norm ‖ · ‖X, then we introduce C([0, T], X) the

set of functions υ ∈ C(ΛT) ≡ C0,0,0(ΛT) so that υ(·, t) ∈ X with t ∈ [0, T], and

‖υ‖C([0,T],X) = max
0≤t≤T

‖υ(·, t)‖X ≤ ∞,

where ΛT = Ω× (0, T].
Suppose that Cp,q,s(ΛT) is the set of functions υ(x, y, t) so that ∂i+j+nυ

∂xi∂yj∂tn is continuous

over ΛT with 0 ≤ i ≤ p, 0 ≤ j ≤ q, and 0 ≤ n ≤ s. For υ ∈ Cp,q,s(ΛT), we define ‖υ‖Cp,q,s

by:

‖υ‖Cp,q,s = max
0≤i≤p, 0≤j≤q, 0≤n≤s

max
(x,y,t)∈ΛT

∣∣∣∣ ∂i+j+nυ

∂xi∂yi∂tn

∣∣∣∣.
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Then, we define Lp(X) by:

Lp(X) = ν : ν(·, t) ∈ X, t ∈ [0, T]; ‖ν‖Lp(X) < ∞,

in which,

‖ν‖Lp(X) =

( ∫ T

0
‖ν‖p(X)dt

)1/p

, ‖ν‖L∞(X) = sup
0≤t≤T

‖ν‖X .

3. Discretization

Suppose that {tn}K
n=0 is a partition of temporal interval [0, T] so that tn = nk, k = T/K.

Then, we define the convolution quadrature [39,40] to discretize the fractional integral
term by:

Q(α)
n (φ) = kα

n

∑
j=0

q(α)n−jφ
j + kα q̃(α)n φ0 ≈

∫ t

0
β(tn − s)φ(s)ds, (4)

where the quadrature weights q(α)n−j can be computed by their generating power series:

β̂[σ(z)] =
[

1
2
(3− 4z + z2)

]−α

=
∞

∑
j=0

q(α)j zj,

in which β̂ represents the Laplace transform of the convolution kernel.
Now, we employ the correction quadrature weights q̃(α)n for discretizing the integral

with the second-order accuracy as follows:

kα
n

∑
j=0

q(α)n−j + kα q̃(α)n =
1

Γ(α)

∫ tn

0
(tn − s)α−1ds =

1
Γ(α + 1)

tα
n ≤ C(T), (5)

such that the quadrature formula becomes exact for constant. In the following lemma, we
represent the quadrature error by:

E(φ)(α)(tn) =
∫ tn

0 β(tn − s)φ(s)ds−Q(α)
n (φ).

Lemma 1 ([41]). Assume that φ is a real, continuously differentiable function, with φtt integrable
and continuous over (0, T). Then, the following error of the fractional quadrature rule is derived by:

|E(φ)(α)(tn)| ≤ Ck1+α, n ≥ 1.

Then, we present several lemmas required in the derivation of the error estimates.
First, we define a map W, which plays an important role in the theoretical analysis. Let u
be the solution of (1). Then, the differentiable map W : [0, T]→M(δ) is defined by:

∆(u−W) = 0, on Γ× [0, T], t > 0. (6)

To formulate the ADIOSC approach for the hyperbolic integrodifferential Equations (1)–(3),
we restate (1) as a system of equations by letting φ = ∂u

∂t . Then, the relation (1) converts to:

f (x, y, t) +
∫ t

0
β(t− s)∆u(x, y, s) =

∂φ

∂t
− µ∆u(x, y, t), t ∈ (0, T], (x, y) ∈ Ω. (7)

Regarding the convolution quadrature defined in (4) with second-order accuracy, the OSC
approach for the approximation of (1) is to find {Un}K

n=1 ∈ M(δ) over Γ fulfilling:

∂tΦn − µ∆Un+ 1
2 = kα

( n

∑
p=0

q(α)n−p∆Up+ 1
2 + q̃(α)

n+ 1
2
∆U0

)
+ f n+ 1

2 , 1 ≤ n ≤ K, (8)
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in which,

Φn+1 = ∂tUn+1 =
Un+1 −Un

k
, Un+ 1

2 = (Un + Un+1)/2, ∂tΦn =
Φn+1 −Φn

k
. (9)

Note: Φn ∈ M(δ) is an approximation of φn, n = 0, 1, . . . , K in (7). We choose the initial

value U0 = W0, defined by (6) with u replaced by v and Φ0 =

(
∂W
∂t

)
0
, obtained by

differentiating (6) with respect to t and replacing ∂u
∂t by ν. If we solve (9) for Un+l (l =

{1, 1
2}) and substitute the resulting expression in (8) with λ = µ + q(α)0 kα, we have:

∂tΦn − λk
2

∆Φn+1 = kα

( n−1

∑
p=0

q(α)n−p∆Up+ 1
2 + q̃(α)

n+ 1
2
∆U0

)
+ f n+ 1

2 + λ∆Un on Γ, 1 ≤ n ≤ K. (10)

If En+1 = Φn+1 −Φn, then we can rewrite (9) and (10) as:

En+1 − λk2

4
∆En+1 = Fn+1 on Γ, 1 ≤ n ≤ K, (11)

in which,

Fn+1 = k
[

kα

( n−1

∑
p=0

q(α)n−p∆Up+ 1
2 + q̃(α)

n+ 1
2
∆U0

)
+ f n+ 1

2 (η(δx), η(δy)) + λ∆Un +
λk
2

∆Φn
]

. (12)

If the small term,

λ2k4

16
∂4

∂x2∂y2 En+1 (13)

is added to the left-hand side of (11), then we have:[
1− λk2

4
∆ +

λ2k4

16
∂4

∂x2∂y2

]
En+1 = Fn+1 on Γ, 1 ≤ n ≤ K, (14)

from which we obtain the approximation:

Un+1 = Un + kΦn + kEn+1. (15)

We now rewrite Equations (14) and (15) as an ADI matrix approach. For this aim, suppose
that {ϕi}M1

i=1 and {ψj}M2
j=1 represent bases for the subspace M(r, δy) and M(r, δx), respec-

tively, so that M2 = (r− 1)Ny and M1 = (r− 1)Nx. Make:

Un(x, y) =
M1

∑
i=1

M2

∑
j=1

α
(n)
ij ϕi(x)ψj(y), (16)

and,

Φn(x, y) =
M1

∑
i=1

M2

∑
j=1

β
(n)
ij ϕi(x)ψj(y), (17)

in which,

α(n) = [α
(n)
11 , α

(n)
12 , . . . , α

(n)
1M2

, α
(n)
21 , . . . , α

(n)
M1 M2

]T , β(n) = [β
(n)
11 , β

(n)
12 , . . . , β

(n)
1M2

, β
(n)
21 , . . . , β

(n)
M1 M2

]T .
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Define:

Ax = {(ax
ij)

M1
i,j=1, ax

ij = −ϕ
′′
j (σ

x
i )}, Bx = {(bx

ij)
M1
i,j=1, bx

ij = ϕj(σ
x
i )},

Ay = {(ay
ij)

M2
i,j=1, ay

ij = −ψ
′′
j (σ

y
i )}, By = {(by

ij)
M2
i,j=1, by

ij = ψj(σ
y
i )},

and,

{F(n)} = [F(n)(σx
1 , σ

y
1 ), F(n)(σx

1 , σ
y
2 ), . . . , F(n)(σx

1 , σ
y
M2

), F(n)(σx
2 , σ

y
1 ), . . . , F(n)(σx

M1
, σ

y
M2

)]T .

Then, Equation (14) may be written in the following matrix-vector form with γ
(n+1)
ij =

β
(n+1)
ij − β

(n)
ij ,

[
B1 ⊗ B2 +

λk2

4
(A1 ⊗ B1 + B1 ⊗ A1) +

λ2k4

16
A1 ⊗ A2

]
γ(n+1) = F(n+1), (18)

α(n+1) = α(n) + k
[

β(n) + γ(n+1)
]

, (19)

and from Equation (12), the components of the vector F(n+1) in Equation (18) are given by:

F(n+1) =k(A1 ⊗ B1 + B1 ⊗ A1)

[
kα

( n−1

∑
p=0

q(α)n−pα(p+ 1
2 ) + q̃(α)

n+ 1
2
∆α(0)

)
+ λα(n) +

λk
2

β(n)
]

+ k f n+ 1
2 (η(δx), η(δy)).

Then, relation (18) becomes:[
(Bx +

λk2

4
Ax)⊗ IM2

]
{ν∗}n+1 = {F(n+1)},[

IM1 ⊗ (By +
λk2

4
Ay)

]
{γ(n+1)} = {ν∗}n+1, 1 ≤ n ≤ K.

(20)

Therefore, we obtain β(n+1) = γ(n+1) + β(n) from Equation (20) in the standard way. Then,
the vector α(n+1) is computed from Equation (19). Taking α(n+1) in Equation (16), we
achieve the desired Un+1, 1 ≤ n ≤ K.

4. Error Analysis of the ADIOSC Approach

In this section, we analyze the stability and convergence analysis of the ADIOSC
approach in L2-norm.

4.1. Stability of the ADIOSC Approach

Here, we introduce the following lemmas to examine the stability of the ADIOSC
approach.

Lemma 2 ([14]). For any V, U ∈ M(δ), we have:

〈−∆V, U〉 = 〈V,−∆U〉, (21)

〈−∆V, V〉 ≥ C‖∇V‖2 ≥ 0, (22)

〈−∆V, U〉 ≤ C‖∇V‖‖∇U‖. (23)
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Lemma 3. The norms ‖ · ‖D and | · | are equivalent over M(δ).

Theorem 1. Suppose Un ∈ M(δ) (1 ≤ n ≤ K), satisfies (14) and (15) with U0 = W0, then there
exists a positive constant C, independent of h and k, such that:

|Un|D ≤ |U0|D + Ck
K−1

∑
n=0
| f n+ 1

2 |D +
λk2

4

∥∥∥∥∂2Φ0

∂x∂y

∥∥∥∥+ ‖∇U0‖+ |Φ0|D.

Proof. Let us rewrite Equation (14) in the following form:

∂tΦn − µ∆Un+ 1
2 +

λ2k4

16
∂4∂tΦn

∂x2∂y2 = kα(
n

∑
p=0

q(α)n−p∆Up+ 1
2 + q̃(α)

n+ 1
2
∆U0) + f n+ 1

2 , 1 ≤ n ≤ K. (24)

Using the inequalities:

〈∂tΦn, Φn+ 1
2 〉 ≥ 1

2k
(|Φn+1|2D − |Φn|2D), (25)

〈∆Un+ 1
2 , Φn+ 1

2 〉 = 1
2

∂t〈∆Un+1, Un+1〉, (26)

〈
∂4∂tΦn

∂x2∂y2 , Φn+ 1
2

〉
≥ 1

2
∂t

〈
∂4Φn+1

∂x2∂y2 , Φn+1
〉

, 1 ≤ n ≤ K, (27)

then applying the inner product of both sides of (24) with Φn+ 1
2 , for 1 ≤ n ≤ K, we obtain:

1
2k

(|Φn+1|2D − |Φn|2D)−
µ

2
∂t〈∆Un+1, Un+1〉+ λ2k4

32
∂t

〈
∂4Φn+1

∂x2∂y2 , Φn+1
〉

=

〈
Q(α)

n+ 1
2
(∆U), Φn+ 1

2

〉
+ 〈 f n+ 1

2 , Φn+ 1
2 〉. (28)

Now pay attention to the first term on the right-hand side of (28), and with the definition
in (4), we have:〈

Q(α)

n+ 1
2
(∆U), ∂tUn+1

〉
= ∂t

〈
Q(α)

n+1(∆U), Un+1
〉
−
〈

∂tQ
(α)

n+ 1
2
(∆U), Un+ 1

2

〉
− 〈kα−1q0∆Un+1, Un+1〉, (29)

where,〈
∂tQ

(α)

n+ 1
2
(∆U), Un+ 1

2

〉
=

〈
kα(

n

∑
p=0

∂tq
(α)
n−p∆Up+ 1

2 + ∂t q̃
(α)

n+ 1
2
∆U0), Un+ 1

2

〉
, (30)

and,

∂t

〈
Q(α)

n+1(∆U), Un+1
〉

=
1
k

[〈
Q(α)

n+1(∆U), Un+1
〉
−
〈

Q(α)
n (∆U), Un

〉]
. (31)

From Lemma 2, we know:

−〈kα−1q0∆Un+1, Un+1〉 ≥ 0. (32)
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Using Equations (30) and (31), dropping the positive term (32) in (29), we have:〈
Q(α)

n+ 1
2
(∆U), ∂tUn+1

〉
≤ ∂t

〈
Q(α)

n+1(∆U), Un+1
〉
−
〈

∂tQ
(α)

n+ 1
2
(∆U), Un+ 1

2

〉
. (33)

Multiplying (28) by 2k and summing over n = 0, . . . , N − 1, we obtain:

|ΦN |2D − µ〈∆UN , UN〉+ λ2k4

16

∥∥∥∥ ∂2ΦN

∂x∂y

∥∥∥∥2

− 2k
N−1

∑
n=0

∂t〈Q(α)
n+1(∆U), Un+1〉

+ 2k
N−1

∑
n=0
〈∂tQ

(α)

n+ 1
2
(∆U), Un+ 1

2 〉 ≤ Ck
N−1

∑
n=0

(|Φn+ 1
2 |2D + | f n+ 1

2 |2D)

+
λ2k4

16

∥∥∥∥ ∂2Φ0

∂x∂y

∥∥∥∥2

+ ‖∇U0‖2 + |Φ0|2D.

(34)

Again, noting that λ2k4

16

∥∥∥∥ ∂2ΦN

∂x∂y

∥∥∥∥2

≥ 0, dropping this positive term in (34), using Lemma 2

that −µ〈∆UN , UN〉 ≥ C‖∇UN‖2 and the Grönwall inequality, we have:

|ΦN |2D + C‖∇UN‖2 ≤
∣∣∣∣2k

N−1

∑
n=0

∂t〈Q(α)
n+1(∆U), Un+1〉

∣∣∣∣+ 2k
∣∣∣∣ N−1

∑
n=0
〈∂tQ

(α)

n+ 1
2
(∆U), Un+ 1

2 〉
∣∣∣∣

+ Ck
N−1

∑
n=0

(|Φn+ 1
2 |2D + | f n+ 1

2 |2D) +
λ2k4

16

∥∥∥∥ ∂2Φ0

∂x∂y

∥∥∥∥2

+ ‖∇U0‖2 + |Φ0|2D.

(35)

For the first term on the right-hand side of (35), we have:∣∣∣∣k N−1

∑
n=0

∂t〈Q(α)
n+1(∆U), Un〉

∣∣∣∣ = ∣∣∣∣〈Q(α)
N (∆U), UN〉

∣∣∣∣ = ∣∣∣∣kα
N−1

∑
p=0

q(α)N−p〈∆Up, UN〉
∣∣∣∣

≤ Ckα
N−1

∑
p=0

q(α)N−p(
1
2
|∇Up|2D +

1
2
|∇UN |2D).

(36)

For q ∈ C1, with (5), we know:

kα
n

∑
j=0

q(α)n−j + kα q̃(α)n =
1

Γ(α)

∫ tn

0
(tn − s)α−1ds =

1
Γ(α + 1)

tα
n ≤ C(T), (37)

then we get:

∂t

(
kα

n

∑
j=0

q(α)n−j + kα q̃(α)n

)
≤ C. (38)

By estimating the second term on the left-hand side of (35) and using Equations (4) and (38),
we can write:∣∣∣∣k N−1

∑
n=0

〈
∂tQ

(α)

n− 1
2
(∆U), Un− 1

2

〉∣∣∣∣ = ∣∣∣∣kα+1
〈 N−1

∑
n=0

n

∑
p=0

∂tq
(α)

n−p+ 1
2
∆Up, Un− 1

2

〉∣∣∣∣
≤ k

N−1

∑
p=0
|∇Up− 1

2 |2D.

(39)
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Letting (36) and (39) in (35), we have:

|ΦN |2D + C‖∇UN‖2 ≤ Ckα
N−1

∑
p=0

q(α)N−p(|∇Up|2D + |∇UN |2D) + 2k
N−1

∑
p=0
|∇Up− 1

2 |2D

+ Ck
N−1

∑
n=0

(|Φn+ 1
2 |2D + | f n+ 1

2 |2D) +
λ2k4

16

∥∥∥∥∂2Φ0

∂x∂y

∥∥∥∥2

+ ‖∇U0‖2 + |Φ0|2D.

(40)

We now consider the term |ΦN |2D in (40) that:

|ΦN |2D =
1
k2 |U

N+1 −UN |2D ≥
1
k2 (|U

N+1|D − |UN |D)2, 1 ≤ N ≤ K. (41)

Using the Grönwall inequality for (40), with (41), we have:

1
k2 (|U

N+1|D − |UN |D)2 + C‖∇UN‖2 ≤Ck
N−1

∑
n=0
| f n+ 1

2 |2D +
λ2k4

16

∥∥∥∥ ∂2Φ0

∂x∂y

∥∥∥∥2

+ ‖∇U0‖2 + |Φ0|2D,

(42)

where C‖∇UN‖2 ≥ 0, and we obtain:

1
k
(|UN+1|D − |UN |D) ≤Ck

N−1

∑
n=0
| f n+ 1

2 |D +
λk2

4

∥∥∥∥∂2Φ0

∂x∂y

∥∥∥∥+ ‖∇U0‖+ |Φ0|D. (43)

Changing index N to n, summing for n from 0 to K− 1, then we obtain:

|UK|D ≤|U0|D + Ck
K−1

∑
n=0
| f n+ 1

2 |D +
λk2

4

∥∥∥∥∂2Φ0

∂x∂y

∥∥∥∥+ ‖∇U0‖+ |Φ0|D, (44)

which finishes the proof of the theorem.

4.2. Convergence of the ADIOSC Approach

Let us introduce the intermediate projections as differentiable maps W : [0, T]→ M(δ)
in order to achieve an optimal convergence order satisfying [42] Equation (2.19).

〈∆(u−W), w〉 = 0, w ∈ M(δ), (45)

in which u represents the solution of (1) over Γ× [0, T]. In the following, we will obtain the
estimates on u−W and its temporal derivatives.

For obtaining an optimal order L2 error estimate for the ADIOSC approximation, let
us remember the following two lemmas.

Lemma 4 ([20]). For ∂lu/∂tl ∈ Hr−j+3, with 0 ≤ t ≤ T, 0 ≤ l, j ≤ 1, and W introduced in the
relation (21), we have: ∥∥∥∥∥∂l(u−W)

∂tl

∥∥∥∥∥
H j

≤ Chr−j+1

∥∥∥∥∥∂lu
∂tl

∥∥∥∥∥
Hr−j+3

,

where the constant C is independent of h.

Lemma 5 ([19]). For any ∂iu/∂ti ∈ Hr+3, with 0 ≤ t ≤ T, for i = 0, 1, we have:∣∣∣∣∣∂l+i(u−W)

∂xl1 ∂yl2 ∂ti

∣∣∣∣∣
D

≤ Chr+1−l
∥∥∥∥∂iu

∂ti

∥∥∥∥
Hr+3

,

in which 0 ≤ l = l1 + l2 ≤ 4.
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The discrete problem (14) generates a system of algebraic equations at the nodes t = tn.
Therefore, we can indicate that the obtained system includes a unique solution at every
temporal step t = tn based on the a priori bound for Un. In the following, we obtain an
error estimate.

Theorem 2. Suppose u is the solution of (1)–(3), if u ∈ C2,0,3 ∩ C0,2,3 ∩ C0,0,4, and ∂u
∂t ∈

C([0, T], Hr+3), Un (1 ≤ n ≤ K), satisfies (14) and (15) with U0 = W0. Then, we have:

|u(tn)−Un|D ≤ C(hr+1 + k2).

Proof. For 1 ≤ n ≤ K, it is easy to show that (14) is equivalent to:〈[
1− λk2

4
∆ +

λ2k4

16
∂4

∂x2∂y2

]
En+1, v

〉
= 〈Fn+1, v〉, v ∈ M(δ), 1 ≤ n ≤ K, (46)

where:

Fn+1 = k
[

kα

( n−1

∑
p=0

q(α)n−p∆Up+ 1
2 + q̃(α)

n+ 1
2
∆U0

)
+ f n+ 1

2 (σli(δx), σkj(δy)) + λ∆Un +
λk
2

∆Φn
]

. (47)

On substituting for En+1 and dividing by k, we take the form:〈
∂tΦn, v

〉
−
〈

µ∆Un+ 1
2 , v
〉
+

〈
λ2k4

16
∂4∂tΦn

∂x2∂y2 , v
〉

=

〈
kα(

n

∑
p=0

q(α)n−p∆Up+ 1
2 + q̃(α)

n+ 1
2
∆U0), v

〉

+

〈
f n+ 1

2 , v
〉

, v ∈ M(δ), 1 ≤ n ≤ K,

(48)

∂tUn+1 = Φn+1 =
Un+1 −Un

k
, 1 ≤ n ≤ K. (49)

From (1), it follows that:〈
∂tφ

n, v
〉
−
〈

µ∆un+ 1
2 , v
〉
+

〈
λ2k4

16
∂4∂tφ

n

∂x2∂y2 , v
〉

=

〈
kα(

n

∑
p=0

q(α)n−p∆up+ 1
2 + q̃(α)

n+ 1
2
∆u0), v

〉

+

〈
f n+ 1

2 , v
〉
+

〈
∂tφ

n −
(

∂u
∂t

)
n+ 1

2

, v
〉
+ 〈E(∆u)(α)(tn+1), v〉, v ∈ M(δ), 1 ≤ n ≤ K,

(50)

∂tun+1 = φn+ 1
2 + ∂tun+1 −

(
∂u
∂t

)
n+1/2

, 1 ≤ n ≤ K. (51)

Based on W introduced in Equation (45), we can write:

u(tn)−Un = (u(tn)−Wn)− (Un −Wn) = ηn − ξn, 1 ≤ n ≤ K, (52)

φn −Φn =

(
φn −

(
∂W
∂t

)
n

)
−
(

Φn −
(

∂W
∂t

)
n

)
= η̂n − ξ̂n, 1 ≤ n ≤ K. (53)

Subtracting Equation (50) from Equation (48) and Equation (51) from Equation (49), and
using Equations (45) and (52) yields:〈

∂t ξ̂
n, v
〉
−
〈

µ∆ξn+ 1
2 , v
〉
+

〈
λ2k4

16
∂4∂t ξ̂

n

∂x2∂y2 , v
〉
−
〈

kα(
n

∑
p=0

q(α)n−p∆ξ p+ 1
2 + q̃(α)

n+ 1
2
∆ξ0), v

〉
= 〈ζn, v〉, v ∈ M(δ), 1 ≤ n ≤ K,

(54)

∂tξ
n = ξ̂n+ 1

2 − ρn, 1 ≤ n ≤ K, (55)
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where,

ζn = ∂tη̂
n − ∂tΦn +

(
∂φ

∂t

)
n+1/2

+
λ2k4

16
∂4

∂x2∂y2 (η̂
n − φn) + E(∆η)(α)(tn+1), (56)

ρn = η̂n+1/2 − ∂tη
n+1 + ∂tun+1 −

(
∂u
∂t

)
n+1/2

. (57)

Note that the bound of E(∆η)(α)(tn+1) has been given in Lemma 1.
In Equation (54), we choose v = ξ̂n+ 1

2 = ∂tξ
n + ρn, (from (55)), and use the definition

in (4), then:〈
∂t ξ̂

n, ξ̂n+ 1
2

〉
− µ

〈
∆ξn+ 1

2 , ∂tξ
n
〉
+

λ2k4

16

〈
∂4∂t ξ̂

n

∂x2∂y2 , ξ̂n+ 1
2

〉
−
〈

Q(α)

n+ 1
2
(∆ξ), ξ̂n+ 1

2

〉
= 〈ζn, ξ̂n+ 1

2 〉+ µ

〈
∆ξn+ 1

2 , ρn
〉

, 1 ≤ n ≤ K.
(58)

Now, for 1 ≤ n ≤ K, with ξ0 = 0, using (4), the fourth term on the left-hand side of (58) can
be stated as:〈

Q(α)

n+ 1
2
(∆ξ), ∂tξ

n
〉

= ∂t

〈
Q(α)

n+1(∆ξ), ξn
〉
−
〈

∂tQ
(α)

n− 1
2
(∆ξ), ξn− 1

2

〉
− 〈kα−1q0∆ξn, ξn〉, (59)

where, 〈
∂tQ

(α)

n− 1
2
(∆ξ), ξn− 1

2

〉
=

〈
kα

(
n

∑
p=0

∂tq
(α)
n−p∆ξ p− 1

2 + ∂t q̃
(α)

n− 1
2
∆ξ0

)
, ξn− 1

2

〉

=

〈
kα

n

∑
p=0

∂tq
(α)
n−p∆ξ p− 1

2 , ξn− 1
2

〉
,

(60)

and,

∂t

〈
Q(α)

n+1(∆ξ), ξn
〉

=
1
τ

[〈
Q(α)

n+1(∆ξ), ξn+1
〉
−
〈

Q(α)
n (∆ξ), ξn

〉]
. (61)

From a simple calculation, it is easy to know that:〈
∂4∂t ξ̂

n

∂x2∂y2 , ξ̂n+ 1
2

〉
≥ 1

2
∂t

〈
∂4ξ̂n

∂x2∂y2 , ξ̂n
〉

,
〈

∂t ξ̂
n, ξ̂n+ 1

2

〉
≥ 1

2
∂t〈ξ̂n, ξ̂n〉, (62)

and,

−
〈

∆ξn+ 1
2 , ∂tξ

n
〉

= −1
2

∂t〈∆ξn, ξn〉, 1 ≤ n ≤ K. (63)

Using (59)–(63) for the left-hand side of (58), Lemma 2 for the second term on the right-hand
side, and Young’s inequality that ab ≤ a2+b2

2 (a, b ∈ R), it is easy to see that:

∂t

[〈
ξ̂n, ξ̂n

〉
− µ

〈
∆ξn, ξn

〉
+

λ2k4

16

〈
∂4 ξ̂n

∂x2∂y2 , ξ̂n
〉
−
〈

Q(α)
n+1(∆ξ), ξn

〉]
− 〈kα−1q0∆ξn+ 1

2 , ξn+ 1
2 〉

+

〈
∂tQ

(α)

n− 1
2
(∆ξ), ξn− 1

2

〉
≤ C(|ζn|2D + |ξ̂n+ 1

2 |2D + µ|∇ξn+ 1
2 |2D + |∇ρn|2D), 1 ≤ n ≤ K.

(64)
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In view of (22) in Lemma 2, we conclude that the fifth term in the left-hand side form (64)
is the non-negative term:

kα−1q0〈∆ξn+ 1
2 , ξn+ 1

2 〉 ≥ kα−1q0‖∇ξn+ 1
2 ‖2 ≥ 0. (65)

Dropping the positive term (65) in (64), multiplying (64) by k, and summing from n = 0 to
n = K− 1, and using the fact that ξ0 = ξ̂0 = 0, we obtain:

|ξ̂K |2D − µ〈∆ξK , ξK〉+ λ2k4

16

∥∥∥∥ ∂2 ξ̂K

∂x∂y

∥∥∥∥2

≤
∣∣∣∣k K−1

∑
n=0

∂t〈Q(α)
n+1(∆ξ), ξn〉

∣∣∣∣
+ k

K−1

∑
n=0

∣∣∣∣〈∂tQ
(α)

n− 1
2
(∆ξ), ξn− 1

2 〉
∣∣∣∣+ Ck

K−1

∑
n=0

(|ξ̂n+ 1
2 |2D + µ|∇ξn+ 1

2 |2D) + k
K−1

∑
n=0

(|ζn|2D + |∇ρn|2D).
(66)

In view of (4) and (61), the first term in the right-hand side form (66) can be restated as:

k
K−1

∑
n=0

∂t〈Q(α)
n+1(∆ξ), ξn〉 = 〈Q(α)

K (∆ξ), ξK〉 = kα
K−1

∑
p=0

q(α)K−p〈∆ξ p, ξK〉, (67)

By virtue of Young’s inequality used above, we obtain:

kα
K−1

∑
p=0

q(α)K−p〈∆ξ p, ξK〉 ≤ Ckα
K−1

∑
p=0

q(α)K−p(
1
2
|∇ξ p|2D +

1
2
|∇ξK|2D). (68)

For q ∈ C1, with (5), we know that:

kα
n

∑
j=0

q(α)n−j + kα q̃(α)n =
1

Γ(α)

∫ tn

0
(tn − s)α−1ds =

1
Γ(α + 1)

tα
n ≤ C(T), (69)

then we have,

∂t(kα
n

∑
j=0

q(α)n−j + kα q̃(α)n ) ≤ C. (70)

Meanwhile, estimating the second term on the right-hand side of (66) and using (4), (70),
and (60), we obtain:

k
K−1

∑
n=0

〈
∂tQ

(α)

n− 1
2
(∆ξ), ξn− 1

2

〉
= kα+1

〈 K−1

∑
n=0

n

∑
p=0

∂tq
(α)

n−p+ 1
2
∆ξ p, ξn− 1

2

〉

≤ k
K−1

∑
p=0
|∇ξ p− 1

2 |2D.

(71)

From (22) in Lemma 2, we note that:

−〈∆ξK, ξK〉 ≥ ‖∇ξK‖2 ≥ 0, (72)

and,

λ2k4

16
k

K

∑
n=0

∥∥∥∥∂2ξ̂n+ 1
2

∂x∂y

∥∥∥∥2

≥ 0. (73)
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Dropping two positive terms (72) and (73) in (66), we have:

|ξ̂K |2D + |∇ξK |2D ≤ Ck
K−1

∑
n=0

(|ξ̂n+ 1
2 |2D +

λ

2
|∇ξn+ 1

2 |D) + k
K−1

∑
n=0

(|ζn|2D + |∇ρn|D)

+ Ck
K−1

∑
p=0
|∇ξ p− 1

2 |2D.

(74)

Then, (74) reduces to:

|ξ̂K|2D + (1− Cλ

4
)|∇ξK|2D ≤ Ck

K−1

∑
n=0

(|ξ̂n+ 1
2 |2D +

λ

2
|∇ξn+ 1

2 |D)

+ k
K−1

∑
n=0

(|ζn|2D + |∇ρn|D) + Ckα
K−1

∑
p=0

q(α)
K−p+ 1

2
|∇ξ p− 1

2 |2D.

(75)

Using the discrete Grönwall inequality, we obtain:

|ξ̂n|D ≤ Ck
K−1

∑
n=0

(|ζn|2D + |∇ρn|2D), (76)

for k sufficiently small. We use the following bounds:∥∥∥∥(∂φ

∂t

)
n+ 1

2

− ∂tφn

∥∥∥∥ ≤ Ck2, (77)

and, ∥∥∥∥ ∂4δtφ
n

∂x2∂y2

∥∥∥∥ ≤ C. (78)

Then, we obtain:

k
K−1

∑
n=0
|ζn|2D ≤ Ck2 + k

K−1

∑
n=0

∂tη̂
n +

λ2k4

16
k

K−1

∑
n=0

∂4δtη̂
n

∂x2∂y2 + E(η)(α)(tn+1). (79)

Since bound of ηn is known from Lemmas 4 and 5, with η̂n replaced by ηn, we obtain:

k
K−1

∑
n=0
|ζn|2D ≤ C(k4 + h2r+2), (80)

then it holds that,

k
K−1

∑
n=0
|∇ρn|2D ≤ C

[
k4 + k

K−1

∑
n=0
|η̂n+1/2|2D + k

K−1

∑
n=0
|∂tη

n|2D
]

≤ C
[

k4 +

∥∥∥∥∂η

∂t

∥∥∥∥2

L2(H1
0 )

+

∥∥∥∥∂η

∂t

∥∥∥∥2

L∞(H1
0 )

]
.

(81)

Then we have:

k
K

∑
n=0
|∇ρn|D ≤ C(k2 + hr+1). (82)

With (80) and (82) in (76), we arrive at the desired result.

Note that Theorem 2 is first proved in this paper, which shows the competitiveness of
OSC methods.
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5. Numerical Results

This section considers two numerical examples to verify that the proposed strategy
is accurate, applicable, and effective. In the numerical simulations, we use the space of
the piecewise Hermite bicubics, for which r = 3, with the standard value and scaled slope
basis functions on identical uniform partitions in both the x and y variable with Nx = Ny.
The IC is approximated by choosing U0 = Û0, the OSC elliptic projection of u0. To check
the proposed method, we define temporal and spatial convergence orders:

Ck = log2

(∥∥L∞(2N)
∥∥∥∥L∞(N)
∥∥
)

, Ch = log2

(∥∥L∞(2Nx)
∥∥∥∥L∞(Nx)
∥∥
)

,

respectively, where L∞ = max
1≤j≤N−1

|U(xj, T)− u(xj, T)| stands for the maximum norm (i.e.,

absolute error). Furthermore, all numerical results are calculated by MATLAB R2016b on a
personal computer with 4GB RAM.

Example 1. Let us consider the hyperbolic integrodifferential Equations (1)–(3) for (x, y) ∈
(0, 1)× (0, 1) at T = 1 with the exact solution:

u(x, y, t) = tα+3sin(πx)sin(πy),

thus, the associated forcing term is selected as:

f (x, y, t) = sin(πy)sin(πx)
(

2π2t2α+3 Γ(α + 4)
Γ(2α + 4)

+ 2π2tα+3 + (α + 3)(α + 2)tα+1
)

.

The ICs v(x, y) = ν(x, y) = 0 are obtained from the exact solution. Table 1 displays
the maximum norm errors L∞, spatial convergence orders Ch, and CPU run times (in
seconds) for temporal steps as k = 1

1000 , which accords to the fourth-order convergence in
the space variable. Table 2 reports the maximum norm errors L∞, temporal convergence
orders Ck, and CPU run times (in seconds) for h = k, which supports the second-order
accuracy in the time variable. We also give the CPU time for the ADIOSC method to
simulate the hyperbolic integrodifferential problem, which shows using a shorter time to
calculate desired results. Figures 1 and 2 visually show the second-order temporal and
fourth-order spatial accuracy of the fully discrete scheme by fixing related parameters,
which is consistent with the theoretical analysis.

Table 1. The maximum norm errors L∞ and spatial convergence rates Ch with temporal step k = 1
1000 .

Nx = Ny
α = 0.25 α = 0.5 α = 0.75

L∞ Ch CPU(s) L∞ Ch CPU(s) L∞ Ch CPU(s)

2 2.9832× 10−3 − 1.0776 2.8761× 10−3 − 0.9874 2.7865× 10−3 − 0.8468
4 1.8401× 10−4 4.0190 0.9796 1.7336× 10−4 4.0523 2.2420 1.6336× 10−4 4.0923 0.8571
8 8.7871× 10−6 4.3883 1.3376 7.9503× 10−6 4.4466 1.1716 6.8184× 10−6 4.5825 1.2096
16 5.1878× 10−7 4.0822 3.7028 5.7066× 10−7 3.8003 3.5713 8.1472× 10−7 3.0651 3.5900

Table 2. The maximum norm errors L∞ and temporal convergence rates Ck with h = k.

N
α = 0.25 α = 0.5 α = 0.75

L∞ Ck CPU(s) L∞ Ck CPU(s) L∞ Ck CPU(s)

16 4.0700× 10−3 − 3.4033× 10−2 2.9282× 10−3 − 2.8789× 10−2 2.9780× 10−3 − 2.1668× 10−2

32 1.0134× 10−3 2.0059 1.7277× 10−2 7.9555× 10−4 1.8800 1.7437× 10−2 9.2241× 10−4 1.6909 1.8405× 10−2

64 3.6099× 10−4 1.4891 4.1779× 10−2 1.9709× 10−4 2.0131 3.8693× 10−2 2.4596× 10−4 1.9070 3.1814× 10−2

128 5.6850× 10−5 2.6667 1.0558× 10−1 4.7291× 10−5 2.0592 1.1978× 10−1 6.2457× 10−5 1.9775 9.5469× 10−2

256 1.3096× 10−5 2.1181 2.7117× 10−1 1.1132× 10−5 2.0868 3.1955× 10−1 1.5427× 10−5 2.0174 2.8704× 10−1
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Figure 1. The spatial convergence orders of Example 1 when k = 1/1000.
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Figure 2. The temporal convergence orders of Example 1 when h = k.

Example 2. We consider the hyperbolic integrodifferential Equations (1)–(3) for (x, y) ∈ (0, 1)×
(0, 1) at T = 1 with the exact solution:

u(x, y, t) =
(

t + tα+3
)

sin(πx)sin(πy),

so that the associated source term is obtained by:

f (x, y, t) = sin(πy) sin(πx)
(

2π2t2α+3Γ(α + 4)
Γ(2α + 4)

+ 2π2tα+3

+ 2π2t + 2π2tα+1 Γ(2)
Γ(α + 2)

+ (α + 3)(α + 2)tα+1
)

.

The ICs v(x, y) = 0, ν(x, y) = sin(πx)sin(πy) are computed from the exact solution.
Tables 3 and 4 show the maximum norm errors L∞, spatial and temporal convergence, and
CPU times (in seconds) of the ADIOSC technique for α = 0.25, 0.5, 0.75. Table 3 lists the
maximum norm errors L∞, spatial convergence orders Ch, and CPU run times (in seconds)
for the temporal step as k = 1

2000 , which accords to the fourth-order convergence in the
space variable. Table 4 discusses the maximum norm errors L∞, temporal convergence
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orders Ck, and CPU run times (in seconds) for h = k, which supports the second-order
accuracy in the time variable. We also present the CPU running time of the ADIOSC scheme
to simulate the hyperbolic integrodifferential problem, which indicates using a shorter time
to compute a desired result.

Table 3. The maximum norm errors L∞ and spatial convergence rates Ch with temporal step k = 1
2000 .

Nx = Ny
α = 0.25 α = 0.5 α = 0.75

L∞ Ch CPU(s) L∞ Ch CPU(s) L∞ Ch CPU(s)

2 6.1678× 10−3 − 4.0305 6.7022× 10−3 − 4.1241 6.7399× 10−3 − 3.9646
4 3.9801× 10−4 3.9539 4.3535 4.1981× 10−4 3.9968 4.2544 4.2331× 10−4 3.9929 4.2929
8 2.3045× 10−5 4.1103 5.4502 2.2954× 10−5 4.1929 5.4879 2.2744× 10−5 4.2182 5.3585
16 1.1177× 10−6 4.3658 14.343 1.1482× 10−6 4.3213 14.256 1.0555× 10−6 4.4295 14.077

Table 4. The maximum norm errors L∞ and temporal convergence rates Ck with h = k.

N
α = 0.25 α = 0.5 α = 0.75

L∞ Ck CPU(s) L∞ Ck CPU(s) L∞ Ck CPU(s)

6 1.0631× 10−2 − 1.6929× 10−2 1.3011× 10−2 − 1.5590× 10−2 1.6680× 10−2 − 1.6576× 10−3

12 7.4165× 10−3 0.5195 2.6292× 10−3 5.6240× 10−3 1.2100 2.8282× 10−3 4.4871× 10−3 1.8943 2.8819× 10−3

24 1.9494× 10−3 1.9277 4.1437× 10−3 1.6935× 10−3 1.7316 4.3295× 10−3 1.6529× 10−3 1.4408 4.3514× 10−3

48 3.9667× 10−4 2.2970 7.9410× 10−3 3.9026× 10−4 2.1175 9.5093× 10−3 4.3759× 10−4 1.9173 8.7784× 10−3

96 5.7792× 10−5 2.7790 1.8284× 10−2 5.6877× 10−5 2.7785 1.9089× 10−2 7.2056× 10−5 2.6024 1.8466× 10−2

6. Conclusions

This paper formulated an ADIOSC numerical method for the hyperbolic integrodif-
ferential equation with a weakly singular kernel in two-dimension domain, from which
we have used the second-order convolution quadrature. It was shown that the proposed
method is stable and convergent with order two for time, and order four for space. Nu-
merical results illustrated efficiency and performance of the proposed ADIOSC method. In
our future work, we will consider compatible wavelet techniques, such as the Sinc meth-
ods [43–46] for solving Problems (1)–(3), which may obtain the exponential convergence
accuracy in the space direction.
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