
Citation: Wang, J.; Gu, Y.; Rong, K.;

Xu, Q.; Zhang, X. Memristor-Based

Lozi Map with Hidden Hyperchaos.

Mathematics 2022, 10, 3426. https://

doi.org/10.3390/math10193426

Academic Editors: Sajad Jafari,

Kehui Sun and Bocheng Bao

Received: 29 August 2022

Accepted: 15 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Memristor-Based Lozi Map with Hidden Hyperchaos
Jiang Wang, Yang Gu, Kang Rong, Quan Xu and Xi Zhang *

School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
* Correspondence: zhangxi.98@163.com

Abstract: Recently, the application of memristors to improve chaos complexity in discrete chaotic
systems has been paid more and more attention to. To enrich the application examples of discrete
memristor-based chaotic systems, this article proposes a new three-dimensional (3-D) memristor-
based Lozi map by introducing a discrete memristor into the original two-dimensional (2-D) Lozi
map. The proposed map has no fixed points but can generate hidden hyperchaos, so it is a hidden
hyperchaotic map. The dynamical effects of the discrete memristor on the memristor-based Lozi
map and two types of coexisting hidden attractors boosted by the initial conditions are demonstrated
using some numerical methods. The numerical results clearly show that the introduced discrete
memristor allows the proposed map to have complicated hidden dynamics evolutions and also
exhibit heterogeneous and homogeneous hidden multistability. Finally, a digital platform is used to
realize the memristor-based Lozi map, and its experimental phase portraits are obtained to confirm
the numerical ones.

Keywords: memristor-base Lozi map; discrete memristor; dynamical effect; hidden hyperchaos;
multistability
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1. Introduction

Because of the specific nonlinearity with an internal state [1], memristors have widely
been used in plenty of continuous-time chaotic systems [2,3]. In general, the memristor-
based continuous-time chaotic systems can exhibit complicated dynamics related to initial
conditions, including various self-excited and hidden dynamical behaviors [4–9]. Thus, the
memristor can provide the dynamical effect on the original chaotic system, which can make
the memristor-based continuous-time chaotic system produce more complex dynamical
behavior [10,11]. Nevertheless, the memristor-based discrete-time chaotic systems have not
received much attention [12,13]. Therefore, it is interesting to effectively apply memristors
to discrete-time chaotic systems and investigate the complicated dynamics of the newly
constructed discrete-time systems.

Distinguishing them from the common self-excited attractors, special hidden attractors
are a class of attractors whose basins of attraction are not associated with the neighborhoods
of unstable equilibria [14,15]. Since the discovery of the special hidden attractors, many
continuous-time hidden chaotic systems with only stable equilibria or no equilibria have
been thereby proposed [16–22]. In contrast, discrete-time chaotic systems belong to a special
kind of dynamical systems that use discrete-time variables to describe the instantaneous
states. Recently, such special hidden strange attractors have also been found in discrete-
time chaotic systems of the Vertigo map [23], sine hyperchaotic map [24], quadratic chaotic
map [25], fractional-order map [26], and polynomial map [27]. In particular, discrete-time
fractional-order systems can also exhibit rich dynamical behaviors, including chaos and
projective synchronization [28], as well as period-doubling, Hopf, and symmetry-breaking
bifurcations [29]. Therefore, how to construct discrete-time chaotic systems and study the
bifurcation mechanism of the hidden attractors has been paid close attention by researchers.
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As a specific nonlinearity with the internal state, a memristor can also be used to
build various discrete-time chaotic systems, and it can bring very rich dynamical effects to
the original systems. In recent years, some novel memristor-based discrete-time chaotic
systems have been proposed through the discrete-time modeling of memristors [30–34]. Ac-
cording to Euler’s difference algorithm, a discrete-time memristor model was designed, and
a memristive Hénon chaotic map was proposed [30]. By establishing a unified discrete-time
memristor mapping model, four novel memristive hyperchaotic maps were directly de-
rived [31]. By leading a discrete-time memristor model to the original Sine-type map, a new
memristor-based hyperchaotic map was established, and its dynamical mechanism was
thereby explored [32]. Moreover, by employing a discrete-time memristor to characterize
the magnetic induction effect, a memristive Rulkov neuron model was implemented, and
its complicated regime transitions and hyperchaotic firings were uncovered therein [13]. As
a result, modeling and analysis of memristor-based discrete-time maps have gradually be-
come a new research topic, which has significant theoretical and application values [35,36].

Inspired by the above research idea, this article proposes a new 3-D memristor-based
Lozi map with hidden hyperchaos through coupling a discrete memristor into the original
Lozi map, which is expected to enrich the application examples of discrete-time memristor-
based chaotic systems. The remainder of the article is organized as follows. In Section 2,
a new memristor-based Lozi map with no fixed points is proposed. In Section 3, the
dynamical effect of the memristor on the memristor-based Lozi map is investigated. Het-
erogeneous hidden multistability and homogeneous hidden multistability are disclosed in
Section 4, and the experimental phase portraits are obtained to confirm the numerical ones
in Section 5. The last section concludes this article.

2. Modeling of Memristor-Based Lozi Map

In this section, a new 3-D memristor-based Lozi map is established by coupling a
discrete memristor to the original 2-D Lozi map. Since there are no fixed points but
hyperchaos can emerge, the memristor-based Lozi map is a hidden hyperchaotic map.

2.1. Brief Review of the Lozi Map

The original Lozi map is a 2-D discrete-time chaotic system [37], and its mathematical
model is written as {

xn+1 = 1− a|xn|+ yn,
yn+1 = bxn,

(1)

where x, y are two state variables, and a, b are two real-valued control parameters.
When the two control parameters change in a ∈ [1, 2] and b ∈ [−1.1, 0.9], the 2-D

hybrid bifurcation plot of the 2-D Lozi map is shown in Figure 1a, which contains multiple
bounded behavior regions in multiple colors and an unbounded behavior (UB) region
in gray. Note that a detailed description of the 2-D hybrid bifurcation plot is given in
the following section. The bounded behaviors mainly include chaos (CH) in magenta,
stable point (P0) in brown, and period-2 (P2) in black. More interestingly, there are two
boundary lines between the chaos region and the period-2 region as well as between the
chaos region and the stable point region, indicating that chaos is caused by the border-
collision bifurcation, which is consistent with the bifurcation mechanism of the route to
chaos in most switching converters [38]. For the representative values (a, b) = (1.7, 0.5), the
Lozi map has two fixed points and can generate a strange attractor. The typical strange
attractor with V-shaped structure is shown in Figure 1b. Therefore, the 2-D Lozi map has a
border-collision bifurcation route to chaos, but only exhibits a simple dynamics distribution
with self-excited oscillation patterns.
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where k is the coupling gain between the discrete-time memristor and the Lozi map. 

Figure 1. For fixed (x0, y0, z0) = (0, 0, 0), (a) the 2-D hybrid bifurcation plot and (b) typical strange
attractor of the 2-D Lozi map.

2.2. Discrete-Time Modeling of Memristor

For the input current i(t) and the terminal voltage v(t), a charge-controlled ideal
memristor can be modeled as

v(t) = M(q) · i(t) = sin q(t) · i(t),
dq(t)/dt = i(t),

(2)

where q is the charge variable and M(q) = sinq(t) is the memristance function. The
continuous-time model of the memristor described by (2) can show the pinched hys-
teresis loops that rely on the stimulus frequencies and memristor initial states when the
continuous-time sine currents are applied.

Let in, vn, and qn be the sampled values of i(t), v(t), and q(t) at the n-th iteration, and
qn+1 be the sampled value of q(t) at the (n + 1)-th iteration. Based on the continuous-time
memristor model in (2), a discrete-time memristor model can be mathematically described
by referring to [31] as

vn = M(qn)in = sin(qn)in,
qn+1 = qn + hin,

(3)

where M(qn) = sin(qn) and h is specified as 1. Similar to the continuous-time memristor
model, the discrete-time memristor model can also exhibit pinched hysteresis loops when
the discrete-time sine currents are applied [31].

2.3. Memristor-Based Lozi Map with no Fixed Points

To promote the chaos complexity of the Lozi map, a new 3-D memristor-based Lozi
map is proposed by coupling the discrete-time memristor given in (3) into the original Lozi
map described by (1). For the discrete memristor, the state variable yn in the Lozi map is
denoted as the input, and the state variable zn is denoted as the internal state. Then the
output of the discrete memristor becomes vn = yn sin zn, which is coupled to the second
equation of the Lozi map after the gain k. Therefore, the memristor-based Lozi map can be
constructed as 

xn+1 = 1− a|xn|+ yn,
yn+1 = bxn + kyn sin zn,
zn+1 = yn + zn,

(4)

where k is the coupling gain between the discrete-time memristor and the Lozi map.
Let P = (X, Y, Z) be a fixed point of the memristor-based Lozi map. The fixed point

P should satisfy the following algebraic equations
X = 1− a|X|+ Y,
Y = bX + kY sin Z,
Z = Y + Z.

(5)
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By solving (5), we obtain Y = 0 from the third equation, and then substitute Y = 0 into
the second equation to deduce X = 0. However, when X = 0 and Y = 0 are substituted into
the first equation, there is no solution to the first equation, implying that P = (X, Y, Z) is not
a solution to (5). Therefore, the memristor-based Lozi map has no fixed points, showing
that its dynamical behaviors are all hidden when bounded iterations occur. In other words,
the memristor-based Lozi map is a specific hidden discrete-time system.

To calculate the Lyapunov exponents (LEs) of the memristor-based Lozi map, the
Jacobian matrix can be yielded by deriving the partial derivatives from (4) as

J =

−asgn(xn) 1 0
b k sin zn kyn cos zn
0 1 1

. (6)

Because there are no fixed points, the Jacobian matrix in (6) cannot be used to evaluate
the stability of the memristor-based Lozi map and can only be applied to the LE calculation
based on Wolf’s algorithm [31].

3. Dynamical Effect Induced by Discrete Memristor

In this section, the dynamical effect of memristor on the 3-D memristor-based Lozi
map is investigated using 2-D hybrid bifurcation plots, one-dimensional (1-D) bifurcation
plots, and phase portraits.

3.1. 2-D Hybrid Bifurcation Plots

By detecting the iteration periods and LEs of the iterative sequences generated by
the proposed memristor-based Lozi map, the colorful 2-D hybrid bifurcation plot can be
employed to show the dynamical effect of the discrete memristor on the memristor-based
Lozi map. Here, we set the initial conditions as (x0, y0, z0) = (0, 0, 0) and the two control
parameters a, b are utilized to construct the 2-D parameter plane and select the interception
interval of the iteration sequence as [105, 105 + 100]. For each set of parameters in the 2-D
hybrid bifurcation plot, the memristor-based Lozi map generates an iterative sequence
with a certain dynamical behavior. The parameter regions corresponding to the iterative
sequences with different dynamical behaviors are colored differently. Note that Wolf’s
Jacobian numerical method with the iteration length 2 × 105 is utilized to calculate the
three LEs [31].

For four determined values of k, the 2-D hybrid bifurcation plots are shown in Figure 2,
where the adjustable ranges of the two control parameters are unified as a ∈ [−1, 1.6] and
b ∈ [−0.8, 0.4]. The red blocks (labeled as HC) correspond to the hidden hyperchaotic
behaviors of two positive LEs, the magenta blocks (labeled as CH) correspond to the hidden
chaotic behaviors of one positive LE, the yellow blocks (labeled as MP) correspond to the
hidden periodic behaviors of a period over 8 and no positive LEs, and the other color
blocks (labeled as P2, P3, up to P8) correspond to the hidden period-2, to hidden period-3,
up to hidden period-8 behaviors of no positive LEs. Besides, the gray blocks (labeled as
UB) correspond to the unbounded behavior. Consequently, the memristor-based Lozi map
has complicated hidden dynamics distributions in the plane of two control parameters,
including hidden hyperchaos, hidden chaos, hidden multi-period, hidden period, and
unbounded behavior. As can be seen, the 2-D hybrid bifurcation plots in Figure 2 effectively
manifest the dynamical effects of the memristor on the proposed memristor-based Lozi
map, i.e., the discrete memristor can enhance the complexity of the dynamic distribution of
the original Lozi map.
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Figure 2. For the initial conditions (x0, y0, z0) = (0, 0, 0), the 2-D hybrid bifurcation plot of the
memristor-based Lozi map at four determined values of k: (a) k = 1.4; (b) k = 1.6; (c) k = 1.8; (d) k = 1.9.

The hidden dynamical distributions of the 2-D hybrid bifurcation plots in Figure 2
consist of the hidden bounded behavior regions in plenty of colors and the unbounded
behavior (UB) region in gray. The hidden bounded behaviors mainly include hidden chaos
(CH) in magenta, hidden hyperchaos (HC) in red, hidden period-2 (P2) in black, hidden
period-4 (P4) in blue, and hidden multi-period in yellow, and these hidden bounded behav-
iors have relatively large dynamics distribution regions. However, the hidden bounded
behaviors of other hidden period-3 (P3), period-5 (P5), period-6 (P6), period-7 (P7), and
period-8 (P8) have relatively small dynamic distribution regions. By contrast, as shown in
Figure 2a, when k = 1.4, the hidden chaos and period-2 behaviors have large distribution
regions. As shown in Figure 2b, when k = 1.6, the distribution region of hidden period-2
behavior is reduced, while the distribution regions of hidden hyperchaos and period-4
behaviors are increased. As shown in Figure 2c,d, when k = 1.8 and 1.9, i.e., as k increases
further, the distribution region of hidden hyperchaos behavior further increases, while
the distribution regions of other hidden chaos and period behaviors become smaller and
smaller. Therefore, these results in Figure 2 clarify that the discrete memristor indeed has
complicated dynamical effects on the memristor-based Lozi map.

3.2. 1-D Bifurcation Plots and Hidden Hyperchaos

The 1-D bifurcation plots consist of bifurcation diagrams and corresponding LE spectra,
which can be employed to investigate the bifurcation behaviors of the 3-D memristor-based
Lozi map. According to the 2-D hybrid bifurcation plot in Figure 2c, we determine that the
two control parameters b and k are unchanged and the model parameter a is changeable.
When fixing b = −0.1, k = 1.8, and varying a in the region [−0.7, 1.2], the bifurcation
diagrams of state variables x, y (bottom) and corresponding LE spectra (top) are numerically
depicted in Figure 2a. As the evolution of a, the memristor-based Lozi map can display
hidden hyperchaos with two positive LEs, hidden chaos with one positive LE, and hidden
period-6 and period-12 with negative first LE, as well as several hidden periodic windows.

Observed from Figure 2, the discrete memristor has complicated dynamical effects on
the memristor-based Lozi map. In other words, the hidden bifurcation behaviors of the
memristor-based Lozi map are dependent on the coupling gain k. Similarly, when fixing
a = 1, b = −0.1, and varying k in the region [1.4, 1.9], the bifurcation diagrams of state
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variables x, y (bottom) and the LE spectra (top) are numerically plotted in Figure 3b. With
the increase in k, the memristor-based Lozi map only displays hidden hyperchaos with two
positive LEs, hidden chaos with one positive LE, and hidden period-4 and period-8 with
negative first LE. In particular, the hidden chaotic and hidden hyperchaotic behaviors are
robust to the coupling gain k. Besides, when k = 1.54, a fantastic route to chaos via hidden
border-collision bifurcation can be found in the memristor-based Lozi map.
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Figure 3. For the initial conditions (x0, y0, z0) = (0, 0, 0), the 1-D bifurcation plots consisting of
bifurcation diagrams of state variables x, y (bottom) and corresponding LE spectra (top) as the two
control parameters a, k vary in their respective regions: (a) a ∈ [−0.7, 1.2] with fixed b = −0.1 and
k = 1.8; (b) k ∈ [1.4, 1.9] with fixed a = 1 and b = −0.1.

With the simulated results in Figures 2 and 3, four groups of control parameters
are determined to reveal the hidden hyperchaotic attractors generated by the memristor-
based Lozi map. For the initial conditions (x0, y0, z0) = (0, 0, 0), the phase portraits
projected on the x—z plane are simulated, and the numerical results are displayed in
Figure 4, in which the iteration length is 2 × 105. In addition, we also determine the first
two LEs (LE1 and LE2) and list the calculation results in Table 1. As can be found, all
four hidden hyperchaotic attractors with two positive LEs have different and particularly
complicated fractal structures, while the original 2-D Lozi map only has simple chaotic
attractor structures. In brief, the discrete memristor can greatly enhance the fractal structure
complexity of the strange attractor in the original 2-D Lozi map.
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Figure 4. For four groups of control parameters with (x0, y0, z0) = (0, 0, 0), the phase portraits (in the
x–z plane) of the hidden hyperchaotic attractors generated by the memristor-based Lozi map. The
four groups of control parameters (a, b, k) are provided in the images.
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Table 1. Performance evolutions for hidden hyperchaotic attractors under different control parameters.

a, b, k (LE1, LE2) PermEn Cordim DKY

1, –1, 1.8 0.1811, 0.0522 4.0498 1.9578 3.0000
1.2, –0.1, 1.8 0.2174, 0.1286 4.2544 1.9900 3.0000
0.8, 0.05, 1.8 0.2232, 0.1159 4.1908 2.0036 3.0000
0.6, –0.1, 1.9 0.2531, 0.0342 3.8748 1.8348 2.5450

Moreover, similar to the performance analyses given in [36], the performance of the
four hidden hyperchaotic attractors shown in Figure 4 is evaluated by employing the
main performance indicators such as permutation entropy (PermEn), the correlation di-
mension (CorDim), and the Kaplan–Yorke dimension (DKY). The calculation results of
these performance indicators are listed in Table 1. Meanwhile, the performance indica-
tors of the typical chaotic attractor generated by the 2-D Lozi map in Figure 4 (right)
are (LE1, LE2) = (0.4701, −1.1632), PermEn = 3.8410, CorDim = 1.3915, and DKY = 1.4041.
Consequently, all the hidden hyperchaotic attractors shown in Figure 4 have excellent
performance indicators, further indicating that the discrete memristor is feasible to promote
the chaos complexity of the original 2-D Lozi map.

4. Heterogeneous and Homogeneous Hidden Multistability

In this section, two types of coexisting hidden attractors boosted by the initial condi-
tions, i.e., heterogeneous and homogeneous hidden multistability, are disclosed in the 3-D
memristor-based Lozi map using basins of attraction and phase portraits.

4.1. Coexistence of Heterogeneous Hidden Attractors

Multistability is an inherent property often encountered in chaotic systems [39], which
can be manifested as the coexisting behavior of multiple attractors in the space of ini-
tial conditions. When multistability occurs, the long-term dynamical behaviors of the
chaotic system are greatly influenced by the initial conditions in the respective regions
of attraction. For some specific control parameters, the 3-D memristor-based Lozi map
can show heterogeneous and homogeneous hidden multistability. It should be noted that
heterogeneous hidden multistability implies the coexisting behavior of multiple hidden
attractors of different stability types, while homogeneous hidden multistability indicates
the coexisting behavior of multiple hidden attractors of the same stability type but only in
different dynamic intervals.

The basin of attraction can be employed to classify the long-term coexisting behaviors
of multiple hidden attractors by marking different regions on the plane of initial conditions
with different colors. Two groups of control parameters (a, b, k) are determined as (1, 0.2,
1.37) and (1, 0.2, 1.4). Thus, the basins of attraction are plotted in the x0–z0 plane with
y0 = 0, as shown in Figure 5(a1,b1). The magenta, dark-green, red, and yellow regions stand
for chaos (CH), period-6 (P6), hyperchaos (HC), and multi-period (MP), respectively. As
can be revealed, the heterogeneous hidden bi-stability phenomena of the coexisting hidden
attractors can be demonstrated in the 3-D memristor-based Lozi map.
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Figure 5. Coexisting behaviors of heterogeneous hidden attractors in the 3-D memristor-based Lozi
map for two groups of control parameters, (a1,b1) are the basins of attraction in the x0–z0 plane with
y0 = 0, and (a2,b2) are the phase portraits in the x–z plane: (a) Coexistence of hidden chaotic and
period-6 attractors at (a, b, k) = (1, 0.2, 1.37); (b) coexistence of hidden hyperchaotic and multi-periodic
attractors at (a, b, k) = (1, 0.2, 1.4).

In addition, the coexisting heterogeneous hidden attractors under two groups of
initial conditions are disclosed and their phase portraits in the x–z plane are shown in
Figure 5(a2,b2). The initial conditions of the chaotic and period-6 hidden attractors in
Figure 5(a2) are picked from the magenta and dark-green regions in Figure 5(a1), whereas
those of the hyperchaotic and multi-period hidden attractors in Figure 5(b2) are obtained
from the red and yellow regions in Figure 5(b1). The numerical results effectively verify
the appearance of heterogeneous hidden bi-stability in the 3-D memristor-based Lozi map.

4.2. Coexistence of Homogeneous Hidden Hyperchaotic Attractors

In addition to the coexistence of heterogeneous hidden attractors mentioned above,
the memristor-based Lozi map is most likely to produce the coexistence of homogeneous
hidden hyperchaotic attractors, i.e., homogeneous hidden multistability.

We take the control parameters (a, b, k) = (1, −0.1, 1.8) as an example. To exhibit the
long-term dynamical behaviors of each set of initial conditions in the 3-D memristor-based
Lozi map, the basin of attraction in the x0–z0 plane with y0 = 0 is depicted in Figure 6a, where
the variable ranges of initial conditions on the horizontal and vertical axes are x0 ∈ [−4, 6]
and z0 ∈ [−16, 16], respectively. The attractive regions of hidden hyperchaotic attractors
with different dynamic intervals are perfectly homogeneous, and there are several fractal
boundaries that clearly divide these attractive regions. Note that the iteration trajectories
starting from each color region in the basin of attraction given in Figure 6a tend to be a
hidden hyperchaotic attractor in the same dynamic interval.
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z0 ∈ [−16, 16] and (b) the phase portrait of homogeneous hidden hyperchaotic attractors boosted by
memristor initial condition.

The first two initial conditions are set to (x0, y0) = (0, 0) and the third initial condition,
i.e., memristor initial condition, is assigned as z0 = 2mπ (m = −2, −1, 0, 1, 2). Correspond-
ingly, five homogeneous hidden hyperchaotic attractors with different dynamic intervals
can be generated in the 3-D memristor-based Lozi map, and their phase portrait in the x–z
plane is shown in Figure 6b. The numerical results show that the dynamic intervals of the
homogeneous hidden hyperchaotic attractors can be controlled regularly by the memristor
initial conditions with a period of 2π along the z-axis.

The same performance indicators listed in Table 1 are used to evaluate the performance
of the homogeneous hidden hyperchaotic attractors controlled by the memristor initial
conditions. Corresponding to the homogeneous hidden hyperchaotic attractors in Figure 6b,
the performance indicators, such as LE1, LE2, PermEn, CorDim, and DKY, are listed in
Table 2. Thus, these homogeneous hidden hyperchaotic attractors have almost identical
calculation values. The small differences are mainly brought by unavoidable calculation
errors. Therefore, the homogeneous hidden hyperchaotic attractors from the 3-D memristor-
based Lozi map can be robustly controlled by the memristor’s initial conditions.

Table 2. Performance evolutions for homogeneous hidden hyperchaotic attractors under different
memristor initial conditions.

z0 = 2mπ (LE1, LE2) PermEn Cordim DKY

z0 = 4π 0.1800, 0.0508 4.0513 1.9495 3.0000
z0 = 2π 0.1805, 0.0493 4.0467 1.9629 3.0000
z0 = 0 0.1811, 0.0522 4.0498 1.9578 3.0000

z0 = −2π 0.1803, 0.0521 4.0431 1.9501 3.0000
z0 = −4π 0.1813, 0.0498 4.0543 1.9791 3.0000

5. Microcontroller-Based Hardware Experiments

Based on a high-performance microcontroller, we can implement the 3-D memristor-
based Lozi map in a digital circuit. Thus, the generated hidden hyperchaotic attractors can
be physically obtained by a digital oscilloscope.

The STM32F407 family chip is considered the selected microcontroller. The experimen-
tal platform mainly includes a 32-bit STM32F407VET6 microcontroller, a 16-bit DAC8563
D/A converter, and an interface circuit. The microcontroller is used to implement the
memristor-based Lozi map, and the D/A converter provides the analog voltage output.
The run program with the control parameter and initial condition settings is coded using C
language and uploaded to the microcontroller.

The control parameter and initial condition settings are the same as those given in
Figures 4–6. Utilizing the experiment platform for the numerical phase portraits in Figure 4,
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the experimental phase portraits of the four hidden hyperchaotic attractors are captured on
a digital oscilloscope, as shown in Figure 7. Similarly, for the numerical phase portraits in
Figures 5 and 6, the experimental phase portraits of the coexisting heterogeneous hidden
attractors and coexisting homogeneous hidden hyperchaotic attractors are obtained by
a digital oscilloscope, as shown in Figure 8. In the captured figures, the Ch1 and Ch2
labels denote the x-axis and y-axis channels, respectively. The experimental phase portraits
validate the numerical phase portraits, indicating the feasibility of the hardware experiment
platform for the implementation of the 3-D memristor-based Lozi map.
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6. Conclusions

In this article, a new 3-D memristor-based Lozi map with hidden hyperchaos was pro-
posed by coupling a discrete memristor to the original 2-D Lozi map [37], which is expected
to enrich the application examples of discrete-time memristor-based chaotic systems. The
proposed map has no fixed points, but can produce hyperchaos, so it is a special hidden
hyperchaotic map. By employing some numerical methods, the dynamical effects of the
discrete memristor on the memristor-based Lozi map and two types of coexisting hidden
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attractors boosted by the initial conditions were clearly demonstrated. The numerical
results showed that the discrete memristor allows the proposed map to have complicated
hidden dynamics evolutions and to also exhibit heterogeneous and homogeneous hidden
multistability. Finally, a digital platform was exploited, and its experimental phase por-
traits were obtained to confirm the numerical ones. Of course, the method to realize the
applications of such a hidden hyperchaotic map in chaos-based secure communication [12]
and generative adversarial nets [40] remains to be studied in the future.
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