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Abstract: This work is devoted to the procedure for constructing of a cyclically correlated random
process of a continuous argument as a mathematical model of cyclic signals in dynamic systems, which
makes it possible to consistently describe cyclic stochastic signals, both with regular and irregular
rhythms, not separating them, but complementing them within the framework of a single integrated
model. The class of cyclically correlated random processes includes the subclass of cyclostationary
(periodically) correlated random processes, which enable the use of a set of powerful methods of
analysis and the forecasting of cyclic signals with a stable rhythm. Mathematical structures that model
the cyclic, phase and rhythmic structures of a cyclically correlated random process are presented.
The sufficient and necessary conditions that the structural function and the rhythm function of the
cyclically correlated random process must satisfy have been established. The advantages of the
cyclically correlated random process in comparison with other mathematical models of cyclic signals
with a variable rhythm are given. The obtained results contribute to the emergence of a more complete
and rigorous theory of this class of random processes and increase the validity of the methods of their
analysis and computer simulation.
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1. Introduction

Cyclical phenomena and processes occupy one of the main places among phenomena
and processes of reality. Many processes have a cyclical structure in physical, chemical,
technical, biological, economic and social dynamic systems. The development of modern
information systems and technologies for the processing and simulation of cyclic signals of
various natures enables us to automate and substantially intensify the procedure for the
analysis, diagnosis and forecasting of the state of the systems in which they occur, opening
the possibility of conducting computer simulation experiments. Typical examples of such
systems include: computer systems of cardiac diagnostics; information systems for the
analysis and forecasting of cyclic economic processes; information systems of person’s
authentication from their biometric dynamic data; automated systems for the analysis and
forecasting of electric, gas, water and oil consumption; hardware generation and simulation
of cyclic signals in modern telecommunication systems.

The first decisive stage in the design of information systems for the processing and
simulation of cyclic signals is to create their mathematical models that adequately reflect the
important aspects of cyclic signals in terms of research tasks. Mathematical models of cyclic
phenomena and signals are devoted to a large number of scientific works. The classical
theory of oscillations has become significant in developing and spreading in relation to
the simulation and analysis of cyclic phenomena of different physical natures. The basic
mathematical apparatus of this theory is the apparatus of differential equations: linear
and nonlinear, deterministic and stochastic differential equations, ordinary differential
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equations and differential equations in partial derivatives [1–4]. This approach to the
analysis of oscillatory processes in dynamic systems is constructive, since it is modeling the
mechanism (algorithm) of the generation of the oscillations of the system under investiga-
tion and justifies the conditions under which the resulting process will have an oscillatory,
cyclic structure. However, in the processing of real cyclic signals in information systems,
for example, for a number of biological, economic and astrophysical cyclic signals, it is
not possible or too difficult to write a differential equation, the solution of which would
describe the investigated signals. It is also to note that in a number of applied problems
in the analysis of cyclic signals in information systems, there is no need to consider the
mechanism of their generation, since this greatly complicates the solution of these problems,
and therefore it is quite sufficient to analyze only the spatio-temporal structure of the cyclic
signal itself.

Actually, a number of other approaches deal with the modeling, methods of analy-
sis and forecasting of the spatio-temporal structure of cyclic signals in dynamic systems.
Among such approaches, it is possible to specify the spectral analysis of signals, in particular,
based on the mathematical apparatus of the Fourier series and the Fourier transformation,
which use harmonic, periodical and almost-periodical deterministic functions [5–7]. An-
other approach is a stochastic approach, based on the theory of random processes and
sequences. The stochastic approach to the modeling and processing of cyclic signals is
based on the spectral correlation theory of stationary random processes [8–10]; the theory
of cyclostationary and almost-cyclostationary random processes [11–24]; the theory of
periodic Markov random processes and chains [25–30]; the theory of periodic solutions of
stochastic difference and differential equations [31–33]; and the theory of linear periodic
random processes and fields [34–36].

The most significant results were obtained within the framework of the theory of
cyclostationary and almost-cyclostationary random processes, which has been successfully
developing for about 60 years. This theory covers a number of classes of random processes
of continuous and discrete arguments. These include: cyclostationary correlated stochastic
processes (wide-sense cyclostationary processes or periodically correlated random pro-
cesses); cyclostationary stochastic processes in the strict sense (periodically distributed
random processes); poly-periodic cyclostationary correlated stochastic processes (second-
order poly-periodic cyclostationary processes); almost-cyclostationary correlated stochastic
processes (second-order almost-cyclostationary processes, almost-cyclostationary processes
in the wide sense, almost-periodically correlated processes); and almost-cyclostationary
stochastic processes in the strict sense (almost-periodically distributed random processes).
These random processes will be fruitfully applied for the modeling and analysis of a wide
class of cyclic signals that occur in telecommunication, energy, astrophysical, mechanical
and biological dynamic systems [37–50].

Despite the presence of generally different classes of random processes in the theory
of cyclostationary random processes, all of them are based on the concepts of periodicity,
poly-periodicity and almost-periodicity of probabilistic characteristics of random processes
in both the wide and strict sense. The concept of periodicity (stochastic or deterministic)
does not cover in full the content of the concept of signal cyclicity in full, but only partially,
since the property of periodicity postulates the repetition of the values or the probabilistic
characteristics of the cyclic signal through a strictly prescribed number, which is called a
period, but, in fact, such strict repeatability in the time or/and space of the structure of
many cyclic signals in dynamic systems is absent. Deterministic periodic and stochastic
periodic functional dependences only partially adequately describe the cyclic structure of
the investigated signals, namely, the cyclic signals with a stable (regular) rhythm. However,
in cases in which the rhythm (tempo) of the oscillatory process changes significantly, due to
the lack of adaptation to changes in the rhythm of oscillation, these mathematical models
are inadequate, which leads to low informativeness of diagnostic, authentication and
prognostic features in information systems for diagnostics, authentication and prediction
by cyclic signals with variable (irregular) rhythm. Typical examples of cyclic signals with a
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variable rhythm are the signals of the cardiovascular dynamic system of the human body
(electrocardio signals, magnetocardio signals, phonocardio signals, etc.), cyclic economic
processes (indexes of business activity of all sectors of the economy, gross national product
of countries, seasonal indices of enterprise incomes, etc.) and self-organization processes
on the surface of materials.

Almost-cyclostationary stochastic processes are a broad class of random processes,
since they are based on the concept of almost-periodicity, which is not entirely equivalent
to the concept of cyclicity. Almost-cyclostationary stochastic processes do not reflect the
cyclical structure of the investigated signals, since the strategy of generalizing periodic
processes, when constructing almost periodic random processes, is based on class-forming
properties different from those of cyclicity. Namely, the definition of almost periodic
functions uses the approach of generalizing of periodic functions based on the possibility
of representing almost periodic functions in the form of an analogue of the Fourier series,
in which the fact of the multiplicity of frequencies and periods of the components of this
series, which is characteristic of periodic functions, is no longer required. In particular, it is
not quite adequate for the direct modeling and analyzing of cyclical signals with a variable
rhythm on the basis of almost-cyclostationary stochastic processes.

2. Related Work

There are several approaches for considering the variability of the rhythm of cyclic
signals, which take into account various deviations from the periodic model in both
deterministic and stochastic constructions. One of the approaches to modeling and forming
cyclic signals with variable rhythm is the use of modulation technologies for periodic
signals. In particular, in radiotransmission systems, by modulation, an information message
is inserted into the parameters of the high frequency periodic signal (carrying signal).
Carrying periodic signals, basically, are harmonic and pulsed high-frequency signals. If
the carrier is a harmonic signal, then amplitude, angular (frequency, phase) modulation
and combinations of these modulations are used, for example, in amplitude-frequency
modulation. The mathematical model of the resulting modulated signal is a quasi-harmonic
function, in which the variability of the rhythm is taken into account in such concepts as
the instantaneous angular frequency [51,52] and the instantaneous period [53]. In the case
in which a carrier is a pulsed periodic signal (meander), amplitude-pulse, frequency pulse,
phase-pulse and pulse-width modulation types, as well as some of their combinations,
are used. In this case, the variability of the rhythm is reflected in such concepts as the
frequency [54] and the variable period [55].

In the English-language scientific literature, the rhythm variability of the cyclic signal
in mathematical models within the framework of the correlation theory of random pro-
cesses has been studied in works [56–60]. In particular, in the works [56–58], mathematical
models of cyclic signals with irregular cyclicity (irregular cyclostationary process, time-
warped almost-cyclostationary process) have been built, and methods of analyzing such
signals have been developed. In the paper [59], such a mathematical model was applied
to electrocardio signals. In the work [60], a mathematical model of a cyclic signals was
developed, which was formed by using the scale transformation operator (time warping)
of a periodically correlated random process and multiplying the resulting (scaled) random
process by a deterministic function. Such a resulting random process is called the cyclosta-
tionary process with evolving periods and amplitudes. All these scientific works, when
defining new classes of random processes, move away from the classical definition of cy-
clostationary (almost-cyclostationary) correlated stochastic process and apply its time-scale
transformation (time warping). The main task of the methods for processing such processes
developed within the framework of these works is to reduce the new random processes to
a cyclostationary correlated stochastic processes or to an almost-cyclostationary correlated
stochastic processes.

Methods of reducing the cyclic signals with a variable rhythm to classic models and
processing methods of cyclic signals with regular cyclicity within the framework of the
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theory of cyclostationary stochastic process in the strict sense (more precisely within the
framework of the theory of linear periodic random functions) were first performed in
2000 and 2001 in Ukrainian-language scientific papers [61–63], which concerned the study
of a wide class of cardiac signals in computer diagnostic systems. In these works, the
concept of the zone time structure of cyclic signals was introduced, which made it possible
to create mathematical models and methods for processing cyclic cardiac signals that took
into account the variability of time intervals between single-phase values in different cycles
of the cardiac signal and, consequently, made it possible to reduce the effect of “blurring”
of the statistical characteristics of heart signals by applying a sequence of static scaling and
shifting operators to the corresponding zones of the cardiac signal in all its cycles.

More general approaches and ideas regarding the consideration of variable rhythm
in mathematical models of cyclic signals that extend the approach of works [61–63] were
published in 2005–2008 [64–74] and were included in the dissertation [75], in which a
new theoretical foundation of mathematical modeling, methods of computer simulation,
sampling, statistical evaluation and the spectral analysis of cyclic signals in automated
information dynamic systems, was created. The results obtained in these works take into
account a wide range of possible attributes of cyclicity within the framework of determin-
istic, stochastic, fuzzy and interval modeling paradigms, and the significant structural
diversity of patterns of variability and commonality of the rhythm of cyclic signals. They
also have the means of adaptation to changes in rhythm of cyclic signals, which, in a
practical aspect, has increased the accuracy, reliability and level of informativeness of the
processing and simulation of signals with a cyclic space-time structure in intellectualized
information systems. Special attention in the works [64–75] was paid to mathematical
modeling and the processing of cyclic signals with a variable (irregular) rhythm. In partic-
ular, analytical dependencies between the rhythm functions of cyclic random processes,
which are connected through the time-scale transformation operator, were established,
which made it possible to analytically study the transformations of the rhythm of cyclic
stochastic signals. Methods of statistical evaluation of the probabilistic characteristics of
a cyclic random process and a vector of cyclic rhythmically connected random processes
have also been developed, which, due to adaptation to changes in the rhythm of cyclic
signals, significantly weaken the negative effect of “blurring” their statistical characteristics,
and due to taking into account the commonality of the rhythm of a set of interconnected
cyclic signals, enable compatible statistical analyses for the needs of complex computer
diagnostics and authentication based on a set of interconnected cyclic signals. These models
have been widely used in the tasks of modeling cyclic heart signals of different physical
nature (electrical, magnetic, acoustic) [76–78], economic cyclical processes [79], dynamic
biometric authentication signals [80], surface processes in materials science [81,82], and
processes in energetics [83].

However, despite the fruitful use of cyclic random processes (in a wide and strict
sense), there are almost no works that contain a complete procedure for constructing such
processes as well as the proofs of the necessary properties of cyclic random processes.
In particular, this also applies to the cyclically correlated random process, which takes
into account the cyclicity and stochasticity of cyclic signals within the framework of the
correlation theory of random processes and has effective means of taking into account
both the regularity and irregularity of the rhythm of cyclic signals in dynamic systems.
This article is devoted to the procedure of constructing of the cyclically correlated random
process of a continuous argument and to the establishment of its fundamental properties.

3. Results
3.1. The Main Requirements for the Model and Basic Concepts that Reflect the Cyclic, Phase, and
Rhythm Structures of the Signals

The main requirements for the model of cyclic signals are the following:
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(1) the model must be fully interpretable, namely, to consistently reflect at the formal
level the intuitive basic concepts that underlie the understanding of cyclical motion
(cyclic signal) and such constituent concepts as cycle, phase and rhythm;

(2) the class of models should, as a special case, include a class of periodically correlated
random processes (cyclostationary correlated stochastic process);

(3) the model must correctly display the variability of the rhythm of the simulated cyclic
signals;

(4) the model must enable the development of effective methods of statistical analysis,
forecasting and computer simulations of cyclic stochastic signals both with regular
and irregular rhythms.

According to the dissertation [75], in order to take into account the results of analyses of
the terminology and conceptual apparatus of the theory of the modeling and processing of
cyclic signals, as well as the significant homonymy and synonymy of the given terminology,
let’s give a non formal definitions of following basic concepts: “cyclic signal”, “cycle”,
“phase” and “rhythm”, which will be used within the framework of this article and in their
totality, in fact, constitute a conceptual (verbal) model of the cyclic signals.

1. The cyclic structure of signals exists only in relation to a certain set (in the partial case
of a one-element set) of attributes (characteristics, properties) of a signals (attributes of
signals cyclicity), for example, in relation to a set of their certain probabilistic charac-
teristics under a stochastic approach or in relation to its values under a deterministic
approach to signal modeling. All attributes of the cyclicity of the signal must be
consistent with each other regarding the phase and cyclic structures of the signal.

2. A cyclic by attributes signal is an ordered set of cycles.
3. Cycles are the smallest segments into which a cyclic by attributes signal can be divided,

and there is a similarity between these attributes and the same type of phase order in
them.

4. Phases: these are stages of deployment in the time or space of a cyclic signal. A cyclic
signal can be divided into sets of phases of the same type. The set of phases of the
same type contains all the phases that are contained only in different cycles of the
signal and have the same value of the cyclicity attribute. Each signal’s cycle consists
of an ordered set of phases of different types.

5. Any cyclic signal is characterized by its rhythm, which is its property, which sets the
values of time (spatial) intervals (distances) between the phases of the same type of
the cyclic signal for all its cycles and phases.

We note that in this paper, since the modeling of cyclic signals is within the framework
of the correlation theory of random processes, we understand the mathematical expectation
and correlation function of the investigated signals to be its attributes of cyclicity.

3.2. Development of Mathematical Model of the Cyclic Signal within the Framework of the
Correlation Theory of Random Processes

The procedure for building the model is the correct sequential formalization of all
components of the conceptual (informal) model of the cyclic signal. Putting correctly the
abstract mathematical objects and structures into conformity with the basic notions of the
conceptual model mentioned above, we will develop the mathematical foundations of
the theory of the modeling and processing of cyclic signals within the framework of the
correlation theory of random processes.

In the general, the mathematical model of the cyclic signal is some random process
ξ(ω, t), ω ∈ Ω, t ∈ R ( ξ : R→ L2(Ω, P) ), given on the some probability space (Ω, F, P)
and on the set R of real numbers. The argument t can have a physical interpretation of the
spatial or time coordinate, and the set of values is a space of random variables (e.g., Hilbert
space L2(Ω, P)), given in the same probability space (Ω, F, P). The structure of the random
process ξ(ω, t), ω ∈ Ω, t ∈ R should reflect the basic properties of cyclic signals, its cyclic,
phase and rhythm structures which are reflected in the conceptual model presented above.
To attain this, we will give a series of such preliminary definitions that will be used in the
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mathematical modelling of cyclic signals within the framework of the correlation theory of
random processes.

According to the second statement of the conceptual model, any cyclic signal is a signal
that evolves in cycles, consists of cycles, and therefore it can be divided into segment-cycles
that do not intersect and, as a result, they are specified in the areas of definition, that are
not intersect. Moreover, in the general case, the set of such cycles should be a countable set.
Proceeding from such considerations about cyclic structure, we introduce mathematical
objects that formalize these representations.

Given a certain ordered (ordered by m) countable partition Dc
R = {Wcm , m ∈ Z}

of definition domain R that is for the elements of partition Dc
R, the following relations

are performed:

∪m∈Z Wcm = R, Wcm 6= Ø, Wcm1
∩Wcm2

= Ø, m1 6= m2, m, m1, m2 ∈ Z, (1)

where Wcm =
[
t̃m, t̃m+1

)
, m ∈ Z

(
0 < t̃m+1 − t̃m < ∞

)
. Set Dc =

{
t̃m, m ∈ Z

}
is a subset

of R, the elements of which correspond to the moments of the beginning of cycles of a
cyclic signal. Let us assume that the elements of the partition Dc

R = {Wcm ⊂W, m ∈ Z}
are mathematical objects that define the definition domains for cycles of a cyclic signal.

Due to the linear ordering of the numerical set R, elements Wcm of the partition Dc
R

are also linearly ordered numerical sets. Let us consider the elements Wcm of partition Dc
R

as carriers of relational systems 〈Wcm ,≤〉 with a binary relation of linear order ≤ (reflexive,
antisymmetric, transitive, consistent binary relation). Thus, the partition Dc

R generates or-
dered (ordered by m) countable family RSc

R = {〈Wcm ,≤〉, m ∈ Z} of subrelational systems
of a relational system 〈R,≤〉, between which there is an isomorphism with respect to linear
order ≤, namely:

(a) there is a bijection (we will denote its sign “⇔ ”) between Wcm1
and Wcm2

(m1, m2 ∈ Z),
namely: any one t ∈ Wcm1

corresponds to only one t′ ∈ Wcm2
(t→ t′) and any one

t′ ∈ Wcm2
corresponds to only one t ∈ Wcm1

(t′ → t), and for any different t1, t2 ∈ Wcm1
(t1 6= t2), their images t′1, t′2 ∈Wcm2

are different (t′1 6= t′2), and vice versa (we will say that
the elements t and t′ are bijective connected (or are in a bijective connection) regarding
bijection (bijective mapping)⇔ and is denoted as follows: t↔ t′ );

(b) the same type of linear ordering of sets Wcm1
and Wcm2

and takes place, namely
∀t1, t2 ∈ Wcm1

∃t′1, t′2 ∈ Wcm2
where t′1 ↔ t1, t′2 ↔ t2 and where such relation takes place

t′1 ≤ t′2 if t1 ≤ t2, and vice versa.
We carry out a series of important steps in the formalization of the cycles of the cyclic

signal itself as some functional relations with certain common properties. According to the
conceptual model, the ordering of the phases and cycles of the cyclic signal is postulated,
and it is argued that all the cycles have the same type of phase order. In order to reflect
these statements, we introduce the linear order in the random process ξ(ω, t), ω ∈ Ω, t ∈ R
itself and we will show an isomorphism with respect to the linear order of its segments,
which describe the cycles of a cyclic signal.

In this case, we will write the random process ξ(ω, t), ω ∈ Ω, t ∈ R as a set of pairs
(argument t, value ξ(ω, t)) ξ = {(t, ξ(ω, t)) : t ∈ R} and consider the bijective mapping
R⇔ ξ of the definition domain R of random process ξ on the random process ξ itself.
Such a bijective mapping (R⇔ ξ ) can always be constructed, because any element t ∈ R
corresponds to one and only one ordered pair (vector) (t, ξ(ω, t)) from ξ and vice versa, and
for the two different t1, t2 ∈ R, the corresponding ordered pairs (t1, ξ(ω, t1)), (t2, ξ(ω, t2))
are also different and vice versa.

The bijective mapping R⇔ ξ induces (generates) a linear order into the random
process ξ = {(t, ξ(ω, t)) : t ∈ R} itself, which in this case can be considered as a car-
rier of the relational system 〈ξ,≤2〉 with a binary relation of linear order ≤2. The or-
dinal type of ξ coincides with the ordinal type of the set R. Namely, for any two or-
dered pairs (t1, ξ(ω, t1)) ∈ ξ, (t2, ξ(ω, t2)) ∈ ξ, it is always possible to specify their order:
(t1, ξ(ω, t1)) ≤2 (t2, ξ(ω, t2)) if t1 ≤ t2 or (t2, ξ(ω, t2)) ≤2 (t1, ξ(ω, t1)) if t2 ≤ t1. In other
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words, the bijective mapping R⇔ ξ is an isomorphism between the relational system
〈R,≤〉 and the relational system 〈ξ,≤2〉 with respect to the binary relations of linear order
≤ and ≤2 ( 〈R,≤〉 ⇔ 〈ξ,≤2〉 ). Therefore, we will talk about ξ = {(t, ξ(ω, t)) : t ∈ R} as
about a linear ordered random process by the type of ordering of its domain R.

Due to the bijective mapping between R and ξ, the ordered countable partition
Dc

R = {Wcm , m ∈ Z} of domain R generates an ordered countable partition
Dc

ξ = {ξcm ⊂ ξ, m ∈ Z} of random process ξ = {(t, ξ(ω, t)) : t ∈ R}, where every ran-
dom process ξcm = {(t, ξ(ω, t)) ∈ ξ : t ∈Wcm} is the truncation of the random process
ξ = {(t, ξ(ω, t)) : t ∈ R} to the set Wcm . Namely, each set Wcm matches the random process
ξcm = {(t, ξ(ω, t)) ∈ ξ : t ∈Wcm} ⊂ ξ, which is its image concerning bijective mapping
R⇔ ξ . That is, every random process ξcm = {(t, ξ(ω, t)) ∈ ξ : t ∈Wcm} is the set of those
ordered pairs {(t, ξ(ω, t)) : t ∈Wcm} of the random process ξ, the argument t of which
belongs to Wcm(t↔ (t, ξ(ω, t)), t ∈Wcm).

Since the random process ξ is the carrier of the relational system 〈ξ,≤2〉, with its
partition Dc

ξ , it can always form the countable family RSc
ξ = {〈ξcm ,≤2〉, m ∈ Z} of the

subrelational systems of system 〈ξ,≤2〉. From the isomorphism between the subrelational
systems {〈Wcm ,≤〉, m ∈ Z} with respect to the binary relation of linear order ≤ due to
the isomorphism 〈R,≤〉 ⇔ 〈ξ,≤2〉 follows the isomorphism between the subrelational
systems {〈ξcm ,≤2〉, m ∈ Z} with respect to binary relation of linear order ≤2. Namely,
for any m1, m2 ∈ Z, arbitrary subrelational systems 〈ξcm1

,≤2〉 and 〈ξcm2
,≤2〉 from RSc

ξ

are isomorphic with respect to binary relation of linear order ≤2, and for any m ∈ Z,
the random process ξcm is the linear ordered random process by the type of ordering
of its domain Wcm . More precisely, the isomorphism between the subrelational systems
{〈ξcm ,≤2〉, m ∈ Z}means that:

(a) there is a bijective mapping between ξcm1
and ξcm2

( ξcm1
⇔ ξcm2

, m1, m2 ∈ Z ),
namely: any one (t, ξ(ω, t)) ∈ ξcm1

corresponds to only one (t′, ξ(ω, t′)) ∈ ξcm2
and any

one (t′, ξ(ω, t′)) ∈ ξcm2
corresponds to only one (t, ξ(ω, t)) ∈ ξcm1

, and for any different
(t1, ξ(ω, t1)), (t2, ξ(ω, t2)) ∈ ξcm1

(t1 6= t2), their images
(
t′1, ξ

(
ω, t′1

))
, (t′2, ξ(ω, t′2)) ∈ ξcm2

are different (t′1 6= t′2), and vice versa;
(b) due to identity of the types of ordering of the sets Wcm1

and Wcm2
, the types of or-

dering of random processes ξcm1
and ξcm2

are identical, that is, for any different ordered pairs
(t1, ξ(ω, t1)), (t2, ξ(ω, t2)) ∈ ξcm1

there exist such ordered pairs
(
t′1, ξ

(
ω, t′1

))
, (t′2, ξ(ω, t′2)) ∈

ξcm2
that are in bijective connection with ordered pairs (t1, ξ(ω, t1)), (t2, ξ(ω, t2)) ∈ ξcm1(

(t1, ξ(ω, t1))↔
(
t′1, ξ

(
ω, t′1

))
, (t2, ξ(ω, t2))↔ (t′2, ξ(ω, t′2))

)
, and the following relations

take place: (t1, ξ(ω, t1)) ≤2 (t2, ξ(ω, t2)) and
(
t′1, ξ

(
ω, t′1

))
≤2 (t′2, ξ(ω, t′2)), if t′1 ≤ t′2, t1 ≤

t2,
(
t′1 ↔ t1, t′2 ↔ t2

)
, and vice versa.

So, taking into account mentioned above, it can be argued that there are: (1) an isomor-
phism with respect to binary relations of linear order ≤ and ≤2 between relational systems
〈R,≤〉 and 〈ξ,≤2〉; (2) an isomorphism with respect to binary relation of linear order ≤ be-
tween elements of the countable family RSc

R = {〈Wcm ,≤〉, m ∈ Z} of subrelational systems
of relational system 〈R,≤〉; (3) an isomorphism with respect to binary relation of linear
order ≤2 between elements of the countable family RSc

ξ = {〈ξcm ,≤2〉, m ∈ Z} of subrela-
tional systems of relational system 〈ξ,≤2〉; and (4) an isomorphism with respect to binary
relations of linear order ≤ and ≤2 between arbitrary pair Wcm2

and ξcm1
, m1, m2 ∈ Z, taken

from the countable partition Dc
R = {Wcm , m ∈ Z} of domain R and from the countable

partition Dc
ξ = {ξcm ⊂ ξ, m ∈ Z} of random process ξ = {(t, ξ(ω, t)) : t ∈ R}.

Let us consider the ordered Cartesian square.
ξ2 = {((t1, ξ(ω, t1)), (t2, ξ(ω, t2))) : t1, t2 ∈ R} of the random process ξ, and the

bijective mapping R2 ⇔ ξ2 , which can always be constructed, because any ordered pair
(t1, t2) ∈ R2 corresponds to one and only one ordered pair ((t1, ξ(ω, t1)), (t2, ξ(ω, t2))) ∈ ξ2

and vice versa, and for the two different ordered pairs (t1, t2) ∈ R2 and (t3, t4) ∈ R2 the
corresponding ordered pairs ((t1, ξ(ω, t1)), (t2, ξ(ω, t2))), ((t3, ξ(ω, t3)), (t4, ξ(ω, t4))) ∈ ξ2

are also different, and vice versa.
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Note that the set R2 will be considered as the carrier of the relational system 〈R2,≤3〉,
with a binary relation of linear order≤3. Namely, for any two ordered pairs (t1, t2), (t3, t4) ∈
R2, it is always possible to specify their order: (t1, t2) ≤3 (t3, t4) if t1 ≤ t3 or (t3, t4) ≤3 (t1, t2)
if t3 ≤ t1. In the case when t1 = t3, we will have the following order: (t1, t2) ≤3 (t3, t4) if
t2 ≤ t4 or (t3, t4) ≤3 (t1, t2) if t4 ≤ t2.The bijective mapping R2 ⇔ ξ2 induces (generates)
a linear order in the Cartesian square ξ2 itself, which in this case can be considered as
a carrier of the relational system 〈ξ2,≤4〉 with a binary relation of linear order ≤4. The
ordinal type of ξ2 coincides with the ordinal type of the set R2. Namely, for any two ordered
pairs ((t1, ξ(ω, t1)), (t2, ξ(ω, t2))), ((t3, ξ(ω, t3)), (t4, ξ(ω, t4))) ∈ ξ2 it is always possible to
specify their order: ((t1, ξ(ω, t1)), (t2, ξ(ω, t2))) ≤4 ((t3, ξ(ω, t3)), (t4, ξ(ω, t4))) if t1 ≤ t3 or
((t3, ξ(ω, t3)), (t4, ξ(ω, t4))) ≤4 ((t1, ξ(ω, t1)), (t2, ξ(ω, t2))) if t3 ≤ t1. In the case when t1 =
t3, we will have such an order: ((t1, ξ(ω, t1)), (t2, ξ(ω, t2))) ≤4 ((t3, ξ(ω, t3)), (t4, ξ(ω, t4)))
if t2 ≤ t4 or ((t3, ξ(ω, t3)), (t4, ξ(ω, t4))) ≤4 ((t1, ξ(ω, t1)), (t2, ξ(ω, t2))) if t4 ≤ t2.

In other words, the bijective mapping R2 ⇔ ξ2 is an isomorphism between the rela-
tional system 〈R2,≤3〉 and the relational system 〈ξ2,≤4〉with respect to the binary relations
of linear order ≤3 and ≤4 ( 〈R2,≤3〉 ⇔ 〈ξ2,≤4〉 ). That is, we will talk about ξ2 as if about
a linear ordered one by the type of ordering of the R2 Cartesian square of the random
process ξ.

Let us form an ordered by m countable partition Dc
R2 = {Wcm ×R, m ∈ Z} of R2

based on the ordered countable partition Dc
R = {Wcm , m ∈ Z} of domain R. Due to

the linear ordering ≤3 of the set R2, the elements Wcm × R of the partition Dc
R2 are also

linearly ordered numerical sets. Let us consider the elements Wcm × R of partition Dc
R2

as the carriers of relational systems 〈Wcm × R,≤3〉 with a binary relation of linear order
≤3. Thus, the partition Dc

R2 generates ordered (ordered by m) countable family RSc
R2 =

{〈Wcm ×R,≤3〉, m ∈ Z} of subrelational systems of relational system 〈R2,≤3〉, between
which there is an isomorphism with respect to linear order ≤3, namely:

(a) there is a bijection between Wcm1
×R and Wcm2

×R (m1, m2 ∈ Z), namely: any one
(t1, t2) ∈Wcm1

×R corresponds to only one
(
t′1, t′2

)
∈Wcm2

×R
(
(t1, t2)→

(
t′1, t′2

))
and any

one
(
t′1, t′2

)
∈ Wcm2

× R corresponds to only one (t1, t2) ∈ Wcm1
× R

((
t′1, t′2

)
→ (t1, t2)

)
,

and for any different (t1, t2), (t3, t4) ∈ Wcm1
×R their images

(
t′1, t′2

)
,
(
t′3, t′4

)
∈ Wcm2

×R
are different, and vice versa (we will say that the elements (t1, t2) and

(
t′1, t′2

)
are bijective

connected (or are in a bijective connection) regarding bijection (bijective mapping)⇔ and
denote this as follows: (t1, t2)→

(
t′1, t′2

)
);

(b) the same type of linear ordering of sets Wcm1
× R and Wcm2

× R takes place,
namely, ∀(t1, t2), (t3, t4) ∈ Wcm1

× R ∃
(
t′1, t′2

)
,
(
t′3, t′4

)
∈ Wcm2

× R where(
t′1, t′2

)
↔ (t1, t2),

(
t′3, t′4

)
↔ (t3, t4) and such relation take place

(
t′1, t′2

)
≤3
(
t′3, t′4

)
if (t1, t2) ≤3

(t3, t4), and vice versa.
Due to the bijective mapping R2 ⇔ ξ2 , the partition Dc

R2 = {Wcm ×R, m ∈ Z} of R2

generates an ordered countable partition Dc
ξ2 =

{
ξcm × ξ ⊂ ξ2, m ∈ Z

}
of Cartesian square ξ2,

where every ξcm × ξ is the truncation of the ξ2 to the set Wcm ×R. Namely, each set Wcm ×R
matches the ξcm × ξ, which is its image according to bijective mapping R2 ⇔ ξ2. That is, every
ξcm × ξ is the set of those ordered pairs {((t1, ξ(ω, t1)), (t2, ξ(ω, t2))) : t1 ∈Wcm , t2 ∈ R} of
the ξ2, the argument t1 of which belongs to Wcm and the argument t2 belongs to R.

Since the Cartesian square ξ2 is the carrier of the relational system 〈ξ2,≤4〉, then with
its partition Dc

ξ2 , it can always form the countable family RSc
ξ2 = {〈ξcm × ξ,≤4〉, m ∈ Z}

of the subrelational systems of system 〈ξ2,≤4〉. From the isomorphism between the sub-
relational systems {〈Wcm ×R,≤3〉, m ∈ Z} with respect to the binary relation of linear
order ≤3 due to the isomorphism 〈R2,≤3〉 ⇔ 〈ξ2,≤4〉 follows the isomorphism between
the subrelational systems {〈ξcm × ξ,≤4〉, m ∈ Z} with respect to binary relation of linear
order ≤4. Namely, for any m1, m2 ∈ Z, arbitrary subrelational systems 〈ξcm1

× ξ,≤4〉 and
〈ξcm2

× ξ,≤4〉 from RSc
ξ2 are isomorphic with respect to the binary relation of linear order
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≤4, and for any m ∈ Z Cartesian product, ξcm × ξ is linearly ordered by the type of ordering
of its domain Wcm ×R.

So, taking into account mentioned above, it can be argued that there are: (1) an isomor-
phism with respect to binary relations of linear order≤3 and≤4 between relational systems
〈R2,≤3〉 and 〈ξ2,≤4〉; (2) an isomorphism with respect to the binary relation of linear
order ≤3 between the elements of the countable family RSc

R2 = {〈Wcm ×R,≤3〉, m ∈ Z}
of subrelational systems of relational system 〈R2,≤3〉; (3) an isomorphism with respect to
the binary relation of linear order ≤4 between elements of the countable family RSc

ξ2 =

{〈ξcm × ξ,≤4〉, m ∈ Z} of subrelational systems of the relational system 〈ξ2,≤4〉; (4) an
isomorphism with respect to the binary relations of linear order ≤3 and ≤4 between arbi-
trary pair Wcm2

×R and ξcm1
× ξ, m1, m2 ∈ Z, taken from the countable partition Dc

R2 =

{Wcm ×R, m ∈ Z} of set R2 and from the countable partition Dc
ξ2 =

{
ξcm × ξ ⊂ ξ2, m ∈ Z

}
of the Cartesian square ξ2.

The mathematical objects introduced above, namely, the Cartesian square ξ2 and
binary relation of linear order ≤4, allow us to supplement the relational system 〈ξ,≤2〉
with a new carrier ξ2 and relation ≤4. As a result, we form a new relational system
〈ξ, ξ2, {≤2,≤4}〉, which is the basis for taking into account not only the one-dimensional
cyclic structure of the investigated signal, but also its two-dimensional cyclic structure.

The mathematical objects constructed above formally reflect the segmental structure
of the cyclic signals, the same type of phases ordering in all segments-cycles of the cyclic
signals, which are necessary but not sufficient conditions of full-fledged cyclic signal model-
ing within the correlation theory of random processes. To build an adequate mathematical
model of the cyclic signals within the correlation theory of random processes, it is necessary
to take into account the similarities of the cycles of a cyclic signal, not only regarding
their type of phases ordering, but also regarding their mathematical expectation mξ(t) and
correlation function r2ξ(t1, t2). For this purpose, the previously developed mathematical
structures will be supplemented with new objects that formally take into account the simi-
larity between the cycles of the cyclic signal in relation to the mathematical expectation and
the correlation function of the random process ξ.

First of all, let us supplement the relational system 〈ξ, ξ2, {≤2,≤4}〉 with a new car-
rier R and two new functional relations p1 : ξ → R and p2 : ξ2 → R . As a result, we
form a new relational system 〈ξ, ξ2, R,

{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉 with three car-

riers ξ, ξ2, R and four relations ≤2,≤4, p1 : ξ → R , p2 : ξ2 → R , where p1 : ξ → R is a
functional relation, which represents the mathematical expectation operator E{·}, acting
on the values of the random process ξ, the result of which is the mathematical expectation
mξ(t) of this random process, namely:

p1((t, ξ(ω, t))) = p1(ξ(ω, t)) = E{ξ(ω, t)} = mξ(t) ∈ R, t ∈ R; (2)

p2 : ξ2 → R is a functional relation, which represents the correlation operator Cor{·, ·},
acting on the values of the random process ξ, the result of which is the correlation function
r2ξ(t1, t2) of a random process ξ:

p2((t1, ξ(ω, t1)), (t2, ξ(ω, t2)) ) = p2(ξ(ω, t1), ξ(ω, t2)) =

= Cor{ξ(ω, t1), ξ(ω, t2)} = E
{(

ξ(ω, t1)−mξ(t1)
)
·
(
ξ(ω, t2)−mξ(t2)

)}
=

= r2ξ(t1, t2) ∈ R, t1, t2 ∈ R, ω ∈ Ω. (3)

In order to exclude non-cyclic processes (namely, stationary in the wide sense random
processes), we will consider only such functional relations p1((t, ξ(ω, t))) and
p2((t1, ξ(ω, t1)), (t2, ξ(ω, t2)) ), for which exist such numbers T ∈ R, that there are the
following inequalities:

p1((t, ξ(ω, t)) ) 6= p1((t + T, ξ(ω, t + T)) ), t ∈ R,
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p2((t1, ξ(ω, t1)), (t2, ξ(ω, t2)) ) 6= p2((t1 + T, ξ(ω, t1 + T)), (t2 + T, ξ(ω, t2 + T)) ),

t1, t2 ∈ R.

The partition Dc
ξ = {ξcm ⊂ ξ, m ∈ Z} of the random process ξ and the partition

Dc
ξ2 =

{
ξcm × ξ ⊂ ξ2, m ∈ Z

}
of Cartesian square ξ2 generate the family of subrelational

systems RSc
ξ,ξ2 =

{
〈ξcm , ξcm × ξ, R,

{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉, m ∈ Z

}
of the rela-

tional system 〈ξ, ξ2, R,
{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉, where ξcm , ξcm × ξ, R are carriers

of the subrelational system 〈ξcm , ξcm × ξ, R,
{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉.

Let us amplify the isomorphism between the relational systems of the family RSc
ξ,ξ2 by

adding the requirements of equality of values of mathematical expectations for bijective con-
nected ordered pairs (t, ξ(ω, t)) ∈ ξcm1

and (t′, ξ(ω, t′)) ∈ ξcm2
from two different arbitrary

random processes ξcm1
and ξcm2

, and the requirements of equality of values of correlation
functions for bijective connected ordered pairs ((t1, ξ(ω, t1)), (t2, ξ(ω, t2))) ∈ ξcm1

× ξ and((
t′1, ξ

(
ω, t′1

))
, (t′2, ξ(ω, t′2))

)
∈ ξcm2

× ξ from two different arbitrary Cartesian products ξcm1
×

ξ and ξcm2
× ξ. Namely, isomorphism with respect to the binary relations of linear order≤2 and

≤4 for two arbitrary relational systems 〈ξcm1
, ξcm1

× ξ, R,
{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉

and 〈ξcm2
, ξcm2

× ξ, R,
{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉 must be supplemented by an iso-

morphism with respect to functional relations p1 : ξ → R and p2 : ξ2 → R .
This kind of isomorphism between relational systems 〈ξcm1

, ξcm1
× ξ, R, {≤2,≤4,

p1 : ξ → R, p2 : ξ2 → R}〉 and 〈ξcm2
, ξcm2

× ξ, R,
{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉 will

be called an isomorphism with respect to the linear order, mathematical expectation and
correlation function. Let us assign a strict definition to this type of isomorphism between the
relational systems 〈ξcm1

, ξcm1
× ξ, R,

{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉 and 〈ξcm2

, ξcm2
×

ξ, R, {≤2,≤4, p1 : ξ → R, p2 : ξ2 → R}〉 for any m1, m2 ∈ Z.

Definition 1. The bijective mapping ξcm1
⇔ ξcm2

between random processes ξcm1
and ξcm2

and
the bijective mapping ξcm1

× ξ ⇔ ξcm2
× ξ between Cartesian products ξcm1

× ξ and ξcm2
× ξ,

which are carriers of relational systems 〈ξcm1
, ξcm1

× ξ, R,
{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉

and 〈ξcm2
, ξcm2

× ξ, R,
{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉will be called the isomorphism with

respect to binary relations of linear order ≤2 and ≤4, mathematical expectation mξ(t)
and correlation function r2ξ(t1, t2) between relational systems 〈ξcm1

, ξcm1
× ξ, R, {≤2,≤4,

p1 : ξ → R, p2 : ξ2 → R}〉 and 〈ξcm2
, ξcm2

× ξ, R,
{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉 if the

following statements are made:

1. There is an isomorphism between relational systems 〈ξcm1
, ξcm1

× ξ, R, {≤2,≤4, p1 : ξ → R,
p2 : ξ2 → R}〉 and 〈ξcm2

, ξcm2
× ξ, R,

{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉 with respect to

the linear order ≤2; namely, the types of the ordering of random processes ξcm1
and ξcm2

are
identical.

2. There is an isomorphism between relational systems 〈ξcm1
, ξcm1

× ξ, R, {≤2,≤4, p1 : ξ → R,
p2 : ξ2 → R}〉 and 〈ξcm2

, ξcm2
× ξ, R,

{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉 with respect to

the linear order ≤4; namely, the types of ordering of Cartesian products ξcm1
× ξ and ξcm2

× ξ
are identical.

3. There is an isomorphism between relational systems 〈ξcm1
, ξcm1

× ξ, R, {≤2,≤4, p1 : ξ → R,
p2 : ξ2 → R}〉 and 〈ξcm2

, ξcm2
× ξ, R,

{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉 with respect to

mathematical expectation mξ(t) of a random process ξ; namely, for all the bijective connected
ordered pairs (t, ξ(ω, t)) ∈ ξcm1

and (t′, ξ(ω, t′)) ∈ ξcm2
( (t, ξ(ω, t))↔ (t′, ξ(ω, t′)) ),

there is equality of mathematical expectations, namely:

mξ(t) = mξ

(
t′
)
, t ∈Wcm1

, t′ ∈Wcm2
, t↔ t′, m1, m2 ∈ Z (4)

4. There is an isomorphism between relational systems 〈ξcm1
, ξcm1

× ξ, R, {≤2,≤4, p1 : ξ → R,
p2 : ξ2 → R}〉 and 〈ξcm2

, ξcm2
× ξ, R,

{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉 with respect

to correlation function r2ξ(t1, t2) of a random process ξ, namely, for all the bijective con-
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nected ordered pairs ((t1, ξ(ω, t1)), (t2, ξ(ω, t2))) ∈ ξcm1
× ξ there exist ordered pairs((

t′1, ξ
(
ω, t′1

))
, (t′2, ξ(ω, t′2))

)
∈ ξcm2

× ξ bijective connected to them(
(t1, ξ(ω, t1))↔

(
t′1, ξ

(
ω, t′1

))
, (t2, ξ(ω, t2))↔ (t′2, ξ(ω, t′2))

)
, and there is an equality

of correlation functions, namely:

r2ξ(t1, t2) = r2ξ

(
t′1, t′2

)
, t1 ∈Wcm1

, t′1 ∈Wcm2
, t2, t′2 ∈ R, t′1 ↔ t1, t′2 ↔ t2, m1, m2 ∈ Z. (5)

Definition 2. The Cartesian products ξcm1
× ξ and ξcm2

× ξ, which are carriers of isomor-
phic relational systems 〈ξcm1

, ξcm1
× ξ, R,

{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉 and 〈ξcm2

, ξcm2
×

ξ, R,
{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉, will be called the isomorphic Cartesian products

with respect to the binary relation of the linear order≤4 and correlation function r2ξ(t1, t2)
or for short, the isomorphic Cartesian products.

Definition 3. The random processes ξcm1
and ξcm2

, which are carriers of isomorphic relational
systems 〈ξcm1

, ξcm1
× ξ, R,

{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉 and 〈ξcm2

, ξcm2
× ξ, R, {≤2,≤4,

p1 : ξ → R, p2 : ξ2 → R}〉, will be called the isomorphic random processes with respect
to binary relation of linear order ≤2 and mathematical expectation mξ(t) (or for short,
isomorphic random processes).

The family RSc
ξ,ξ2 =

{
〈ξcm , ξcm × ξ, R,

{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉, m ∈ Z

}
of

isomorphic subrelational systems, the carriers of which are the elements of the ordered countable
partitions Dc

ξ = {ξcm ⊂ ξ, m ∈ Z} and Dc
ξ2 =

{
ξcm × ξ ⊂ ξ2, m ∈ Z

}
, constructed above,

makes it possible to give the definition of a cyclically correlated random process, which generalizes
the periodically (cyclostationary) correlated random process.

Definition 4. The random process ξ(ω, t), ω ∈ Ω, t ∈ R ( ξ : R→ L2(Ω, P) ), given on the proba-
bility space (Ω, F, P) and on the set R of real numbers, will be called the cyclically correlated ran-
dom process, if its ordered countable partition Dc

ξ = {ξcm ⊂ ξ, m ∈ Z} and the ordered countable
partition Dc

ξ2 =
{

ξcm × ξ ⊂ ξ2, m ∈ Z
}

of its Cartesian square ξ2 exist, the elements of which are
carriers of isomorphic relational systems
RSc

ξ,ξ2 =
{
〈ξcm , ξcm × ξ, R,

{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉, m ∈ Z

}
with respect to the

binary relations of linear order ≤2 and ≤4, the mathematical expectation mξ(t) and the correlation
function r2ξ(t1, t2) of the random process ξ(ω, t).

3.3. The Cycle Structure of the Cyclically Correlated Random Process

Proceeding from the definition of the cyclically correlated random process, we will
give a mathematical definitions of the cycle and the set of cycles of the cyclic signal, whose
model is a cyclically correlated random process. First of all, we note that not every ordered
countable partition Dc

ξ = {ξcm ⊂ ξ, m ∈ Z} into the isomorphic random processes of a
cyclically correlated random process ξ is its partition into cycles. Since each element ξcm of
such partition can include two or more cycles of a cyclically correlated random process,
and according to the conceptual model of the cyclic signal, the cycle is understood as its
smallest segment, which includes all types of phases of the signal only once. To account for
this requirement of the conceptual model of formalizing the cycle and the partitioning into
cycles of the cyclic signal within a cyclically correlated random process, only a minimal
partition needs to be considered.

Under a minimal ordered countable partition into isomorphic random processes with
respect to binary relation of linear order ≤2 and the mathematical expectation mξ(t) of
cyclically correlated random process ξ = {(t, ξ(ω, t)) : t ∈ R}, we understand the follow-
ing partition Dc

ξ = {ξcm ⊂ ξ, m ∈ Z}, when the arbitrary partitioning of its elements ξcm

form a new one smaller partition {ξn ⊂ ξ, n ∈ Z}, between the all elements ξn of which
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simultaneously there is no isomorphism with respect to the binary relation of linear order
≤2 and the mathematical expectation mξ(t).

Definition 5. The minimal ordered countable partition Dc
ξ = {ξcm ⊂ ξ, m ∈ Z} into isomorphic

random processes with respect to binary relation of linear order ≤2 and the mathematical expec-
tation mξ(t) of cyclically correlated random process ξ = {(t, ξ(ω, t)) : t ∈ R} will be called the
partition into cycles of cyclically correlated random process ξ, and random process ξcm will
be called the m-th cycle of the cyclically correlated random process ξ.

That is, the m-th cycle is a random process ξcm which is the truncation of the random
process ξ to the area Wcm . In this case, we will give the following definition:

Definition 6. The set Wcm will be called the definition domain of m-th cycle ξcm of the
cyclically correlated random process ξ.

Given the fact that a cyclically correlated random process ξ, in addition to the one-
dimensional probability structure determined by its mathematical expectation mξ(t), has
a two-dimensional probability structure given by its correlation function r2ξ(t1, t2), then,
in addition to the partition Dc

ξ = {ξcm ⊂ ξ, m ∈ Z} into one-dimensional cycles ξcm , it is
possible to give a definition of partition Dc

ξ2 =
{

ξcm × ξ ⊂ ξ2, m ∈ Z
}

Cartesian square ξ2

into two-dimensional cycles ξcm × ξ of the random process ξ.
Similar to the concept of the minimal ordered countable partition of a cyclic random

process into isomorphic random processes, under the minimal ordered countable partition
of Cartesian square ξ2 of cyclic random process ξ = {(t, ξ(ω, t)) : t ∈ R} into isomorphic
Cartesian products ξcm × ξ with respect to binary relation of linear order≤4 and correlation
function r2ξ(t1, t2) of random process ξ, we understand the following partition Dc

ξ2 ={
ξcm × ξ ⊂ ξ2, m ∈ Z

}
, when the arbitrary partitioning of its elements ξcm × ξ form a

new one smaller partition
{

ξn × ξ ⊂ ξ2, n ∈ Z
}

, between the all elements ξn × ξ of which
simultaneously there are no isomorphisms with respect to the binary relation of the linear
order ≤4 and correlation function r2ξ(t1, t2) of the random process ξ.

Definition 7. The minimal ordered countable partition Dc
ξ2 =

{
ξcm × ξ ⊂ ξ2, m ∈ Z

}
of Carte-

sian square ξ2 of the cyclically correlated random process ξ = {(t, ξ(ω, t)) : t ∈ R} into isomor-
phic Cartesian products ξcm × ξ with respect to the binary relation of linear order≤4 and correlation
function r2ξ(t1, t2) of the random process ξ will be called the partition into two-dimensional
cycles of cyclically correlated random process ξ, and the Cartesian product ξcm × ξ will be
called the m-th two-dimensional cycle of the cyclically correlated random process ξ.

That is, the m-th two-dimensional cycle is a Cartesian product ξcm × ξ, which is the
truncation of the Cartesian square ξ2 to the area Wcm × R. In this case we will give the
following definition:

Definition 8. The set Wcm ×R will be called the definition domain of two-dimensional m-th
cycle ξcm × ξ. of the cyclically correlated random process ξ.

3.4. The Phase Structure of the Cyclically Correlated Random Process

Another basic concept that characterizes a stage in the development of oscillating,
cyclic motion, is the concept of phase. The mathematical structures introduced above,
formalizing the concept of a cycle and a cyclic signal, are sufficient to correctly define the
concept of a phase as a mathematical object. We will carry out such a formalization.

With partitions Dc
R and Dc

ξ two more partitions Dph
R and Dph

ξ are connected which are
used in the formalization of the concept of phase of a cyclic signal within its model in the
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form of the cyclically correlated random process. Let us show how the partitions Dph
R and

Dph
ξ are formed.

Let us have the definition domain Wcm1
of m1-th cycle ξcm1

. Due to the isomorphism
between relational systems 〈Wcm1

,≤〉 and 〈Wcm2
,≤〉 (m1, m2 ∈ Z, m1 6= m2), for any

tϕ
m1 ∈ Wcm1

in the definition domain Wcm2
of arbitrary m2-th cycle ξcm2

, there is only

one element tϕ
m2 ∈ Wcm2

, which is bijective connected with tϕ
m1

(
tϕ
m1 ↔ tϕ

m2

)
. Since for a

cyclically correlated random process ξ we have a countable set Dc
ξ of cycles, then for every

tϕ
m1 ∈Wcm1

we will have a countable set Wϕ of elements tϕ
m, which are bijective connected

with it. Set Wϕ of all bijective connected elements with an element tϕ
m1 is defined as follows:

Wϕ =
{

tϕ
m : tϕ

m ∈Wcm , tϕ
m ↔ tϕ

m1 , m ∈ Z, m1 = const
}

. (6)

For each fixed tϕ
m1 ∈Wcm1

we will have specific set Wϕ. If tϕ
m1 runs the ordered set Wcm1

then we obtain the ordered in the index ϕ uncountable partition Dph
R =

{
Wϕ, ϕ ∈ I ⊂ R

}
(I—index numerical set) of the definition domain R of cyclically correlated random process
ξ. Index numeric set I. can be taken as equal to any of the sets Wcm . Let us accept that
I = Wc0 =

[
t̃0, t̃1

)
.

Let us create an ordered in the index ϕ uncountable partition Dph
ξ =

{
ξϕ, ϕ ∈ I

}
of cyclically correlated random process ξ by bijective mapping elements Wϕ from parti-

tion Dph
R =

{
Wϕ, ϕ ∈ I

}
into subsets ξϕ of random process ξ (Wϕ ⇔ ξϕ ); that is, every

Wϕ is matched by the subset ξϕ =
{
(t, ξ(ω, t)), t ∈Wϕ

}
⊂ ξ of those pairs (t, ξ(ω, t))

of the cyclically correlated random process ξ, the first elements t of which belongs to
Wϕ

(
t↔ (t, ξ(ω, t)), t ∈Wϕ

)
. Since Wϕ is a countable set, then ξϕ is also a countable set,

defined as:

ξϕ =
{(

tϕ
m, ξ

(
ω, tϕ

m

))
: tϕ

m ∈Wcm , tϕ
m ↔ tϕ

m1 , m ∈ Z, m1 = const
}

. (7)

As it can be seen from Expression (7), any set ξϕ =
{(

tϕ
m, ξ

(
ω, tϕ

m

))
, m ∈ Z

}
is

ordered by m countable set.
Because the index numerical set I is isomorphic with respect to the linear order ≤ for

any set Wcm , then between the partition Dph
ξ =

{
ξϕ, ϕ ∈ I

}
and the arbitrary sets Wcm there

is an isomorphism with respect to linear order, or rather, there is an isomorphism between
the relational system 〈Dph

ξ ,≤ph〉 and arbitrary relational system 〈Wcm ,≤〉 with respect to

the binary relations of linear order ≤ph and ≤ ( 〈Dph
ξ ,≤ph〉 ⇔ 〈Wcm ,≤〉 ). Moreover, the

ordering type of partition Dph
ξ is determined by the type of ordering of the set Wcm , in

particular, determined by the type of ordering Wc0 , since it is accepted that I = Wc0 , that
is: ∀ ϕ1 = t1, ϕ2 = t2 ∈Wc0 , where t1 ≤ t2, ∃ξ ϕ1 , ξ ϕ2 ∈ Dph

ξ , where t1 ↔ ξ ϕ1 , t2 ↔ ξ ϕ2

and there is the order ξ ϕ1 ≤ph ξ ϕ2 , and vice versa. This result reflects the fact of ordering
and the fact of the same type of phase ordering in all cycles of the cyclic signal, as postulated
in the conceptual model.

Let us note that ξϕ is the countable set of such ordered pairs of the cyclically correlated
random process ξ, among which there are no two pairs belonging to the same cycle; that
is, among the elements of ξϕ there are no two pairs

(
tϕ
m1 , ξ

(
ω, tϕ

m1

))
where tϕ

m1 ∈ Wcm1

and
(

tϕ
m2 , ξ

(
ω, tϕ

m2

))
where tϕ

m2 ∈ Wcm2
for which Wcm1

= Wcm2
. This fact is also fully

consistent with the relevant requirement of the conceptual model.
Because ξϕ is a set of bijective connected pairs of random process ξ, then according to

equality (2) for all of them, there is equality of mathematical expectations, namely:

mξcm1

(
tϕ
m1

)
= mξcm2

(
tϕ
m2

)
∈ R, tϕ

m1 ∈Wcm1
, tϕ

m2 ∈Wcm2
, tϕ

m1 ↔ tϕ
m2 , m1, m2 ∈ Z. (8)
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For two different ξϕ1 and ξϕ2 of random process ξ, according to equality (3), there is
an equality of correlation functions, namely:

r2ξ

(
tϕ1
m1 , tϕ2

m2

)
= r2ξ

(
tϕ1
m3 , tϕ2

m4

)
, tϕ1

m1 ∈Wcm1
, tϕ2

m2 ∈Wcm2
, tϕ1

m3 ∈Wcm3
, tϕ2

m4 ∈Wcm4
,

tϕ1
m1 ↔ tϕ1

m3 , tϕ2
m2 ↔ tϕ2

m4 , m1, m2, m3, m4 ∈ Z. (9)

Based on the results obtained above, we give a mathematical definition of the phase of
the cyclically correlated random process ξ, which adequately reflects the concept of phase
(stage) of the cyclic signal (oscillatory phenomenon).

Definition 9. Ordered by index ϕ partition Dph
ξ =

{
ξϕ, ϕ ∈ I

}
of cyclically correlated random

process ξ whose elements are countable sets formed according to (7) and for which the Equalities (8)
and (9) are held, it will be called the partition into phases, and the set ξϕ itself will be called the
phase (ϕ-phase) of the cyclically correlated random process ξ.

Definition 10. The m-th element
(

tϕ
m, ξ

(
ω, tϕ

m

))
of the set ξϕ =

{(
tϕ
m, ξ

(
ω, tϕ

m

))
, m ∈ Z

}
will

be called the actualization of the phase ξϕ (ϕ-phase) in m-th cycle of cyclically correlated
random process ξ.

Definition 11. The set Wϕ which is determined according to Expression (6) will be called the
definition domain of phase ξϕ (ϕ-phase) of the cyclically correlated random process ξ.

Definition 12. The set Aϕ which is determined according to expression:

Aϕ =
{

ξ
(

ω, tϕ
m

)
: tϕ

m ∈Wcm , tϕ
m ↔ tϕ

m1 , m ∈ Z, m1 = const
}

, (10)

will be called the ϕ-set (ϕ-series) of single-phase values of the cyclically correlated ran-
dom process ξ.

The set {Aϕ,ϕ ∈ I
}

of all sets of single-phase values is ordered by parameter ϕ.

Note that for the cyclically correlated random process ξ , a whole set
{

Dcϕ
ξ ,ϕ ∈ I

}
exists of its possible partitions into cycles. In contrast to the different ways of partitioning
the cyclically correlated random process ξ into cycles, there is only one its partition Dph

ξ ={
ξϕ, ϕ ∈ I

}
into phases. That is, every partition Dcϕ

ξ into cycles of the cyclically correlated
random process ξ is associated with the certain phase ξϕ of it; namely, it is a phase ξϕ that
is observed at the beginning of all the cycles of the cyclically correlated random process ξ,
i.e., the following relations take place:

tϕ
m = t̃m, m ∈ Z, (11)

ξϕ =
{(

t̃m, ξ
(
ω, t̃m

))
: t̃m ∈ Dc, m ∈ Z

}
. (12)

In this case, Wϕ =
{

tϕ
m, m ∈ Z

}
= Dc =

{
t̃m, m ∈ Z

}
.

With two different phases ξ ϕ1 and ξ ϕ2 of the random process ξ, its two different
possible partitions into cycles D

c ϕ1
ξ and D

c ϕ2
ξ are connected. In order to reflect the fact that

the cycles of the random process ξ and its specific phase ξϕ (ϕ-phase) are connected, we
will use the following notation ξϕcm ∈ Dcϕ

ξ . In this case, the partition Dcϕ
ξ into cycles, we

denote as follows: Dcϕ
ξ =

{
ξϕcm ⊂ ξ, m ∈ Z

}
.

Let us assign definitions for the two types of initial phases.

Definition 13. The specific phase ξϕ (ϕ-phase) of the cyclically correlated random process ξ,

which determines the appropriate partition D
cϕ

ξ =
{

ξ
ϕ
cm ⊂ ξ, m ∈ Z

}
of the cyclically correlated
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random process ξ, will be called the initial phase for partition D
cϕ

ξ into cycles of the cyclically
correlated random process ξ.

Definition 14. The specific phase ξ ϕ0 , ϕ0 ∈ I of the cyclically correlated random process ξ, which
includes an ordered pair (0, ξ(ω, 0)), will be called the initial phase of the cyclically correlated
random process ξ.

In general, the initial phase ξ ϕ0 of the cyclically correlated random process ξ and the
initial phase ξϕ of its partition Dcϕ

ξ into cycles are not identical (ξ ϕ0 6= ξϕ), which is caused
by the inequality t̃0 6= 0. It is often convenient in practical applications to set the identities
of these two types of initial phases as requiring the equality t̃0 = 0.

In contrast to the countability of the set ξϕ and the ϕ-set Aϕ of single-phase values,

the cardinal number of set
{

Dcϕ
ξ ,ϕ ∈ I

}
of possible partitions into cycles and the cardinal

number of set Dph
ξ =

{
ξϕ, ϕ ∈ I

}
of the phases of the cyclically correlated random process

ξ are equal to the cardinal number of the index set I, which is equal to the continuum c:

Card
({

Dcϕ
ξ ,ϕ ∈ I

})
= Card

({
ξϕ, ϕ ∈ I

})
= Card(I) = Card(R) = c. (13)

Similarly to the definition of two-dimensional cycles of a cyclically correlated random
process, it is possible to define the concept of its two-dimensional phases.

3.5. Different Forms of Representation of a Cyclically Correlated Random Process and Its
Mathematical Expectation and Correlation Function

Based on the definition of the cyclically correlated random process ξ : R→ L2(Ω, P) ,
namely, given that the ordered countable partition Dc

ξ = {ξcm ⊂ ξ, m ∈ Z} into cycles
always exists, and the ordered countable partition Dc

ξ2 =
{

ξcm × ξ ⊂ ξ2, m ∈ Z
}

of the

Cartesian square ξ2 into two-dimensional cycles of cyclically correlated random process,
the random process ξ and its Cartesian square ξ2 can be represented as follows:

ξ = ∪m∈Zξcm , (14)

ξ2 = ∪m∈Zξcm × ξ, ξcm 6= Ø, ξcm1
∩ ξcm2

= Ø, m1 6= m2, m, m1, m2 ∈ Z. (15)

It is possible in another way to represent the cyclically correlated random process
ξ : R→ L2(Ω, P) if we consider a counted-dimensional vector{

ξ̃m(ω, t), ω ∈ Ω, t ∈ R, m ∈ Z
}

of random processes, which in the areas Wcm coin-
cides with the random processes ξcm , but in the areas R\Wcm , the random processes
ξ̃m(ω, t) are identically equal to zero

(
ξ̃m(ω, t) = 0, t ∈ R\Wcm

)
. Then the cyclically

correlated random process can be given as the sum of the components of the vector{
ξ̃m(ω, t), ω ∈ Ω, t ∈ R, m ∈ Z

}
:

ξ(ω, t) = ∑
m∈Z

ξ̃m(ω, t), ω ∈ Ω, t ∈ R. (16)

Similarly to the representations of the random process ξ and its Cartesian square ξ2

according to Formulas (14) and (15), representations of the mathematical expectation mξ ={(
t, mξ(t)

)
: t ∈ R

}
and the correlation function r2ξ =

{(
(t1, t2), r2ξ(t1, t2)

)
: (t1, t2) ∈ R2}

of the cyclically correlated random process can be given as follows:

mξ = ∪m∈Zmξcm
, mξcm

6= Ø, mξcm1
∩mξcm2

= Ø, m1 6= m2, m, m1, m2 ∈ Z, (17)

r2ξ = ∪m∈Zr2ξcm
, r2ξcm

6= Ø, r2ξcm1
∩ r2ξcm2

= Ø, m1 6= m2, m, m1, m2 ∈ Z, (18)
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where mξcm
=
{(

t, mξcm
(t)
)

: t ∈Wcm

}
is the mathematical expectation of the m-th cycle of the

cyclically correlated random process ξ; and r2ξcm
=
{(

(t1, t2), r2ξ(t1, t2)
)

: (t1, t2) ∈Wcm ×R
}

is the correlation function of the m-th two-dimensional cycle of the cyclically correlated random
process ξ.

It is possible in another way to represent the mathematical expectation of the cyclically cor-
related random process ξ if we consider a counted-dimensional vector{

m̃ξcm
(t), t ∈ R, m ∈ Z

}
, whose components m̃ξcm

(t) in the areas Wcm coincide with mξcm
(t),

but in the areas R\Wcm m̃ξcm
(t) are identically equal to zero

(
m̃ξcm

(t) = 0, t ∈ R\Wcm

)
. Then

the mathematical expectation of the cyclically correlated random process ξ can be given as the
sum of the components of the vector

{
m̃ξcm

(t), t ∈ R, m ∈ Z
}

:

mξ(t) = ∑
m∈Z

m̃ξcm
(t), t ∈ R. (19)

Similarly, it is possible to represent the correlation function r2ξ(t1, t2) of the cyclically
correlated random process ξ if we consider a counted-dimensional vector{

r̃2ξ m(t1, t2), (t1, t2) ∈ R2, m ∈ Z
}

, whose components r̃2ξ m(t1, t2) in the areas Wcm ×R
coincide with the r2ξ m(t1, t2), but in the areas R2\(Wcm ×R ) r̃2ξ m(t1, t2) are identically
equal to zero

(
r̃2ξ m(t1, t2) = 0, (t1, t2) ∈ R2\(Wcm ×R )

)
. Then the correlation function of

the cyclically correlated random process ξ can be given as the sum of the components of
the vector

{
r̃2ξ m(t1, t2), (t1, t2) ∈ R2, m ∈ Z

}
:

r2ξ(t1, t2) = ∑
m∈Z

r̃2ξ m(t1, t2), (t1, t2) ∈ R2. (20)

In practice, as a rule, the cyclically correlated random process should not be considered
in the entire area R but in some of its subsets V ⊂ R, which, for example, may be:

V = ∪M
m=0Wcm or V = ∪∞

m=0Wcm ,

where M is the integer number. In this case, the mathematical expectation mξ(t) will also
be considered in the set V ⊂ R, and the correlation function r2ξ(t1, t2) will be considered in
the set V2 ⊂ R2.

3.6. Structural Function and Rhythm Function of Cyclically Correlated Random Process

In contrast to the definition of the periodically correlated random process, in the
definition of the cyclically correlated random process, the time (or spatial) distance between
its actualizations of each phase ξϕ in different neighboring cycles can be different; it is
important only to preserve the type of ordering of the phases of the cyclically correlated
random process in all its cycles. To characterize the temporal (spatial) patterns and relations
that occur between the actualizations of each phase ξϕ in the different cycles of the cyclically
correlated random process, we introduce the structural function and rhythm function,
which formalize the concept of the rhythm (tempo) of the cyclic signal as provided by the
conceptual model.

Based on the definition of the cyclically correlated random process, we formulate the
following theorem, which is based on the results of work [72].

Theorem 1. For the cyclically correlated random process ξ = {(t, ξ(ω, t)) : t ∈ R}, a numerical
function y(t, n), t ∈ R, n ∈ Z exists, for which the following properties occur:

(a) y(t, n) > t, i f n > 0 (y(t, 1)− t < ∞)

(b) y(t, n) = t, i f n = 0;

(c) y(t, n) < t, i f n < 0, t ∈ R; (21)

for any t1, t2 ∈ R, for which t1 < t2 for function y(t, n), a strict inequality is present:
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y(t1, n) < y(t2, n), ∀n ∈ Z (22)

and for the mathematical expectation mξ(t) and correlation function r2ξ(t1, t2) of a cyclically
correlated random process ξ, there are the following equalities:

mξ(t) = mξ(y(t, n)), t ∈ R, n ∈ Z; (23)

r2ξ(t1, t2) = r2ξ(y(t1, n), y(t2, n)), t1, t2 ∈ R, n ∈ Z. (24)

On the contrary, if for a random process ξ, there is a numerical function y(t, n), t ∈ R, n ∈ Z
with all the above-mentioned properties (22) and (21), and if the equalities (23) and (24) are present,
then it is a cyclically correlated random process.

Proof of Theorem 1. According to the definition of a cyclically correlated random process ξ, any of
its two cycles ξcm1

=
{
(t, ξ(ω, t)) ∈ ξ : t ∈Wcm1

}
and ξcm2

=
{
(t, ξ(ω, t)) ∈ ξ : t ∈Wcm2

}
are isomorphic with respect to the binary relation of the linear order ≤2, and this isomor-
phism is due to the isomorphism with respect to binary relation of linear order ≤ of the
domains Wcm1

and Wcm2
, which are ordinary sets of real numbers. Between isomorphic nu-

merical sets Wcm1
and Wcm2

some numeric functions tm2 = ym1m2(tm1) ∈Wcm2
, tm1 ∈Wcm1

and tm1 = ym2m1(tm2) ∈Wcm1
, tm21 ∈Wcm2

can always be constructed, namely:
(a) there is a bijection between Wcm1

and Wcm2
(m1m2 ∈ Z), namely: any tm1 ∈ Wcm1

corresponds to only one tm2 = ym1m2(tm1) ∈ Wcm2
and any tm2 ∈ Wcm2

corresponds to
only one tm1 = ym2m1(tm2) ∈ Wcm1

, and for any different tm1 , t′m1
∈ Wcm1

, their images
tm2 , t′m2

∈Wcm2
are different (tm2 6= t′m2

), and vice versa: for any different tm2 , t′m2
∈Wcm2

,
their images tm1 , t′m1

∈Wcm1
are different (tm1 6= t′m1

);
(b) the same type of linear ordering of sets Wcm1

and Wcm2
takes place, that is

∀tm1 , t′m1
∈ Wcm1

, ∃tm2 , t′m2
∈ Wcm2

, that tm2 = ym1m2(tm1), t′m2
= ym1m2

(
t′m1

)
and there

is a strong order relation:

ym1m2(tm1) < ym1m2

(
t′m1

)
, i f tm1 < t′m1

, (25)

and vice versa: ∀tm2 , t′m2
∈Wcm2

∃tm1 , t′m1
∈Wcm1

, that tm1 = ym2m1(tm2), t′m1
= ym2m1

(
t′m2

)
and there is a strong order relation:

ym2m1(tm2) < ym2m1

(
t′m2

)
, i f tm2 < t′m2

. (26)

Hence, the functions ym1m2(tm1) ∈ Wcm2
, tm1 ∈ Wcm1

and ym2m1(tm2) ∈ Wcm1
, tm2 ∈

Wcm2
are increasing numerical functions.

Taking into account the isomorphism between all possible pairs of cycles of the
cyclically correlated random process ξ, we introduce a countable-dimensional matrix of
increasing numerical functions which specifies the bijective mapping between the domains
of its corresponding cycles, i.e., the following matrix:{

ym1m2(tm1) ∈Wcm2
, tm1 ∈Wcm1

, m1m2 ∈ Z
}

. (27)

Moreover, on the diagonal of the functional matrix (27) when m1 = m2 = m ∈ Z, we will
have numerical functional relations of identity which are automorphisms with respect to
the binary relation of linear order ≤ of the domains Wcm1

and Wcm2
, and at the permutation

of the places of indices m1 and m2 of the function ym1m2(tm1) ∈Wcm2
, tm1 ∈Wcm1

we obtain
the inverse numerical increasing function ym2m1(tm2) ∈Wcm1

, tm2 ∈Wcm2
.

Entering the notation m1 = m, m2 = m + n, m, n ∈ Z and taking into account the
indices of the elements of the matrix (27), i.e., tm+n = ym,m+n(tm) = y(tm, n), from the
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matrix (27) we obtain the following countable-dimensional vector of increasing numerical
functions from the two arguments tm and n:

{y(tm, n) ∈Wcm+n , tm ∈Wcm , m, n ∈ Z} (28)

Each element of the countable-dimensional vector (28) establishes an isomorphism
between the domains of the definition of the arbitrary m-th cycle and m + n-th cycle, and
is remote from it on n cycles. In addition, for all elements of the vector (28), there are the
following inequalities:

(a) y(tm, n) > tm, i f n > 0, ∀m ∈ Z ;

(b) y(tm, n) = tm, i f n = 0, ∀m ∈ Z ;

(c) y(tm, n) < tm, i f n < 0, ∀m ∈ Z. (29)

The first property (y(tm, n) > tm, i f n > 0) follows from following facts: ∀tm ∈Wcm ,
m ∈ Z and ∀n > 0, ∃tm+n = y(tm, n) ∈Wcm+n . Moreover, tm+n > tm, whereas n > 0, and
therefore, y(tm, n) > tm.

The second property (y(tm, n) = tm, i f n = 0) follows from the fact that tm+0 = tm ∈
Wcm , since y(tm, n) = tm.

The third property (y(tm, n) < tm, i f n < 0) can be proved similarly to the first: ∀tm ∈
Wcm , m ∈ Z and ∀n < 0, ∃tm+n = y(tm, n) ∈ Wcm+n , and tm+n < tm, whereas n < 0 and
therefore, y(tm, n) < tm.

Since for the cyclically correlated random process ξ, there is a continuous set
{

Dcϕ
ξ ,ϕ ∈ I

}
of its possible partitions into cycles, there exists a set of countable-dimensional vectors
(28) corresponding to these partitions. However, since for the cyclically correlated random
process ξ, there exists only one of its partition Dph

ξ =
{

ξϕ, ϕ ∈ I
}

into the set of phases, for
all possible countable-dimensional vectors (28) corresponding to the partitions from set{

Dcϕ
ξ ,ϕ ∈ I

}
, there is one and only one numerical function y(t, n), t ∈ R, n ∈ Z, which is

equal to the ordered union (sum) of the elements of the countable-dimensional vector (28)
at a fixed n:

{(t, y(t, n)), t ∈ R} = ∪m∈Z{(tm, y(t, n)), tm ∈Wcm+n}, n ∈ Z. (30)

Due to the order of the union (30), the numerical function y(t, n), t ∈ R, n ∈ Z, similar
to the elements of the countable-dimensional vector of functions (28), is an isomorphism
with respect to binary relation of linear order ≤, and therefore, for it a strict inequality (22)
exists, i.e., for any fixed n function, y(t, n), t ∈ R, n ∈ Z is an increasing numerical function.
Properties (21) follow from the properties (29) of the vector components (28), since the
numerical function y(t, n), t ∈ R, n ∈ Z, in fact, is “stitched” from these components.

For all the bijective connected ordered pairs (tm, ξ(ω, tm)) ∈ ξcm and
(y(tm, n), ξ(ω, y(tm, n))) ∈ ξcm+n , which belong to the same phase of the cyclically cor-
related random process ξ, there is an equality of mathematical expectations as follows:

mξ(tm) = mξ(y(tm, n)), tm ∈Wcm , m, n ∈ Z. (31)

If tm runs through the entire set Wcm and m runs through the entire set Z, then Equality
(31) will turn into Equalities (23), because ∪m∈ZWcm = R.

For all ordered pairs (tm1 , ξ(ω, tm1)) ∈ ξcm1
, (tm2 , ξ(ω, tm2)) ∈ ξcm2

, there are bijective con-
nected to them ordered pairs (y(tm1 , n), ξ(ω, y(tm1 , n))) ∈ ξcm1+n , (y(tm2 , n), ξ(ω, y(tm2 , n))) ∈
ξcm2+n , and there is an equality of correlation functions:

r2ξ(tm1 , tm2) = r2ξ(y(tm1 , n), y(tm2 , n)), tm1 ∈Wcm1
, tm2 ∈Wcm2

, m1, m2, n ∈ Z. (32)
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If the vector (tm1 , tm2) runs through the entire set Wcm1
×Wcm2

and the vector (m1, m2)

runs through the entire set Z2, then Equality (32) will turn into Equalities (24), because:

∪m1,mk∈Z Wcm1
×Wcm2

= R2. (33)

The requirement of limited function y(t, n) − t at n = 1 (y(t, 1)− t < ∞) necessar-
ily follows from the fact that the duration of the cycles is limited, which is formally
reflected in the inequalities 0 < t̃m+1 − t̃m < ∞ when considering the partition Dc

R =
{Wcm ⊂ R, m ∈ Z}.

It is easy to see that if for some random process ξ, there is a numerical function
y(t, n) that satisfies all the conditions of Theorem 1, and equations (23) and (24) are
present, then this random process is a cyclically correlated random process, because
in this case, its ordered countable partition Dc

ξ = {ξcm ⊂ ξ, m ∈ Z} always exists, and
the ordered countable partition Dc

ξ2 =
{

ξcm × ξ ⊂ ξ2, m ∈ Z
}

of its Cartesian square

ξ2 always exists, which is the carrier of the isomorphic relational systems RSc
ξ,ξ2 ={

〈ξcm , ξcm × ξ, R,
{
≤2,≤4, p1 : ξ → R, p2 : ξ2 → R

}
〉, m ∈ Z

}
with respect to the binary re-

lations of linear order ≤2 and ≤4, the mathematical expectation mξ(t) and the correlation
function r2ξ(t1, t2) of random process ξ(ω, t). �

Note that for a cyclically correlated random process ξ, the set of functions yγ(t, n),
which satisfy the conditions of Theorem 1 is a countable set {yγ(t, n), γ ∈ N}, since, as
noted above, there is a countable set of partitions of a cyclically correlated random process
into mutually isomorphic segments which are nested in each other and are determined by
initial phase ξϕ. Actually, every such function yγ(t, n) will generate a separate countable-
dimensional partition of a cyclically correlated random process into its isomorphic segments.
Since for a cyclically correlated random process ξ, there is always the minimal partition
Dcϕ

ξ =
{

ξϕcm ⊂ ξ, m ∈ Z
}

(which is determined by the initial phase ξϕ), which is its partition
into cycles, then among the functions from the set {yγ(t, n), γ ∈ N}, the smallest in the
modulus (|y(t, n)| ≤ |yγ(t, n)|) will always be function y(t, n) = y1(t, n) (γ = 1), which
generates (displays) the partition of the cyclically correlated random process ξ into its
cycles.

Let us provide the following definition:

Definition 15. The function y(t, n), which is the smallest in the modulus (|y(t, n)| ≤ |yγ(t, n)|)
among all such functions {yγ(t, n), γ ∈ N} which satisfy (21)–(24), will be called the structural
function of the cyclically correlated random process ξ.

Let us consider the additive form of the representation of a structural function
y(t, n), t ∈ R, n ∈ Z, namely, y(t, n) = t + T(t, n). Function T(t, n) in [72] is called
the rhythm function of the cyclically correlated random process ξ. Note, that it is enough
to set the rhythm function T(t, n), as well as the structural function y(t, n), not in the whole
area of its definition R× Z, but only in the area Wcm × Z. Based on the properties (21) and
(22) of the structural function of the cyclically correlated random process ξ, its rhythm
function has the following properties:

1. (a) T(t, n) > 0 if n > 0 (T(t, 1) < ∞);

(b) T(t, n) = 0, if n = 0;

(c) T(t, n) < 0 if n < 0, t ∈ R. (34)

2. For any t1 ∈ R and t2 ∈ R, for which t1 < t2, and for function T(t, n), a strict
inequality holds:

T(t1, n) + t1 < T(t2, n) + t2, ∀n ∈ Z. (35)
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Equations (23) and (24) can be represented by the rhythm function as follows:

mξ(t) = mξ(t + T(t, n)), t ∈ R, n ∈ Z; (36)

r2ξ(t1, t2) = r2ξ(t1 + T(t1, n), t2 + T(t2, n)), t1, t2 ∈ R, n ∈ Z. (37)

Function T(t, n) is the smallest in the modulus ( |T(t, n)| ≤ |Tγ(t, n)|) among all such
functions {Tγ(t, n), γ ∈ } which satisfy (34)–(37).

The introduction of the rhythm function T(t, n) and the structural function y(t, n)
of the cyclically correlated random process provides a clear mathematical basis for the
concept of the rhythm of the cyclic signal, which is what made it possible to quantitatively
describe its rhythmic structure. According to the conceptual model, the rhythmic structure
of the cyclic signal is a concept that characterizes the law of change in time intervals
between single-phase values in different cycles of the cyclic signal, and in fact such a law
describes the function of rhythm. Unlike concepts such as variable period or instantaneous
signal period, which are sometimes found in scientific publications, the structural function
and rhythm function of the cyclically correlated random process are characterized by
clear, analytically justified conditions that are determined conditions of Theorem 1, and
which are sufficient and necessary with respect to the cyclicity of the cyclically correlated
random process.

The rhythm of the cyclic signal in qualitative terms can be regular (stable, unchanging)
or irregular (variable, unstable). From the point of view of the introduced concept of
the rhythm function, the periodically correlated random process is a cyclically correlated
random process with a regular (stable) rhythm, or rather with a rhythm function T(t, n) =
n·T, T = const > 0. A non-rhythmic cyclic signal (variable rhythm signal) is a signal whose
model is a cyclically correlated random process with a rhythm function T(t, n) 6= n·T
(T(t, 1) 6= const). This random process is called a cyclically correlated random process
with an irregular (variable) rhythm.

In the partial case, Inequalities (22) and (35) for the structural function y(t, n) and for
the rhythm function T(t, n) can be written through their derivatives by argument t. To
attain this, we reduce these inequalities to the following form:

y(t2, n)− y(t1, n)
t2 − t1

> 0,
T(t2, n)− T(t1, n)

t2 − t1
> −1 i f t1 < t2. (38)

In the case of the existence of the structural function y(t, n) or the rhythm function
T(t, n) of their derivatives on t from Inequalities (38), the following strict inequalities
follow [66]:

lim
t2−t1→0

y(t2, n)− y(t1, n)
t2 − t1

= y′(t, n) > 0, lim
t2−t1→0

T(t2, n)− T(t1, n)
t2 − t1

= T′(t, n) > −1. (39)

Note, that Inequalities (39) are only partial cases of general conditions (22) and (35),
because, for example, for many structural functions y(t, n) and rhythm functions T(t, n),
which are continuous by argument t, there is no derivative at some points, which makes it
impossible to use Inequalities (39).

In Figure 1, an example of graphs of cross sections of a structural function y(t, n) =

− 2at+b
2a +

√
4a2t2+4abt+b2

4a2 + πn
a + t (coefficients a = 4, b = 10, c = 1) and its derivative

y′(t, n) for various fixed n are given.
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Figure 1. Example of graphs of cross sections of a structural function (a) and its derivative (b) for
various fixed n.

In Figure 2, an example of graphs of cross sections of a rhythm function T(t, n) =

− 2at+b
2a +

√
4a2t2+4abt+b2

4a2 + πn
a and its derivative T′(t, n) for various fixed n are given. This

rhythm function T(t, n) corresponds to the structural function y(t, n) shown in Figure 1.
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various fixed n.

Using the rhythm function T(t, n) of the cyclically correlated random process, similarly
to Expressions (7) and (10), expressions for its phase ξϕ and its ϕ-set of single-phase values
can be written as follows:

ξϕ =
{(

tϕ
0 + T

(
tϕ
0 , n
)

, ξ
(

ω, tϕ
0 + T

(
tϕ
0 , n
)))

: tϕ
0 = const ∈Wc0 , n ∈ Z

}
(40)

Aϕ =
{

ξ
(

ω, tϕ
0 + T

(
tϕ
0 , n
))

: tϕ
0 = const ∈Wc0 , n ∈ Z

}
(41)

The set {Aϕ,ϕ ∈ I
}

of all sets of single-phase values of the cyclically correlated ran-
dom process is a set of stationary and stationary connected random sequences in a wide
sense, which are the primary statistical materials for the statistical evaluation of the mathe-



Mathematics 2022, 10, 3406 22 of 27

matical expectation and the correlation function of the cyclically correlated random process.
Corresponding methods of statistical evaluation were developed in the work [67].

4. Discussion

In this paper, when constructing a cyclically correlated random process, a rather
unusual approach for the correlation theory of random processes was used. This atypicality
is connected with the use of ideas of the category theory, in particular, with the concept
of isomorphism between different random processes, which are considered as carriers
of certain relational systems. However, the use of such a mathematical apparatus made
it possible to clearly mathematically model the cyclic, phase and rhythmic structures of
signals within the framework of the correlation theory of random processes.

The main advantages of the class of cyclically correlated random processes include
the following:

1. The class of cyclically correlated random processes include the class of cyclostationary
(periodically) correlated random processes as its subclass, which enable the use of
a set of powerful methods of analysis and the forecasting of cyclic signals with a
stable rhythm. These methods were developed during the last 60 years of active
research by scientists from different countries of the world within the framework of
this stochastic model.

2. The cyclically correlated random process makes it possible to consistently describe
cyclic stochastic signals, both with regular and irregular rhythms, not separating them,
but complementing them within the framework of a single integrated model.

In contrast to such well-known models as the cyclostationary correlated, poly-cyclostationary
correlated and almost-cyclostationary correlated random processes, the cyclically correlated
random process in an explicit, direct form describes the cyclic and phase structures of the
investigated signals and has formal means of taking into account the variability of the
rhythm of the investigated cyclic signals, which significantly expands the scope of the
application of the theory of random processes of the second order to solve the problems of
the modeling, analysis and forecasting of signals of a cyclic spatio-temporal structure, and
especially of cyclic signals with variable rhythm.

In contrast to the works [56–60], in which random processes with irregular cyclicity (ir-
regular cyclostationary process, time-warped almost-cyclostationary process, cyclostation-
ary processes with evolving periods and amplitudes) are defined, the cyclically correlated
random process has the following advantages:

1. Unlike the known random processes with irregular cyclicity (with irregular rhythm),
which are the results of the time-scale (time-warping) transformation of the cyclo-
stationary or almost-cyclostationary correlated random processes, and for which
such constructive representation (and the assumption of the existence of some basic
cyclostationary (almost-cyclostationary) correlated random process) in the case of
natural (not technical) cyclic signals is artificial and often does not correspond to the
real mechanisms of their formation, the cyclically correlated random process, and its
cyclic, phase and rhythmic structures directly reflect the time structure and properties
of a cyclic signal itself, regardless of the mechanisms of its formation (generation).

2. For a cyclically correlated random process, there is no ambiguity in its representation;
however, for the construction of a time-warped cyclostationary correlated process,
such ambiguity is always present, since such a construction requires the simultaneous
selection of both the time-scale transformation (time-warping) function and the period
of the cyclostationary correlated random process.

3. The mathematical tools of the cyclically correlated random process, and in particular,
its rhythm function, enable us to research in an explicit form the analytical dependen-
cies between the rhythmic structures of cyclically correlated random processes, which
are connected through the time-scale transformation operator; however, the same
cannot be said about the known random processes (irregular cyclostationary process,
time-warped almost-cyclostationary process, cyclostationary processes with evolving
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periods and amplitudes), because in such constructively defined processes, there are
no analogues of the rhythm function that would simulate the rhythmic structure of
the cyclic signal itself. In addition, in the work [71], within the framework of a cyclic
random process, a much wider class of analytical dependencies was investigated
between the rhythm functions of cyclic random processes (both with regular and
irregular rhythms), which are connected through the time-scale transformation op-
erator, namely, not only the time-scale conversion (time-warping) of cyclic signals
with a regular rhythm into cyclic signals with an irregular rhythm and vice versa
(time-dewarping), but also the time-scale conversion of cyclic signals with a variable
rhythm into cyclic signals with another type of variable rhythm.

4. In contrast to the methods of the processing of cyclic signals within the frame-
work of models of the irregular cyclostationary process, the time-warped almost-
cyclostationary process, and cyclostationary processes with evolving periods and
amplitudes developed in works [56–60], in which the main task of processing is a re-
duction to known processing methods of cyclostationary correlated random processes
or almost-cyclostationary correlated random processes, the methods of processing
(statistical evaluation, discretization, spectral analysis) and the computer simulation
of a cyclic random process and cyclically correlated random process, which were
developed in the works [64–75], have the means to adapt to changes in the rhythm
of the investigated signals, by considering a pre-estimated rhythm function [70,84].
The representation of the rhythm of cyclic signals in the form of the rhythm function
of a cyclically correlated random process in an explicit form makes it possible to
analytically and statistically describe the rhythmic structure of cyclic signals and as
a consequence enables the analysis of the rhythm of cyclic signals as an important
informative feature in many natural dynamic systems.

5. Conclusions

In this work, the procedure for constructing the cyclically correlated random process
of a continuous argument, which takes into account the cyclicity and stochasticity of
cyclic signals within the framework of the correlation theory of random processes and
has an effective means of taking into account both the regularity and irregularity of the
rhythm of cyclic signals in dynamic systems, for the first time is proposed. Mathematical
structures that model the cyclic, phase and rhythmic structures of a cyclically correlated
random process are presented. It made it possible to improve the mathematical means of
the modeling and the analysis of cyclic signals within the framework of the correlation
theory of random processes, in comparison with the possibilities of the classical theory of
periodically correlated random processes, in which there are no ways to take into account
the variability of the rhythm of cyclic signals, and there are no such expressive formal
means of explicitly describing of the cyclic and phase structures of the investigated signals.

By proving the theorem, the sufficient and necessary conditions, which the struc-
tural function and the rhythm function of the cyclically correlated random process must
satisfy, have been established, which provide a clear mathematical basis for the concept
of the rhythm of the cyclic signals and make it possible to quantitatively describe its
rhythmic structures.

However, an important area of the study of cyclically correlated random processes is
their representation and analysis in the frequency domain. In this direction, it is important
to have the means of spectral representation of both the cyclically correlated process itself
and its mathematical expectation and correlation function. Additionally, an important
direction of further research is the development of mathematical models in the form
of integral and differential stochastic equations, the resolution of which is a cyclically
correlated random process, which will make it possible to establish the conditions that the
parameters of these equations must satisfy so that the mathematical expectation and the
correlation function of the output signal of the dynamic system are cyclic. In particular,
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within the framework of the theory of linear random processes, such conditions were
established in [85].

The developed approach to the construction of a cyclically correlated random process
can be extended to the construction of other types of mathematical models of signals which
are cyclic according to certain attributes of cyclicity, in particular, to cyclic random processes
in the strict sense and cyclic random processes relative to its higher-order moment functions.
The obtained results contribute to the emergence of a more complete and rigorous theory
of this class of random processes and increase the validity of the methods of analysis, the
forecasting, and the computer simulation of cyclic signals in dynamic systems.
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