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Abstract: The nonparametric estimation of density and regression function based on functional
stationary processes using wavelet bases for Hilbert spaces of functions is investigated in this
paper. The mean integrated square error over adapted decomposition spaces is given. To obtain the
asymptotic properties of wavelet density and regression estimators, the Martingale method is used.
These results are obtained under some mild conditions on the model; aside from ergodicity, no other
assumptions are imposed on the data. This paper extends the scope of some previous results for
wavelet density and regression estimators by relaxing the independence or the mixing condition to
the ergodicity. Potential applications include the conditional distribution, curve discrimination, and
time series prediction from a continuous set of past values.

Keywords: multivariate regression estimation; multivariate density estimation; stationarity; ergod-
icity; rates of strong convergence; wavelet-based estimators; martingale differences; conditional
distribution; curve discrimination
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1. Introduction

The statistical literature has recently become more interested in statistical issues con-
cerning studying functional random variables or variables with values in an infinite-
dimensional space. The availability of data measured on ever-finer temporal/spatial grids,
such as in meteorology, medicine, satellite images, and many other research disciplines,
is driving the growth of this research issue, statistically modeling these data as random
functions revealed many complex theoretical and numerical research challenges. The reader
may consult the monographs for a summary of the theoretical and practical aspects of
functional data analysis. The work in Bosq [1] concerns linear models for random variables
with values in a Hilbert space, Ramsay and Silverman [2] discussed scalar-on-function and
function-on-function linear models, functional principal component analysis, and paramet-
ric discriminant analysis. The work in [3], on the other hand, concentrates on nonparametric
methods, particularly kernel-type estimation for scalar-on-function nonlinear regression
models. Such tools were extended to classification and discrimination analysis. Horváth
and Kokoszka [4] discussed the application of several interesting statistical concepts to the
functional data framework, including goodness-of-fit tests, portmanteau tests, and change
point problems. The work in [5] focuses on analyzing variance for functional data, whereas
that in [6] is more concerned with regression analysis for Gaussian processes. Recent
studies and surveys on functional data modeling and analysis can be found in [7–22].
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Motivated by diverse applications and their helpful role in statistical inference, the
problem of estimating conditional models has been subjected to a wide range of statistical
literature, employing many types of estimation approaches, the most common of which are
the traditional kernel methods. Such methods, however, may have some limitations when
estimating compactly supported or discontinuous curves at boundary points. Alternative
wavelet methods are prominent due to their adaptability to discontinuities in the curve to
be estimated. In practice, the wavelet procedure provides a simple estimation algorithm to
implement and compute. For more information on wavelets theory, we refer to [23–26] and
others. The work in [27] discusses wavelet approximation properties in detail, and surveys
the use of wavelets in various curve estimation problems. Some wavelet theory applications
are discussed in [28] by considering the estimation of the integrated squared derivative
density function in the independent unidimensional case. The results in [28] were then
extended by [29] to estimate the derivatives of a density for negatively and positively
associated sequences, respectively. Rao [30] proposed wavelet estimators for the partial
derivatives of a multivariate probability density function, where the rates of almost certain
convergence for the independence case are obtained. We cite [31] on estimating partial
derivatives of a multivariate probability density function in the presence of additive noise.
At this point, we refer to [32]. In the i.i.d. framework, Ref. [33] investigated the density
and regression estimation problems for functional data. The authors [33] developed a new
adaptive procedure based on the term-by-term selection of wavelet coefficient estimators
using wavelet bases for Hilbert spaces of functions. The primary goal of this paper is
to extend the previous reference to stationary ergodic processes. To our knowledge, the
consideration of the general dependence framework for wavelet analysis is unexplored,
which motivates this study. Allow {Xn, n ∈ Z} to be a stationary sequence. Consider
the backward field An = σ(Xk : k ≤ n) and the forward field Bn = σ(Xk : k ≥ n). The
sequence is strongly mixing if

sup
A∈A0,B∈Bn

|P(A ∩ B)− P(A)P(B)| = α(n)→ 0 as n→ ∞.

The sequence is ergodic if

lim
n→∞

1
n

n−1

∑
k=0

∣∣∣P(A ∩ τ−kB
)
− P(A)P(B)

∣∣∣ = 0,

where τ is the time-evolution or shift transformation. The naming of strong mixing in
the above definition is more stringent than what is ordinarily referred to (when using the
vocabulary of measure-preserving dynamical systems) as strong mixing, namely to that

lim
n→∞

P
(

A ∩ τ−nB
)
= P(A)P(B)

for any two measurable sets A, B, see, for instance, Ref. [34]. As a result, strong mixing
implies ergodicity, whereas the converse is not always true (see, for example, Remark 2.6 on
page 50 concerning Proposition 2.8 on page 51 in [35]). Some reasons for considering ergodic
dependence structure in data rather than a mixing structure are discussed in [36–44], where
details on the definition of ergodic property of processes are given, as well as illustrative
examples of such processes. One of the arguments used in [45] to justify the ergodic setting
is that for certain classes of processes, proving ergodic properties rather than the mixing
condition can be much easier. As a result, the ergodicity hypothesis appears to be the best
fit and offers a better framework for studying data series generated by noisy chaos. The
work in [45] provided an example of an ergodic but non-mixing process in their discussion,
which can be summarized as follows: Let (Ti, λi) : i ∈ Z be a strictly stationary process such
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that Ti | Ti−1 is a Poisson process with parameter λi, where Ti is the sigma-field generated
by (Ti, λi, Ti−1, . . .). Assume that

λi = f (λi−1, Ti−1),

and f : [0, ∞]×N→ (0, ∞) is a given function. This process is not mixing in general (see
Remark 3 of [46]). It is known that any sequence (εi)i∈Z of i.i.d. random variables is ergodic.
Hence, according to Proposition 2.10 in [35], it is easy to see that (Yi)i∈Z with

Yi = ϑ((. . . , εi−1, εi), (εi+1, εi+2, . . .)),

for some Borel-measurable function ϑ(·).
The primary goal of this paper is to provide the first complete theoretical justification

for wavelet-based functional density and regression function estimation for stationary
processes. To our knowledge, the mean integrated square error over adapted decomposition
spaces using wavelet estimators in functional ergodic data frameworks has not yet been
considered in the literature and thus remains a fundamentally unsolved open problem. By
combining several Martingale theory techniques used in the mathematical development
of the proofs, we hope to fill this gap in the literature. These tools are not the same as
those used in regression estimation under strong mixing or in an independent setting.
However, as we will see later, combining existing ideas and results is not enough to solve
the problem. Dealing with wavelet estimators in an ergodic setting will involve detailed
mathematical derivations.

The following is how the paper is structured. The multiresolution analysis is intro-
duced in Section 2. The main results for density estimation are presented in Section 3.
The main results for the regression estimation are presented in Section 4. Some potential
applications are listed in Section 5. Section 6 contains some concluding remarks. Section 7
contains a collection of all proofs.

2. Multiresolution Analysis

We will now introduce some basic notation to define wavelet bases for Hilbert spaces
of functions following [33,47] with some changes necessary for our setting. In our work,
we consider nonlinear, thresholded, wavelet-based estimators. Firstly, we initiate our study
by describing elements of the basic theory of wavelet methods and introducing nonlinear
wavelet-based estimators; the interested reader may refer to [23,24], see also [48,49] and
the references therein, although the wavelet bases on a separable Hilbert space H of real
or complex-valued functions on a complete separable metric space was introduced later
by [47], which we briefly recall here for the sake of reader’s convenience. Let H be a
separable Hilbert space of real-valued functions defined on a complete separable metric
space S. Since the space H is separable, it has an orthonormal basis

E =
{

ej : j ∈ ∆
}

,

where ∆ is a countable index set. The space H is equipped with an inner product 〈·, ·〉 and
a norm ‖ · ‖.

Consider the sequence of subsets {Ik; k ≥ 0} an increasing sequence of finite subsets
of ∆ such that ⋃

k≥0

Ik = ∆.

The subset Jk denotes the orthogonal complement of Ik in Ik+1, i.e.,

Jk = Ik+1/Ik.
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Choose, for any k ≥ 0, ζk,` ∈ S, ` ∈ Ik and ηk,` ∈ S, ` ∈ Jk, such that the follow-
ing matrices

Ak =
(
ej(ζk,`)

)
(j,`)∈Ik×Ik

, Bk =
(
ej(ηk,`)

)
(j,`)∈Jk×Jk

, (1)

satisfy one of the two following conditions, for instance, see [33,47] and the references therein.

(A.1)A∗k Ak = diag(ak,`)`∈Ik
and B∗k Bk = diag(bk,`)`′∈Jk

where ak,` and bk,` for ` ∈ Ik and
`′ ∈ Jk are positive constants.

(A.2)Ak A∗k = diag(ck,`)`∈Ik
and BkB∗k = diag(dk,`)`′∈Jk

where ck,` and dk,` for ` ∈ Ik and
`′ ∈ Jk are positive constants.

The condition (A.1) implies that

ak,` = ∑
j∈Ik

|ej(ζk,`)|2, ` ∈ Ik, and bk,` = ∑
j∈Jk

|ej(ηk,`)|2, ` ∈ Ik, (2)

which means that all the columns of Ak and Bk are not the zero vector. As for (A.2), it gives

ck,` = ∑
`∈Ik

|ej(ζk,`)|2, j ∈ Ik, and dk,` = ∑
`∈Jk

|ej(ηk,`)|2, j ∈ Ik, (3)

indicating that all the rows of Ak and Bk are not the zero vector. For any x ∈ S, we set

φk(·; ζk,`) = ∑
j∈Ik

1
√gj,k,`

ej(ζk,`)ej(·),

ψk(·; ηk,`) = ∑
j∈Jk

1√
hj,k,`

ej(ηk,`)ej(·),
(4)

where

gj,k,` =


ak,` if (A.1),

ck,` if (A.2),
hj,k,` =


bk,` if (A.1),

dk,` if (A.2),
(5)

The following collection form an orthonormal basis of H (see Theorem 2 of [47]):

B =
{

φ0(x, ζ0,`), ` ∈ I0; ψk(x, ηk,`), k ≥ 0, ` ∈ Jk
}

. (6)

For more details, see [33,47,50]. Hence, we conclude that for any f ∈ H, we have

f (x) = ∑
`∈I0

α0,`φ0(x; ζ0,`) + ∑
k≥0

∑
`∈Jk

βk,`ψk(x; ηk;`), (7)

where
α0,` = 〈 f , φ0(·; ζ0,`)〉, βk,` = 〈 f , ψk(·; ηk;`)〉. (8)

In the following, we add two assumptions on the orthonormal basis E :

(E.1) There exists a constant C1 > 0 such that, for any integer k ≥ 0, one has

(i)

∑
j∈Ik

1
gj,k,`

∣∣ej(ζk,`)
∣∣2 ≤ C1,

(ii)

∑
j∈Ik

1
hj,k,`

∣∣ej(ηk,`)
∣∣2 ≤ C1.
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(E.2) There exists a constant C2 > 0 such that, for any integer k ≥ 0, one has

sup
x∈S

∑
j∈Jk

∣∣ej(x)
∣∣2 ≤ C2|Jk|.

Remark 1. Clearly, one can see that assumption (E.1) is satisfied under assumption (A.1) when
taking C1 = 1, we may also refer to [47], Section 4, Example 2 and its applications for more
details. [47,50] have presented three examples verifying the assumption (E.2) taking

sup
x∈S

∑
j∈Jk

∣∣ej(x)
∣∣2 ≤ 1,

see also [50] Theorem 3.2. Moreover, Ref. [33] have used both assumptions in the case of i.i.d and
functional data.

Besov Space

Over the years, many researchers have addressed, from a statistical point of view, the
following question: given an estimation method and a prescribed estimation rate for a
given loss function, what is the maximal space over which this rate is achieved, for instance,
see [27,51] and the references therein. We are interested in the estimation methods based on
wavelet bases’ thresholding procedures in a natural setting. It is well known that wavelet
bases provide characterizations of smoothness spaces such as the Hölder spaces Cs, Sobolev
spaces Ws(Lp), and Besov spaces Bs

q(Lp) for a range of indices s that depend both on the
smoothness properties of ψ and its dual function ψ̃, for instance, we refer to [51] for more
detail and examples, at this point, we may refer to [52]. From a statistical point of view, the
following definition is used in approximation theory for the study of nonlinear procedures
such as thresholding and greedy algorithms, for instance we refer to [27,49,51,53].

Definition 1 (Besov space). Let s > 0. We say that the function f ∈ H, defined by (7), belongs
to the Besov space Bs

∞(H) if and only if:

sup
m≥0
|Jm|2s ∑

k≥m
∑
`∈Jk

|βk,`|2 < ∞. (9)

Definition 2 (Weak Besov space). Let r > 0. We say that the function f ∈ H, defined by (7),
belongs to the weak Besov spaceW r(H) if and only if:

sup
λ≥0

λr ∑
k≥0

∑
`∈Jk

1{|βk,` |≥λ} < ∞. (10)

3. Problem Definition of the Density Estimation

Let {Xi, Yi}i≥1 be a sequence strictly stationary ergodic pairs of random elements
where Yi is a real or complex-valued variable and Xi takes values in a complete separable
metric space of Hilbert space S associated with the corresponding Borel σ-algebra B.
Let PX be the probability measure induced by X1 on (S,B). Suppose that there exists
σ-finite measure ν on the measurable space (S,B) such that PX is dominated by ν. The
Radon–Nikodym theorem ensures the existence of a non-negative measurable function f (·)
such that

PX(B) =
∫

B
f (x)ν(dx), B ∈ B. (11)

In this context, we aim to estimate f (·) based on n observed functional data X1, . . . , Xn–
Examples of such random elements X1 are stochastic processes with continuous sample
paths on a finite interval [a, b] with S = C[a, b] associated with supremum norm and
processes with square integrable sample paths on the real line when S = L2(R). We
suppose that f ∈ H, where H is a separable Hilbert space of real or complex-valued
functions defined on S and square-integrable with respect to the σ-finite measure ν. In
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this paper, we are particularly interested in the wavelet estimation procedures developed
in the 1990s; see Meyer’s work for the functional data of a Hilbert space, more precisely,
the nonlinear estimators. The majority of the approaches carried out in this model consist
in introducing kernel estimators techniques to estimate the model’s functional part, refer
to [54]. Let f (·) be the common density function of the sample X1, . . . , Xn, which is assumed
to be

(F.1) ∃C f > 0 a known constant such that

sup
x∈S

f (x) ≤ C f . (12)

3.1. Density Function Estimator

From now, we assume that the density function f (·) ∈ H, a separable Hilbert space.
Then, f (·) fulfills the wavelet representation (7). Suppose that we observe a sequence
{(Xi, Yi)}n

i=1 of copies of (X, Y) that is assumed to be functional stationary and ergodic
with X admitting the density function f (·). We study density estimation through wavelet
bases for Hilbert spaces of functions developed by [47]. We consider the estimates of the
coefficients {αk,`} and {βk,`} given, respectively, by (14) and (15). For any j0 ≤ m. Here, the
resolution level m = m(n) → ∞ at a rate specified below, since we assume that φ(·) and
ψi(·) have a compact support so that the summations in (7) are finite for each fixed x (note
that in this case the support of φ(·) and ψi(·) is a monotonically increasing function of their
degree of differentiability [24]). We focus our attention on the nonlinear estimators (13)
which will be studied in the mean integrated squared error over adapted decomposition
spaces, in a similar way as in [33] in the setting of the i.i.d functional processes. The density
wavelet hard thresholding estimator f̂ (·) is defined, for all x ∈ S, by

f̂n(x) = ∑
`∈I0

α̂0,`φ0(x; ζ0,`) +
mn

∑
k=0

∑
`∈Jk

β̂k,`1
{
|β̂k,` |≥κ

√
ln n

n

}ψk(x; ηk;`), (13)

where

α̂k,` =
1
n

n

∑
i=1

φk(Xi; ζk,`), (14)

β̂k,` =
1
n

n

∑
i=1

ψk(Xi; ηk,`). (15)

Here, κ is a large enough constant and mn is the integer satisfying

1
2

n
ln n
≤ |Jmn | ≤

n
ln n

. (16)

3.2. Estimation Procedure Steps

Our estimation method is divided into three steps:

1. Estimation of the wavelet coefficients αk,` and βk,`, see (8), by the estimators α̂k,` and
β̂k,` defined by Equations (14) and (15);

2. Applying the hard thresholding to select the greatest β̂k,`;
3. Reconstructing the selected elements of the initial wavelet basis.

It is important to note that our choice is the universal threshold κ
(

ln n
n

)1/2
and the

definition of mn is based on theoretical considerations. The considered estimator does not
depend on the smoothness of f (·); we may refer the reader to [50] for more details in the
case of the linear wavelet estimator of f (·). Furthermore, for more details on the case of
H = L([a, b]) and more standard nonparametric models, see [27,55]. To state the results, we
need some notation. Throughout the paper, we will denote by Fi the σ−field generated by
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{Xj : 0 ≤ j ≤ i} and Gi the σ−field generated by {(Xj, Yj) : Xi+1, 0 ≤ j ≤ i}. Let B ∈ B, be

an open set of the Borel σ−algebra B. For any i = 1, . . . , n define fFi−1
Xi

(·) as the conditional
density of Xi given the σ−field Fi−1. Define

FXi = P(Xi ∈ B) = PX(B), see (11),

and
FFi−1

Xi
= P(Xi ∈ B|Fi−1)

as the distribution function and the conditional distribution function, given the σ−field
Fi−1, respectively. The following assumptions will be needed throughout the paper.

(C.0) There is a non-negative measurable function fFi−1 such that

PFi−1
X (B) =

∫
B

fFi−1(x)ν(dx), B ∈ B. (17)

(C.1) For any x ∈ S

lim
n→∞

1
n

n

∑
i=1

fFi−1(x) = f (x), in the a.s. and L2 sense.

At this point, we may refer to [56] for further details.

Theorem 1. Under the conditions (C.0), (C.1), (F.1), (E.1) and (E.2), and (16) for any θ ∈ (0, 1),

f ∈ Bθ/2
∞ (H) ∩W2(1−θ)(H),

there exists a constant C1 > 0 in such a way that

E

(∥∥∥ f̂ (x)− f (x)
∥∥∥2
)
≤ C1

(
ln n

n

)θ

, (18)

for large enough n.

A direct consequence is the following upper bound result: for s > 0, if

f ∈ Bs/(2s+1)
∞ (H) ∩W2/(2s+1)(H),

then there exists a constant C2 > 0 such that

E
(
‖ f̂ − f ‖2

)
≤ C2

(
ln n

n

)2s/(2s+1)
.

This rate of convergence corresponds to the near optimal one in the “standard”
minimax setting (see, e.g., [27]). Moreover, applying [[49], Theorem 3.2], one can see
that Bθ/2

∞ (H)∩ W2(1−θ)(H) is the “maxiset” associated to f̂ (·) at the rate of convergence
(ln n/n)θ , i.e.,

lim
n→∞

( n
ln n

)θ
E
(
‖ f̂ − f ‖2

)
< ∞⇔ f ∈ Bθ/2

∞ (H) ∩W2(1−θ)(H).

4. Problem Definition of the Regression Estimation

For a measurable function ρ : Rq → R, we define the regression function m(·, ρ) by

ρ(Y) = m(X, ρ) + ε, (19)
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where ε is a random variable independent of X with N (0, 1). We suppose that m(·, ρ) ∈ H,
where H is a separable Hilbert space of real or complex-valued functions defined on S and
square integrable with respect to the σ-finite measure ν. We shall suppose that there exist a
known constant and Cm > 0 such that

sup
x∈S

m(x, ρ) ≤ Cm. (20)

In this context, we redefine the probability measure PX in (11) and suppose that f (·) is
a non-negative measurable known function.

(M.1) We shall suppose that there exist two known constant Cm > 0 such that

sup
x∈S

m(x; ρ) ≤ Cm.

(M.2) We shall suppose that there exist two known constant c f > 0 such that

inf
x∈S

f (x) ≥ c f .

Regression Function Estimator

In this context, we aim to estimate m(·, ρ) based on n observed functional data
(X1, Y1), . . . , (Xn, Yn). The kernel estimator of the regression function for functional data
was proposed by [57]

m̂n;hn(x, ρ) :=

n

∑
i=1

ρ(Yi)K(d(x, Xi)/hn)

n

∑
i=1

K(d(x, Xi)/hn)

.

As combined with the work of [55], we define the wavelet hard thresholding estimator
m̂(·, ρ), for all x ∈ S, by

m̂(x, ρ) = ∑
`∈I0

η̂0,`φ0(x; ζ0,`) +
mn

∑
k=0

∑
`∈Jk

θ̂k,`1
{
|θ̂k,`| ≥ κ

√
ln n

n

}ψk(x; ηk;`), (21)

where

η̂k,` =
1
n

n

∑
i=1

ρ(Yi)

f (Xi)
φk(Xi; ζk,`), (22)

θ̂k,` =
1
n

n

∑
i=1

ρ(Yi)

f (Xi)
ψk(Xi; ηk,`). (23)

where κ is large enough constant and mn is the integer satisfying

1
2

n
(ln n)2 ≤ |Jmn | ≤

n
(ln n)2 . (24)

Theorem 2. Under the conditions (E.1), (E.2) (M.1)–(M.2), (C.0) and (C.1), combined with the
assumption (24), for any θ ∈ (0, 1), m(·, ρ) ∈ Bθ/2

∞ (H) ∩W2(1−θ)(H), there exists a constant
C3 > 0 in such a way that

E
(
‖m̂(·, ρ)−m(·; ρ)‖2

)
≤ C

(
ln n

n

)θ

, (25)
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for large enough n.

Suppose that m(·, ρ) and f satisfy (M.1) and, for any θ ∈ (0, 1), m(·, ρ) ∈ Bθ/2
∞ (H) ∩

W2(1−θ)(H), where Bθ/2
∞ (H) is in (Definition 1) with s = θ/2 and W2(1−θ)(H) is in

(Definition 2) with r = 2(1− θ). Then, there exists a constant C3 > 0 such that

E
(
‖m̂(·, ρ)−m(·; ρ)‖2

)
≤ C3

(
(ln n)2

n

)θ

for n large enough. Again, note that, for s > 0, if

m(·, ρ) ∈ Bs/(2s+1)
∞ (H) ∩W2/(2s+1)(H),

then there exists a constant C4 > 0 such that

E
(
‖m̂(·, ρ)−m(·; ρ)‖2

)
≤ C4

(
(ln n)2

n

)2s/(2s+1)

.

Up to an additional logarithmic term, this rate of convergence corresponds to the
near-optimal one in the “standard” minimax setting (see, for example, [27]). Theorem 2
is the first to investigate an adaptive wavelet-based estimator for functional data in the
context of nonparametric regression for ergodic processes.

Since the coefficients defined by (22) and (23) depend on the unknown function f (·),
one can use

η̃k,` =
1
n

n

∑
i=1

ρ(Yi)

f̂ (Xi)
φk(Xi; ζk,`), (26)

θ̃k,` =
1
n

n

∑
i=1

ρ(Yi)

f̂ (Xi)
ψk(Xi; ηk,`). (27)

We define the wavelet hard thresholding estimator m̃(·, ρ), for all x ∈ S, by

m̃(x, ρ) = ∑
`∈I0

η̃0,`φ0(x; ζ0,`) +
mn

∑
k=0

∑
`∈Jk

θ̃k,`1
{
|θ̃k,`| ≥ κ

√
ln n

n

}ψk(x; ηk;`). (28)

Recall the following elementary observation

1

f̂ (·)
=

1
f (·) +

( f (·)− f̂ (·))
f (·) f̂ (·)

.

From the last equation, we can infer the following:

η̃k,` = η̂k,` +
1
n

n

∑
i=1

( f (Xi)− f̂ (Xi))

f (Xi) f̂ (Xi)
ρ(Yi)φk(Xi; ζk,`),

θ̃k,` = θ̂k,` +
1
n

n

∑
i=1

( f (Xi)− f̂ (Xi))

f (Xi) f̂ (Xi)
ρ(Yi)ψk(Xi; ηk,`).

By combining Theorem 1 with Theorem 2, we obtain the following corollary.

Corollary 1. Under the conditions of Theorems 1 and 2, there exists a constant C5 > 0 such that

E
(
‖m̃(x; ρ)−m(x; ρ)‖2

)
≤ C5

(
ln n

n

)θ

, (29)
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for large enough n.

Remark 2. In our previous paper [40], we were concerned with the nonparametric estimation of the
density and the regression function in a finite-dimensional setting using orthonormal wavelet bases.
Our findings differ significantly from those presented in the present paper. In [40], we provided the
strong uniform consistency properties with rates of these estimators, over compact subsets of Rd,
under a general ergodic condition on the underlying processes. We also establish the asymptotic
normality of wavelet-based estimators. We used the Burkholder–Rosenthal inequality as the main
ingredient in this paper, which is a more complicated tool than the exponential inequality used in
the previous paper. More importantly, in the present paper, we look into the mean integrated square
error over compact subsets, which is entirely different from the results of the previous paper.

5. Applications
5.1. The Conditional Distribution

Our result can be used to investigate the conditional distribution F(y | x) for y ∈ Rd.
To be more precise, let ρ(y) = 1{y ≤ t}. We define the wavelet hard thresholding estimator
m̆(·, ρ), for all x ∈ S, by

F̂(y | x) = ∑
`∈I0

η̆0,`φ0(x; ζ0,`) +
mn

∑
k=0

∑
`∈Jk

θ̆k,`1
{
|θ̆k,`| ≥ κ

√
ln n

n

}ψk(x; ηk;`), (30)

where

η̆k,` =
1
n

n

∑
i=1

1{Yi ≤ t}
f (Xi)

φk(Xi; ζk,`), (31)

θ̆k,` =
1
n

n

∑
i=1

1{Yi ≤ t}
f (Xi)

ψk(Xi; ηk,`). (32)

A direct consequence of Theorem 2 is

E

(∥∥∥F̂(y | x)− F(y | x)
∥∥∥2
)
≤ C

(
ln n

n

)θ

. (33)

5.2. The Curve Discrimination

We can state the curve discrimination problem in the following way. Let {Xi}i=1,...,n
be a sample of curves, and each of them is known to belong to one among G groups
ι = 1, . . . , G. Let us denote by Ti the group of the curve Xi. Assume that each pair of
variables (Xi, Ti) has the same distribution as the pair (X, T). Given a new curve x, the
question is to know its class membership, and for that, we will estimate, for any ι = 1, . . . , G,
the conditional probability:

pι(x) = P(T = ι | X = x).

Following the idea proposed in [58,59] permitting the estimation of these probabilities by

p̂ι(x) = ∑
`∈I0

˘̆η0,`φ0(x; ζ0,`) +
mn

∑
k=0

∑
`∈Jk

˘̆θk,`1
{
| ˘̆θk,`| ≥ κ

√
ln n

n

}ψk(x; ηk;`), (34)
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where

˘̆ηk,` =
1
n

n

∑
i=1

1{Ti =ι}
f (Xi)

φk(Xi; ζk,`), (35)

˘̆θk,` =
1
n

n

∑
i=1

1{Ti =ι}
f (Xi)

ψk(Xi; ηk,`). (36)

A direct consequence of Theorem 2 is

E

(∥∥∥F̂(y | x)− F(y | x)
∥∥∥2
)
≤ C

(
ln n

n

)θ

. (37)

As remarked by [58,59], for each ι, we make use of the notation

Y =

{
1 if T = ι

0 otherwise ,

then, we can write
pι(x) = E(Y | X = x).

An application of Theorem 2 is

E
(
‖ p̂ι(x)− pι(x‖2

)
≤ C

(
ln n

n

)θ

.

5.3. Time Series Prediction from Continuous Set of Past Values

A direct consequence of our results is the prediction of future values of some real time
series, which we will follow from [59]. One of the purposes of the proposed functional
method is to predict the future from a continuous set of past values of the process. Let
{Z(t)}t∈R denote a real-valued process and s denote a fixed non-negative real number. We
are interested in the prediction’s problem of a future value Z(τ) given some past values
Z(t) for τ − T ≤ t < τ, at some time τ > 0. Our goal can be seen as the estimation of the
operator r:

Z(τ + s) = r(Z(t) for τ − T ≤ t < τ) + ε,

whenever it exists. Let us describe the model. Suppose that the process has been observed
from t = 0 until t = tmax and without loss of generality, assume that

tmax = nT + s < τ.

The methodology consists of splitting the observed process into n pieces of fixed
length. Each piece of the process is denoted by

Xi = {Z(t), (i− 1)T ≤ t < iT}.

Let us denote the response value Yi = Z(iT + s). This can be formulated by a regres-
sion problem in the following way:

Yi = m(Xi, Id) + εi for i = 1, . . . , n,

where Id denotes the identity function. To fit the theoretical setting of the present paper, we
assume that such a function m(·, Id) does not depend on i; this is the case for the stationary
processes. Hence, at time τ, we can use for predicting the value at time τ + s the following
predictor, which is directly derived from (21) :
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m̂(x, Id) = ∑
`∈I0

η̂0,`φ0(x; ζ0,`) +
mn

∑
k=0

∑
`∈Jk

θ̂k,`1
{
|θ̂k,`| ≥ κ

√
ln n

n

}ψk(x; ηk;`), (38)

where

η̂k,` =
1
n

n

∑
i=1

Z(iT + s)
f (Xi)

φk(Xi; ζk,`), (39)

θ̂k,` =
1
n

n

∑
i=1

Z(iT + s)
f (Xi)

ψk(Xi; ηk,`), (40)

where x = {Z(t), for τ − T ≤ t < τ}. Our Theorem 2 gives mathematical support to this
nonparametric functional predictor, and provides a different way of solving the prediction
problem investigated in [3,59].

6. Concluding Remarks

In this work, we have investigated the nonparametric estimation of the density and the
regression function based on the functional stationary processes, using wavelet bases for
Hilbert spaces of functions. We have characterized the mean integrated square error over
compact subsets. The asymptotic properties of these estimators are obtained employing the
Martingale approach, which is completely different from the mixing and the independent
setting. The assumption on the dependence of the process is ergodicity. To motivate the
present paper, we have presented the conditional distribution, the curve discrimination and
the time series prediction from a continuous set of past values. Extending the nonparametric
functional ideas to the local stationary process is a somewhat underdeveloped field. It
would be interesting to extend our work to the case of the functional local stationary
process, which requires nontrivial mathematics; this would go well beyond the scope of
the present paper.

7. Proofs
7.1. Proof of Theorem 1

In this paper, we need an upper bound inequality for partial sums of unbounded
martingale differences that we use to derive the asymptotic results for the density and the
regression functions estimates built upon functional strictly stationary and ergodic data.
Here and in the sequel, we denote by “C” a positive constant that may be different from line
to line. This inequality is given in the following lemmas. This lemma is stated following
Notation 1 in [60].

Lemma 1 (Burkholder-Rosenthal inequality). Let (Xi)i≥1 be a stationary Martingale adapted
to the filtration (Fi)i≥1, define (di)i≥1 is the sequence of Martingale differences adapted to (Fi)i≥1
and

Sn =
n

∑
i=1

di.

Then, for any positive integer n,

‖ max
1≤j≤n

|Sj|)‖p � n1/p‖d1‖p +

∥∥∥∥∥ n

∑
k=1

E(d2
k/Fk−1)

∥∥∥∥∥
1/2

p/2

, for any p ≥ 2; (41)

where, as usual, the norm ‖ · ‖p = (E[| · |p])1/p.
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Lemma 2 ([61]). Let {Zi, i ≥ 1} be a sequence of Martingale differences such that

|Zi| ≤ B, a.s.,

then, for all ε > 0 and all sufficiently large n, we have

P
{∣∣∣∣∣ n

∑
i=1

Zi

∣∣∣∣∣ > ε

}
≤ 2 exp

{
− ε2

2nB2

}
.

The following lemmas describe the asymptotic behavior of the estimators α̂k,` and β̂k,`.

Lemma 3. For any k ∈ {0, . . . , mn} and any ` ∈ Ik, under assumptions (C.0), (C.1), (F.1) and
(E.1)(i), there exists a constant C > 0 such that

E
(∣∣α̂k,` − αk,`

∣∣2) ≤ C
(

ln n
n

)
. (42)

Lemma 4. For any k ∈ {0, . . . , mn} and any ` ∈ Jk, and under assumptions (C.0), (C.1), (F.1),
(E.1) and (E.2), and condition (16), there exists a constant C > 0 such that

E
(∣∣∣β̂k,` − βk,`

∣∣∣4) = C
(

ln n
n

)2
, a.s. (43)

Lemma 5. For any k ∈ {0, . . . , mn} and any ` ∈ Jk, for κ > 0 large enough and under
assumptions (C.0), (C.1), (F.1), (E.1) and (E.2), and condition (16), there exists a constant C > 0
such that

P
(∣∣∣β̂k,` − βk,`

∣∣∣ ≥ κ

2

√
ln n

n

)
≤ C

(
ln n

n

)2
. (44)

7.1.1. Proof of Theorem 1

Observe that the proof of Theorem 1 is a direct application of ([49], Theorem 3.1) with
c(n) = (ln n/n)1/2, σi = 1, r = 2 and the Lemmas 3–5. We adapted and extended the
method of demonstration of [33], Theorem 3.1 to the stationary ergodic process. �

7.1.2. Proof of Lemmas
Proof of Lemma 3

Consider the following decomposition

α̂k,` − αk,` = α̂k,` − α̃k,` + α̃k,` − αk,`

= Ak,`,1 + Ak,`,2, (45)

where

α̃k,` =
1
n

n

∑
i=1

E[φk(xi; ζk,`)|Fi−1].
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Under the assumptions (C.0) and (C.2), we have

α̃k,` =
1
n

n

∑
i=1

∫
S

φk(x; ζk,`) fFi−1(x)ν(dx)

=
∫

S
φk(x; ζk,`)

(
1
n

n

∑
i=1

fFi−1(x)

)
ν(dx)

=
∫

S
φk(x; ζk,`)( f (x) + o(1))ν(dx)

=
∫

S
φk(x; ζk,`) f (x)ν(dx) + o(1)

= αk,` + o(1).

We readily obtain
α̃k,` = αk,`, as, n→ ∞, (46)

implying that
Ak,`,2 = o(1), a.s. (47)

Therefore, we infer that

α̂k,` − αk,` = Ak,`,1 + o(1), a.s.

Let us now consider the term Ak,`,1. We have

Ak,`,1 = α̂k,` − α̃k,`

=
1
n

n

∑
i=1

(φk(xi; ζk,`)−E[φk(xi; ζk,`)|Fi−1])

=
1
n

n

∑
i=1

Φk(xi; ζk,`).

Notice that (Φk(xi; ζk,`))0≤k≤mn is a sequence of Martingale differences with respect to
the sequence of σ−fields (Fi)0≤k≤mn . It is obvious, by Lemma 1 inequality, to see that

E
[
|Ak,`,1|2

]
=

1
n2E

∣∣∣∣∣ n

∑
i=1

Φk(xi; ζk,`)

∣∣∣∣∣
2
.

Applying the Burkholder–Rosenthal inequality (1), for p = 2, we obtain

E

∣∣∣∣∣ n

∑
i=1

Φk(xi; ζk,`)

∣∣∣∣∣
2
 1

2

≤ n1/2 ‖ Φk(x1; ζk,`) ‖2 + ‖
n

∑
i=1

E
[
Φ2

k(xi; ζk,`)|Fi−1

]
‖1/2

1

= Φ(1) + Φ(2) (48)

On one hand, using a very famous decomposition combined with the fact that F0 is
the trivial σ−field, we obtain
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1
n

Φ2
(1) = ‖ Φk(x1; ζk,`) ‖2

2

= E
[∣∣φk((x1; ζk,`))− E[φk(x1; ζk,`)|F0]

∣∣2]
≤ E

[
2

∑
j=0
| φk(x1; ζk,`) |j (E[| φk(x1; ζk,`) |])2−j

]

=
2

∑
j=0

Cj
2E
[
| φk(x1; ζk,`) |j

]
.(E[| φk(x1; ζk,`) |])2−j

= C2
2 E
[
| φk(x1; ζk,`) |2

]
+ C1

2(E[| φk(x1; ζk,`) |])2 + C0
2 E
[
| φk(x1; ζk,`) |2

]
, (49)

By the Cauchy–Schwarz inequality, together with assumptions (E.1)(i), (E.2) and the
condition (16), we obtain

sup
x∈S

∣∣φk(xi; ζk,`)
∣∣ ≤ sup

x∈S
∑

j∈Jk

1
√gj,k,`

|ej(ζk,`)||ej(x)|

≤
(

∑
j∈Jk

1
gj,k,`
|ej(ζk,`)|2

)1/2(
sup
x∈S

∑
j∈Jk

|ej(x)|2
)1/2

≤ C1/2
1 C1/2

2

√
|Jk|

≤ C3

√
|Jmn |

≤ C3

√
n

ln n
. (50)

Observe that, under the assumptions (F.1) and (E.1)(i) and the fact that E is an or-
thonormal basis of H, we have

E
[∣∣φk(x1; ζk,`)

∣∣2] =
∫

S

∣∣φk(x; ζk,`)
∣∣2 f (x)ν(dx)

≤ C f

∫
S

∣∣φk(x; ζk,`)
∣∣2ν(dx)

= C f

∫
S

∣∣∣∣∣∑j∈Ik

1
√gj,k,`

ej(ζk,`)ej(x)

∣∣∣∣∣
2

ν(dx)

= C f

∫
S

∑
j∈Ik

1
gj,k,`

∣∣ej(ζk,`)
∣∣2ν(dx)

≤ C f C1. (51)

where C1 is a positive constant,

E[| φk(x1; ζk,`) |] = O
(√

n
ln n

)
, (52)

E
[
| φk(x1; ζk,`) |2

]
= O(1) (53)

therefore,

Φ(1) = O(n1/2). (54)
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On the other hand, we consider the second term of decomposition (48), observe that

Φ2 =

(
E
(

n

∑
i=1

E
[
Φ2

k(xi; ζk,`)|Fi−1

]))1/2

=

(
n

∑
i=1

E
(
E
[
Φ2

k(xi; ζk,`)|Fi−1

]))1/2

=

(
n

∑
i=1

E
[
Φ2

k(xi; ζk,`)
])1/2

using the notable identity, we obtain

E
[
Φ2

k(xi; ζk,`)
]

= E
[(∣∣φk(xi; ζk,`)−E[φk(xi; ζk,`)|Fi−1]

∣∣)2
]

≤ E
[
| φk(xi; ζk,`) |2 +2 | φk(xi; ζk,`) | E[| φk(xi; ζk,`) | |Fi−1]

+E
[
| φk(xi; ζk,`) |2 |Fi−1

]]
≤ 2E

[
| φk(xi; ζk,`) |2

]
+ 2E

[
E
[
| φk(xi; ζk,`) |2 |Fi−1

]]
≤ 4E

[
| φk(xi; ζk,`) |2

]
observe that, using (50) and (51), we obtain

Φ2 = O(n1/2). (55)

therefore, we combine (54) and (55) to obtainE

∣∣∣∣∣ n

∑
i=1

Φk(xi; ζk,`)

∣∣∣∣∣
2
1/2

= O(n1/2).

Hence,

E
[
|Ak,`,1|2

]
=

1
n2E

∣∣∣∣∣ n

∑
i=1

Φk(xi; ζk,`)

∣∣∣∣∣
2


=
1
n2 O(n)

≤ C
(

ln n
n

)
Therefore, there exists a constant C = C f C1 > 0, such that

E
(∣∣α̂k,` − αk,`

∣∣2) ≤ 4C
n
≤ 4C

(
ln n

n

)
. (56)

Hence, the proof is complete. �

Proof of Lemma 4

Consider the following decomposition

β̂k,` − βk,` = β̂k,` − β̃k,` + β̃k,` − βk,`

= Bk,`,1 + Bk,`,2, (57)
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where

β̃k,` =
1
n

n

∑
i=1

E[ψk(xi; ηk,`)|Fi−1].

Observe that, under the assumptions (F.1) and (E.1)(i) and the fact that E is an or-
thonormal basis of H, and proceeding in a similar way as in (46), we show that

β̃k,` = βk,`, as, n→ ∞. (58)

This, in turn, implies that
Bk,`,2 = o(1), a.s. (59)

Therefore, we obtain

β̂k,` − βk,` = Bk,`,1 + o(1), a.s.

Hence, we readily infer

E
(∣∣∣β̂k,` − βk,`

∣∣∣4) =
1
n4E

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
, (60)

where
Ψi,k,` = ψk(xi; ηk,`)−E[ψk(xi; ηk,`)|Fi−1].

Notice that (Ψi,k,`)0≤k≤n is a sequence of Martingale differences with respect to the
sequence of σ−fields (Fi)0≤k≤n, applying the Burkholder–Rosenthal inequality for p = 4
(see Lemma 1), we obtainE

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
1/4

≤
∥∥∥∥∥max

1≤j≤n

∣∣∣∣∣ j

∑
i=1

Ψi,k,`

∣∣∣∣∣
∥∥∥∥∥

4

� n1/4‖Ψ1,k,`‖4 +

∥∥∥∥∥ n

∑
i=1

E(Ψ2
i,k,`|Fi−1)

∥∥∥∥∥
1/2

4/2

= Ψ(1)
k,` + Ψ(2)

k,` . (61)

Consider the first term of Equation (61). We have

1
n

(
Ψ(1)

k,`

)4
= ‖Ψ1,k,`‖4

4

= E
(∣∣ψk(x1; ηk,`)−E[ψk(x1; ηk,`)|F0]

∣∣4)
≤ E

[(∣∣ψk(x1; ηk,`)
∣∣+E

[∣∣ψk(x1; ηk,`)
∣∣])4

]
.

Using the classical identity

(a + b)n =
n

∑
k=0

Ck
nakbn−k
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in connection with the Jensen inequality and taking n = 4, we obtain(∣∣ψk(x1; ηk,`)
∣∣+E

[∣∣ψk(x1; ηk,`)
∣∣])4

=
4

∑
k=0

Ck
4
∣∣ψk(x1; ηk,`)

∣∣k(E[∣∣ψk(x1; ηk,`)
∣∣])4−k

≤
4

∑
k=0

Ck
4
∣∣ψk(x1; ηk,`)

∣∣kE[∣∣ψk(x1; ηk,`)
∣∣4−k

]
.

This gives that

1
n

(
Ψ(1)

k,`

)4
≤ E

[
4

∑
k=0

Ck
4
∣∣ψk(x1; ηk,`)

∣∣kE[∣∣ψk(x1; ηk,`)
∣∣4−k

]]

=
4

∑
k=0

Ck
4E
[∣∣ψk(x1; ηk,`)

∣∣k]E[∣∣ψk(x1; ηk,`)
∣∣4−k

]
. (62)

By proceeding in a similar way as in (51) and making use of the assumptions (F.1) and
(E.1)(i), we infer that

E
[∣∣ψk(x1; ηk,`)

∣∣2] ≤ C, (63)

where C is a positive constant. Moreover, by the Cauchy–Schwarz inequality together with
assumptions (E.1)(ii), (E.2) and the condition (16), we obtain

sup
x∈S

∣∣ψk(x; ηk,`)
∣∣ ≤ sup

x∈S
∑

j∈Jk

1√
hj,k,`

|ej(ηk,`)||ej(x)|

≤
(

∑
j∈Jk

1
hj,k,`
|ej(ηk,`)|2

)1/2(
sup
x∈S

∑
j∈Jk

|ej(x)|2
)1/2

≤ C1/2
1 C1/2

2

√
|Jk|

≤ C4

√
|Jmn |

≤ C4

√
n

ln n
. (64)

We then obtain

E
[ ∣∣ψk(x1; ηk,`)

∣∣ ] = O
(√

n
ln n

)
, (65)

E
[∣∣ψk(x1; ηk,`)

∣∣2] = O(1), (66)

E
[∣∣ψk(x1; ηk,`)

∣∣3] = O
(√

n
ln n

)
, (67)

E
[∣∣ψk(x1; ηk,`)

∣∣4] = O
( n

ln n

)
. (68)

Observe that the largest term is (68); now, using (68) in Equation (62), we deduce that

1
n

(
Ψ(1)

k,`

)4
= O

( n
ln n

)
.

This implies that

Ψ(1)
k,` = O

(
n1/2

(ln n)1/4

)
. (69)
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Let us now investigate the upper bound of Ψ(2)
k,` in (61). Observe that

Ψ(2)
k,` =

∥∥∥∥∥ n

∑
i=1

E(Ψ2
i,k,`/Fi−1)

∥∥∥∥∥
1/2

2

=

E

( n

∑
i=1

E
[
Ψ2

i,k,`|Fi−1

])2
1/4

,

for all i = 1, . . . , n. Making use of the Jensen inequality with the fact that (a − b)2 =
a2 − 2ab + b2, it follows that

n

∑
i=1

E
[
Ψ2

i,k,`|Fi−1

]
=

n

∑
i=1

(
E
[
(ψk(xi; ηk,`)−E[ψk(xi; ηk,`)|Fi−1])

2|Fi−1

])
≤ 4

n

∑
i=1

E
[
(ψk(xi; ηk,`))

2|Fi−1

]
.

Observe, under the assumptions (F.1), (E.1)(i), (C.0) and (C.1) and (63):

n

∑
i=1

E
[
(ψk(xi; ηk,`))

2|Fi−1

]
= n

∫
S

∣∣ψk(x; ηk,`)
∣∣2( 1

n

n

∑
i=1

fFi−1(x)

)
ν(dx)

= n
∫

S

∣∣ψk(x; ηk,`)
∣∣2( f (x) + o(1))ν(dx)

≤ n
(

C f + o(1)
) ∫

S

∣∣ψk(x; ζk,`)
∣∣2ν(dx)

≤ nC f C1. (70)

It follows that

Ψ(2)
k,` = O

(
n1/2

)
. (71)

Combining (61), (69) and (71), we obtain

E

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
 = O

(
n2

ln n

)
+ O

(
n2
)

.

We conclude that

E
(∣∣∣β̂k,` − βk,`

∣∣∣4) = O
(

1
n2 ln n

)
+ O

(
1
n2

)
. (72)

This implies that there exists a constant C > 0, such that

E
(∣∣∣β̂k,` − βk,`

∣∣∣4) ≤ C
(

ln n
n

)2
. (73)

The proof is achieved. �

Proof of Lemma 5

Consider the previous decomposition in Lemma 4, to write that

β̂k,` − βk,` =
(

β̂k,` − β̃k,`

)
+
(

β̃k,` − βk,`

)
= Bk,`,1 + Bk,`,2,
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where

Bk,`,1 =
1
n

n

∑
i=1

Ψi,k,` =
1
n

n

∑
i=1

(ψk(xi; ηk,`)−E[ψk(xi; ηk,`)|Fi−1]),

Bk,`,2 =
1
n

n

∑
i=1

E[ψk(xi; ηk,`)|Fi−1]− βk,`.

By using (59), we obtain the desired result for the term Bk,`,2

β̂k,` − βk,` = Bk,`,1 + o(1).

Now, observe that

P
(∣∣∣∣∣ 1n n

∑
i=1

Ψi,k,`

∣∣∣∣∣ ≥ κ

2

√
ln n

n

)
= P

(∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣ ≥ κ

2

√
n ln n

)
.

An application of Lemma 2 implies that∣∣Ψi,k,`
∣∣ =

∣∣ψk(xi; ηk,`)−E[ψk(xi; ηk,`)|Fi−1]
∣∣

≤ 2 sup
x∈S

∣∣ψk(x; ηk,`)
∣∣

≤ C3

√
n

ln n
≤ C3

√
n. (74)

Let B = C3
√

n. Then, for all εn = κ
2

√
n ln n where n is sufficiently large, we have

P
(∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣ ≥ κ

2

√
n ln n

)
≤ 2 exp

{
− ε2

n
2nB2

}

= 2 exp

−
(

κ
2

√
n ln n

)2

2n
(
C3
√

n
)2


= 2 exp

{
−κ2 ln n

8C2
3n

}

= 2 exp

{
ln n

− κ2

8C2
3 n

}
= 2n−w(κ,n), (75)

where

w(κ, n) =
κ2

8C2
3n

.

By choosing κ such that w(n, κ) = 2, we have

P
(∣∣∣β̂k,` − βk,`

∣∣∣ ≥ κ

2

√
ln n

n

)
≤ C

1
n2 + o(1)

≤ C
(

ln n
n

)2
. (76)

The proof of (44) is achieved. �
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7.1.3. Proof of Theorem 2

Recall that

m̂(x, ρ) = ∑
`∈I0

η̂0,`φ0(x; ζ0,`) +
mn

∑
k=0

∑
`∈Jk

θ̂k,`1
{
|θ̂k,` |≥κ

√
ln n

n

}ψk(x; ηk;`),

where

η̂k,` =
1
n

n

∑
i=1

ρ(Yi)

f (Xi)
φk(Xi; ζk,`), θ̂k,` =

1
n

n

∑
i=1

ρ(Yi)

f (Xi)
ψk(Xi; ηk,`).

Lemma 6. For any k ∈ {0, . . . , mn} and any ` ∈ Ik and under the assumptions (E.1)(i), (M.1)-
(M.2), (C.0) and (C.1), there exists a constant C > 0 such that

E
(∣∣η̂k,` − ηk,`

∣∣2) ≤ C
(

ln n
n

)
. (77)

Lemma 7. For any k ∈ {0, . . . , mn} and any ` ∈ Jk, and under the assumptions (E.1), (E.2)
(M.1)-(M.2), (C.0) and (C.1), combined with the condition (24), there exists a constant C > 0 such
that

E
(∣∣∣θ̂k,` − θk,`

∣∣∣4) = C
(

ln n
n

)2
, a.s. (78)

Lemma 8. For any k ∈ {0, . . . , mn} and any ` ∈ Jk, for κ > 0 large enough, (E.1), (E.2) (M.1)–
(M.2), (C.0) and (C.1), combined with the condition (24), there exists a constant C > 0 such
that

P
(∣∣∣θ̂k,` − θk,`

∣∣∣ ≥ κ

2

√
ln n

n

)
≤ C

(
ln n

n

)2
. (79)

7.1.4. Proof of Theorem 2

Observe that the proof of Theorem 2 is a direct application of ([49], Theorem 3.1) with
c(n) = (ln n/n)1/2, σi = 1, r = 2 and the following Lemmas 6–8. We extended the method
of the proof in [33], Theorem 4.1. �

7.1.5. Proof of Lemmas
Proof of Lemma 6

Consider the following decomposition

η̂k,` − ηk,` = η̂k,` − η̃k,` + η̃k,` − ηk,`

= Ak,`,1 + Ak,`,2, (80)

where

η̃k,` =
1
n

n

∑
i=1

E
[

ρ(Yi)

f (Xi)
φk(Xi; ζk,`)|Fi−1

]
=

1
n

n

∑
i=1

E
[
(m(Xi, ρ) + εi)

f (Xi)
φk(Xi; ζk,`)|Fi−1

]
=

1
n

n

∑
i=1

E
[

m(Xi, ρ)

f (Xi)
φk(Xi; ζk,`)|Fi−1

]
+

1
n

n

∑
i=1

E
[

εi
f (Xi)

φk(Xi; ζk,`)|Fi−1

]
.
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From the independence between εi and Xi, we have

E[εi|Gi−1] = E[εi|Xi]

= E[εi]

= 0. (81)

Observe that

E
[

ε

f (Xi)
φk(Xi; ζk,`)|Fi−1

]
= E

[
E[ε|Gi−1]

f (Xi)
φk(Xi; ζk,`)|Fi−1

]
= E

[
E[ε|Xi]

f (Xi)
φk(Xi; ζk,`)|Fi−1

]
= E

[
E[ε]
f (Xi)

φk(Xi; ζk,`)|Fi−1

]
= 0.

This implies that

η̃k,` =
1
n

n

∑
i=1

E
[

ρ(Yi)

f (Xi)
φk(Xi; ζk,`)|Fi−1

]
=

1
n

n

∑
i=1

E
[

m(Xi, ρ)

f (Xi)
φk(Xi; ζk,`)|Fi−1

]
.

Making use of the assumptions (M.1)–(M.2), (C.0) and (C.1), we have

η̃k,` =
1
n

n

∑
i=1

∫
S

m(x, ρ)

f (x)
φk(x; ζk,`) fFi−1(x)ν(dx)

=
∫

S

m(x, ρ)

f (x)
φk(x; ζk,`)

(
1
n

n

∑
i=1

fFi−1(x)

)
ν(dx)

=
∫

S

m(x, ρ)

f (x)
φk(x; ζk,`)( f (x) + o(1))ν(dx)

=
∫

S

m(x, ρ)

f (x)
φk(x; ζk,`) f (x)ν(dx) + o(1)

= ηk,` + o(1).

We readily obtain that
η̃k,` = ηk,`, as, n→ ∞. (82)

implying that
Ak,`,2 = o(1), a.s. (83)

Therefore,

η̂k,` − ηk,` = Ak,`,1 + o(1), a.s.

Let us now turn our attention to the term Ak,`,1 in (80), we have

Ak,`,1 = η̂k,` − η̃k,`

=
1
n

n

∑
i=1

(
ρ(Yi)

f (Xi)
φk(Xi; ζk,`)−E

[
ρ(Yi)

f (Xi)
φk(Xi; ζk,`)|Fi−1

])
=

1
n

n

∑
i=1

Φk(Xi; ζk,`).
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Notice that (Φk(xi; ζk,`))0≤k≤mn is a sequence of Martingale differences with respect to
the sequence of σ−fields (Fi)0≤k≤mn . It is obvious, proceeding as the proof of (56), that

E
[
|Ak,`,1|2

]
=

1
n2E

∣∣∣∣∣ n

∑
i=1

Φk(Xi; ζk,`)

∣∣∣∣∣
2


where E

∣∣∣∣∣ n

∑
i=1

Φk(xi; ζk,`)

∣∣∣∣∣
2
 1

2

≤ n1/2 ‖ Φk(x1; ζk,`) ‖2 + ‖
n

∑
i=1

E
[
Φ2

k(xi; ζk,`)|Fi−1

]
‖1/2

1

= Φ(1) + Φ(2) (84)

On the one hand, using a very famous decomposition combined with the fact that F0
is the trivial σ−field, we obtain

1
n

Φ2
(1) = ‖ Φk(x1; ζk,`) ‖2

2

= E
[∣∣∣∣ ρ(Yi)

f (Xi)
φk((x1; ζk,`))−E

[
ρ(Y1)

f (X1)
φk(x1; ζk,`)|F0

]∣∣∣∣2
]

≤ E
[

2

∑
j=0

∣∣∣∣ ρ(Y1)

f (X1)
φk(x1; ζk,`)

∣∣∣∣j(E[∣∣∣∣ ρ(Y1)

f (X1)
φk(x1; ζk,`)

∣∣∣∣])2−j
]

=
2

∑
j=0

Cj
2E
[∣∣∣∣ ρ(Y1)

f (X1)
φk(x1; ζk,`)

∣∣∣∣j
]

.
(
E
[∣∣∣∣ ρ(Y1)

f (X1)
φk(x1; ζk,`)

∣∣∣∣])2−j

= C2
2E
[∣∣∣∣ ρ(Y1)

f (X1)
φk(x1; ζk,`)

∣∣∣∣2
]
+ C1

2

(
E
[∣∣∣∣ ρ(Y1)

f (X1)
φk(x1; ζk,`)

∣∣∣∣])2

+C0
2E
[∣∣∣∣ ρ(Y1)

f (X1)
φk(x1; ζk,`)

∣∣∣∣2
]

,

It follows, from assumptions (M.1) and (M.2), that

|ρ(Yi)| ≤ Cm + |εi|, (85)

combined with the independence between X1 and ε1, E[ε2
1] = 1. Observe that, under

assumption (E.1)(i) and the fact that E is an orthonormal basis of H, we have
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E
[∣∣∣∣ ρ(Y1)

f (X1)
φk(X1; ζk,`)

∣∣∣∣2
]
≤

(
C2

m + 1
)

c f
E
[∣∣∣∣ 1

f (X1)

∣∣∣∣∣∣φk(x1; ζk,`)
∣∣2]

≤
(
C2

m + 1
)

c f

∫
S

1
f (x)

∣∣φk(x; ζk,`)
∣∣2 f (x)ν(dx)

=

(
C2

m + 1
)

c f

∫
S

∣∣∣∣∣∑j∈Ik

1
√gj,k,`

ej(ζk,`)ej(x)

∣∣∣∣∣
2

ν(dx)

=

(
C2

m + 1
)

c f

∫
S

∑
j∈Ik

1
gj,k,`

∣∣ej(ζk,`)
∣∣2ν(dx)

≤
(
C2

m + 1
)

c f
C1 = O(1). (86)

Moreover, from Assumptions (M.1) and (M.2) and using (52), (85), combined with the
independence between X1 and ε1, E[ε1] = 0. we have

E
[∣∣∣∣ ρ(Y1)

f (X1)
φk(X1; ζk,`)

∣∣∣∣] = O
(√

n
ln n

)
. (87)

Therefore,

Φ(1) = O(n1/2). (88)

On the other hand, we consider the second term of decomposition (84), and proceeding
as in the proof of (55) and considering (86) and (87)

Φ2 = O(n1/2). (89)

therefore, combining (88) and (89) to obtainE

∣∣∣∣∣ n

∑
i=1

Φk(Xi; ζk,`)

∣∣∣∣∣
2
1/2

= O(n1/2).

Hence,

E
[
|Ak,`,1|2

]
=

1
n2E

∣∣∣∣∣ n

∑
i=1

Φk(xi; ζk,`)

∣∣∣∣∣
2


=
1
n2 O(n)

≤ C
(

ln n
n

)
(90)

Therefore, combining (83) and (90), there exists a constant C such as

E
(∣∣α̂k,` − αk,`

∣∣2) ≤ C
n
≤ C

(
ln n

n

)
. (91)

Hence, the proof is complete. �
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Proof of Lemma 7

Consider the following decomposition

θ̂k,` − θk,` = θ̂k,` − θ̆k,` + θ̆k,` − θk,`

= Bk,`,1 + Bk,`,2, (92)

where

θ̆k,` =
1
n

n

∑
i=1

E
[

ρ(Yi)

f (Xi)
ψk(xi; ηk,`)|Fi−1

]
.

Observe that, under the assumptions (M.1)–(M.2) and (C.1), the Equation (81) and the
fact that E is an orthonormal basis of H, by proceeding as in (82), we show that

θ̆k,` = θk,`, as, n→ ∞, (93)

implying that
Bk,`,2 = o(1), a.s. (94)

Therefore,

θ̂k,` − θk,` = Bk,`,1 + o(1), a.s.

Hence, we obtain

E
(∣∣∣θ̂k,` − θk,`

∣∣∣4) =
1
n4E

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
, (95)

where

Ψi,k,` =
Yi

f (xi)
ψk(xi; ηk,`)−E

[
Yi

f (xi)
ψk(xi; ηk,`)|Fi−1

]
.

Notice that (Ψi,k,`)0≤k≤n is a sequence of Martingale differences with respect to the
sequence of σ−fields (Fi)0≤k≤n, applying the Burkholder–Rosenthal inequality for p = 4
(see Lemma 1), we obtainE

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
1/4

≤
∥∥∥∥∥max

1≤j≤n

∣∣∣∣∣ j

∑
i=1

Ψi,k,`

∣∣∣∣∣
∥∥∥∥∥

4

� n1/4‖Ψ1,k,`‖4 +

∥∥∥∥∥ n

∑
i=1

E(Ψ2
i,k,`|Fi−1)

∥∥∥∥∥
1/2

4/2

= Ψ(1)
k,` + Ψ(2)

k,` . (96)

Consider the first term of Equation (96),

1
n

(
Ψ(1)

k,`

)4
= ‖Ψ1,k,`‖4

4

= E
(∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)−E

[
ρ(Y1)

f (X1)
ψk(X1; ηk,`)|F0

]∣∣∣∣4
)

≤ E
[(∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣+E
[∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣])4
]

.

By combining the identity

(a + b)n =
n

∑
k=0

Ck
nakbn−k
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and the Jensen inequality and taking n = 4, we obtain(∣∣∣∣ρ(Y1)

f (x1)
ψk(X1; ηk,`)

∣∣∣∣+E
[∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣])4

=
4

∑
k=0

Ck
4

∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣k(E[∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣])4−k

≤
4

∑
k=0

Ck
4

∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣kE
[∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣4−k
]

.

Then, we have

1
n

(
Ψ(1)

k,`

)4
≤ E

[
4

∑
k=0

Ck
4

∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣kE
[∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣4−k
]]

=
4

∑
k=0

Ck
4E
[∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣k
]
E
[∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣4−k
]

. (97)

By following the same reasoning as in (86) and under the same assumptions (M.1)-
(M.2) and (E.1)(i), we have

E
[∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣2
]
≤ C, (98)

where C is a positive constant. Moreover, by the Cauchy–Schwarz inequality together with
assumptions (E.1)(ii), (E.2) and condition (24), we obtain

sup
x∈S

∣∣ψk(x; ηk,`)
∣∣ ≤ sup

x∈S
∑

j∈Jk

1√
hj,k,`

|ej(ηk,`)||ej(x)|

≤
(

∑
j∈Jk

1
hj,k,`
|ej(ηk,`)|2

)1/2(
sup
x∈S

∑
j∈Jk

|ej(x)|2
)1/2

≤ C1/2
1 C1/2

2

√
|Jk|

≤ C3

√
|Jmn |

≤ C3

√
n

(ln n)2 . (99)

Hence, we infer that

E
[ ∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣ ] = O

(√
n

(ln n)2

)
, (100)

E
[∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣2
]

= O(1), (101)

E
[∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣3
]

= O

(√
n

(ln n)2

)
, (102)

E
[∣∣∣∣ ρ(Y1)

f (X1)
ψk(X1; ηk,`)

∣∣∣∣4
]

= O

(
n

(ln n)2

)
. (103)
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Observe that the largest term is (103), now, using that same statement (103) in
Equation (62), we deduce that

1
n

(
Ψ(1)

k,`

)4
≤ C4E

[∣∣ψk(X1; ηk,`)
∣∣4]

= O

(
n

(ln n)2

)
.

It follows that

Ψ(1)
k,` = O

( n
ln n

)1/2
. (104)

Let us now investigate the upper bound of Ψ(2)
k,` of (61). Observe that

Ψ(2)
k,` =

∥∥∥∥∥ n

∑
i=1

E(Ψ2
i,k,`/Fi−1)

∥∥∥∥∥
1/2

2

=

E

( n

∑
i=1

E
[
Ψ2

i,k,`|Fi−1

])2
1/4

,

for all i = 1, . . . , n, using the Jensen inequality and the fact that

(a− b)2 = a2 − 2ab + b2,

it follows

n

∑
i=1

E
[∣∣Ψi,k,`

∣∣2|Fi−1

]
=

n

∑
i=1

(
E
[∣∣∣∣ ρ(Yi)

f (Xi)
ψk(xi; ηk,`)−E

[
ρ(Yi)

f (xi)
ψk(Xi; ηk,`)|Fi−1

]∣∣∣∣2|Fi−1

])

≤ 4
n

∑
i=1

E
[∣∣∣∣ ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)

∣∣∣∣2|Fi−1

]
.

From the independence between εi and Xi, we have

E
[
ε2|Gi−1

]
= E

[
ε2|Xi

]
= E

[
ε2
]
= 1.

Under assumptions (M.1)–(M.2) and (E.1)(i) and (C.1), (63) and (105), we have

n

∑
i=1

E
[∣∣∣∣ ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)

∣∣∣∣2|Fi−1

]

=
n

∑
i=1

E
[
E
[∣∣∣∣ ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)

∣∣∣∣2|Gi−1

]
|Fi−1

]

≤
n
(
C2

m + 1
)

c f

∫
S

∣∣ψk(x; ηk,`)
∣∣2∣∣∣∣∣ 1

n ∑n
i=1 fFi−1(x)

f (x)

∣∣∣∣∣ν(dx)

=
n
(
C2

m + 1
)

c f
(1 + o(1))

∫
S

∣∣ψk(x; ηk,`)
∣∣2ν(dx)

≤ nC, (105)
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where

C =

(
C2

m + 1
)

c f
(1 + o(1)).

It follows

Ψ(2)
k,` = Cn1/2. (106)

Combining (61), (69) and (71), we obtain

E

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
 = O

(( n
ln n

)2
)
+ O

(
n2
)

,

combining this with (95), we conclude

E
(∣∣∣θ̂k,` − θk,`

∣∣∣4) = O
((

1
n4

)( n
ln n

)2
)
+ O

((
1
n4

)
n2
)

. (107)

Hence, there exists a constant C > 0, such that

E
(∣∣∣θ̂k,` − θk,`

∣∣∣4) ≤ C
(

1
n

)2
≤ C

(
ln n

n

)2
. (108)

The proof is achieved. �

Proof of Lemma 8

Considering the previous decomposition (92) in Lemma 7, we have

θ̂k,` − θk,` =
(

θ̂k,` − θ̆k,`

)
+
(
θ̆k,` − θk,`

)
= Bk,`,1 + Bk,`,2,

where

Bk,`,1 =
1
n

n

∑
i=1

Ψi,k,`

=
1
n

n

∑
i=1

(
ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)−E

[
ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)|Fi−1

])
,

Bk,`,2 =
1
n

n

∑
i=1

E
[

ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)|Fi−1

]
− θk,`.

Statement (94) achieves the desired result for the term Bk,`,2

θ̂k,` − θk,` = Bk,`,1 + o(1).

We consider the next decomposition

Ψi,k,` = Vi,k,` + Wi,k,`, (109)

where

Vi,k,` =

(
ρ(Yi)

f (Xi)
ψk(xi; ηk,`)1Ai −E

[
ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)1Ai |Fi−1

])
,

Wi,k,` =

(
ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)1

c
Ai
−E

[
ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)1

c
Ai
|Fi−1

])
,
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and
1Ai =

{
|εi| ≥ c∗

√
ln n

}
,

and c∗ denotes a constant which will be chosen later. Now, observe that

P
(∣∣∣θ̂k,` − θ̆k,`

∣∣∣ ≥ κ

2

√
ln n

n

)
≤ P

(∣∣Bk,`,1
∣∣ ≥ κ

2

√
ln n

n

)
+ o(1)

= P
(∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣ ≥ κ

2

√
n ln n

)
+ o(1)

= I1 + I2 + o(1), (110)

where

I1 = P
(∣∣∣∣∣ n

∑
i=1

Vi,k,`

∣∣∣∣∣ ≥ κ

2

√
n ln n

)
,

I2 = P
(∣∣∣∣∣ n

∑
i=1

Wi,k,`

∣∣∣∣∣ ≥ κ

2

√
n ln n

)
.

First, we aim to bound the term I1 of Equation (110). The Markov inequality and the
Cauchy–Schwarz inequality yield

I1 ≤ 2

κ
√

n ln n
E
(∣∣∣∣∣ n

∑
i=1

Vi,k,`

∣∣∣∣∣
)

≤ 2

κ
√

n ln n

n

∑
i=1

E
(∣∣Vi,k,`

∣∣). (111)

Observe that

E
(∣∣Vi,k,`

∣∣)
= E

(∣∣∣∣ ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)1Ai −E

[
ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)1Ai |Fi−1

]∣∣∣∣)
≤ E

(∣∣∣∣ ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)1Ai

∣∣∣∣)+E
(
E
[∣∣∣∣ ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)1Ai

∣∣∣∣|Fi−1

])
(112)

≤ 2E
(∣∣∣∣ ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)1Ai

∣∣∣∣)

≤ 2

(
E
(∣∣∣∣ ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)

∣∣∣∣2
))1/2

(P(Ai))
1/2. (113)

We use (98) combined with an elementary Gaussian inequality and take c∗ to have

c2
∗
4
− 1/2 = 2.

We obtain

I1 ≤ 2C
κ

√
n

ln n
exp

{
− c2
∗ ln n

4

}

≤ 2C
κ

n
−
(

c2∗
4 −1/2

)
√

ln n

≤ Cκ
1
n2 , (114)
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where Cκ = 2C
κ . We now intend to investigate an upper bound for I2 of decomposition

(110). We start by verifying the condition of Lemma 2. Suppose that assumptions (M.1)
and (M.2) are satisfied combined with (99), we obtain

|Yi1Ac
i
| ≤ Cm + c∗

√
ln n

≤ C
√

ln n, (115)

which implies

∣∣Wi,k,`
∣∣ ≤ ∣∣∣∣ ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)1Ac

i
−E

[
ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)1Ac

i
1Ac

i
|Fi−1

]∣∣∣∣
≤ 2C

√
ln n

c f
sup
x∈S

∣∣ψk(x; ηk,`)
∣∣

≤ 2C
c f

√
ln n

√
n

(ln n)2

≤ C3

√
n

ln n
≤ C3

√
n, (116)

where C3 = 2C
C f

, let B = C3
√

n, then, for all εn = κ
2

√
n ln n sufficiently large n, we have

I2 = P
(∣∣∣∣∣ n

∑
i=1

Wi,k,`

∣∣∣∣∣ ≥ κ

2

√
n ln n

)
≤ 2 exp

{
− ε2

n
2nB2

}

= 2 exp

−
(

κ
2

√
n ln n

)2

2n
(
C3
√

n
)2


= 2 exp

{
−κ2 ln n

4C2
3n

}

= 2 exp

{
ln n

− κ2

4C2
3 n

}
= 2n−w(κ,n), (117)

where

w(κ, n) =
κ2

4C2
3n

.

Taking κ such that w(n, κ) = 2, we have

I2 ≤ C
1
n2 . (118)

It follows from (110), (114) and (118) that

P
(∣∣∣θ̂k,` − θ̃k,`

∣∣∣ ≥ κ

2

√
ln n

n

)
≤ C

1
n2 + o(1) (119)

≤ C
(

ln n
n

)2
. (120)

The proof of (79) is achieved. �
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