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Abstract: Bulk-service queueing systems have been widely applied in many areas in real life. While
single-server queueing systems work in some cases, multi-servers can efficiently handle most complex
applications. Bulk-service, multi-server queueing systems (compared to well-developed single-server
queueing systems) are more complex and harder to deal with, especially when the inter-arrival time
distributions are arbitrary. This paper deals with analytic and computational analyses of queue-
length distributions for a complex bulk-service, multi-server queueing system GI/Ma, b/c, wherein
inter-arrival times follow an arbitrary distribution, a is the quorum, and b is the capacity of each
server; service times follow exponential distributions. The introduction of quorum a further increases
the complexity of the model. In view of this, a two-dimensional Markov chain has to be involved.
Currently, it appears that this system has not been addressed so far. An elegant analytic closed-form
solution and an efficient algorithm to obtain the queue-length distributions at three different epochs,
i.e., pre-arrival epoch (p.a.e.), random epoch (r.e.), and post-departure epoch (p.d.e.) are presented,
when the servers are in busy and idle states, respectively.
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1. Introduction

Queueing theory consists of a powerful tool for modelling and analytically studying
many complex systems, such as computer networks, banks, telecommunications, manufac-
turing, and transportation systems. Compared to well-developed single-server non-bulk
queueing systems, bulk-service systems have an extensive mathematical theory. They are
more complex and harder to deal with. In a bulk-service queue, a group (or batch) of
customers can be served simultaneously. Examples of their applications can be seen in
shuttle-bus services, freight trains, express elevators, tour operators, and batch servicing
in manufacturing processes. This topic, due to its perceived applicability, has attracted
the attention of many researchers over several decades. At an early stage, some simple
bulk-service models, such as single-server systems GI/Mb/1 and M/Ma/1 were studied
by Shyu [1] and Gross et al. [2], respectively. Neuts [3] first introduced a quorum bulk
service rule to create more complex models necessary to describe certain realistic situa-
tions. He considered a queueing system with Poisson arrivals and a general service-time
distribution M/Ga, b/1, where a is the quorum and b is the capacity of the server. Easton
and Chaudhry [4] extended these results to the case where the inter-arrival times were
Erlangian with the η-stage, Eη/Ma, b/1. Later, Chaudhry and Madill [5] gave a solution
for a more general queueing system GI/Ma, b/1. An alternate method was given in Neuts’
book [6], wherein he describes the application of his matrix geometric approach to the
GI/PHa, b/1 system, which has a phase-type service-time distribution. However, these
systems are single-server queues. For many other variations of bulk-service queues, such
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as bulk service queues with vacations or bulk-service queues of the type M/G/1, one may
view the survey paper written by Sasikala and Indhira [7]. In this survey, which had over
100 publications, most of the models considered were single server queues.

Multi-server queueing systems are an important class of queueing processes and have
broad practical applications. However, such systems are more complex and harder to deal
with compared to single-server queueing systems, especially when the inter-arrival time
distribution is arbitrary. Medhi [8] investigated a queue with Poisson arrivals M/Ga, b/c,
but his method was not analytically tractable for c > 2. Related work has also been
conducted by Sim [9] on M/Ma, b/c by using algorithmic methods but no numerical results
were given. Sim [10] solved the η-phase Erlangian arrivals Eη/Ma, b/c system for the
random epoch probabilities in the steady state and discussed his results in the context
of a transportation system. Adan and Resing [11] derived and presented the numerical
results of the queue-length distributions for models M/COXIAN-2a, b/c and M/Eη

a, b/c.
Compared to our model GI/Ma, b/c, the most relevant model studied by other researchers
was GI/Mb/c, where the quorum was set to 1. Goswami et al. [12] solved the finite-buffer
GI/Mb/c model by the supplementary variable technique. Shyu [13], as well as Chaudhry
and Templeton [14], dealt with the distribution of the number of customers in the system
without considering the server being busy or idle. Therefore, there is no information
regarding server utilization. Moreover, the numerical results for the system GI/Mb/c are
not available.

To make the model useful for applications, in this paper, we considered analytic and
computational aspects to determine the performance of a complex bulk-service, multi-
server queueing system GI/Ma, b/c. The model GI/Ma, b/c is an extension of the system
GI/Mb/c (Shyu [13] as well as by Chaudhry and Templeton [14]), by introducing quorum in
the multi-server system GI/Mb/c. A quorum refers to the minimum number of customers
that are required in the waiting line before service commences, e.g., a ferry will not start
until the quorum is met, or if we are dealing with transportation problems, a bus may
not start until we have the quorum. This is an important policy desired by the service
providers to reduce the business cost and maximize server utilization. The adding of
the quorum policy makes the model closer to the real situation, but it also makes the
model more complex to study. In view of this, a two-dimensional Markov chain has to
be involved where the first dimension corresponds to the state of the servers (busy or
idle) and the second dimension corresponds to the number of customers in the queue. We
give an elegant analytic closed-form solution to obtain the queue-length distributions at
three different epochs, such as pre-arrival epoch (p.a.e.), random epoch (r.e.), and post-
departure epoch (p.d.e.), not only for the system in a busy state, but also in an idle state.
In the case of the idle state, the probabilities were obtained by simultaneously solving the
c× a equations, some of which contained infinite series, which needed to be truncated to
obtain the results. Instead of truncation, which leads to approximate results, we derived a
closed-form solution and proposed an efficient algorithm to fix this problem. The model
GI/Ma, b/c that we considered includes most models ([1,2,4–6,8–10,13,14]) as special cases.
Our model was validated in giving numerical results with the desired degree of accuracy
and trivial computational costs. By selecting particular numbers for the parameters a, b and
c, and inter-arrival time distributions, the numerical results produced by our model match
the ones provided in those simpler models as expected.

The paper is organized as follows. In the following section, we describe the queueing
model GI/Ma, b/c, and establish a transition probability matrix (t.p.m.) for the system
in Section 3. In Sections 4–6, we obtain the queue-length distributions at three different
epochs, such as pre-arrival epoch (p.a.e.), random epoch (r.e.), and post-departure epoch
(p.d.e.). To make the model useful for applications, sample numerical results are provided
in Section 7.
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2. Model Description

In this continuous-time queueing system GI/Ma, b/c, there are c independent servers,
each serving at the rate µ. The customers arrive at the rate λ according to a renewal process
with an arbitrary inter-arrival time distribution A(t). One of the idle c servers starts the
service as soon as the number of customers (including the new arriving customer) in the
queue reaches quorum a. Each c server is able to serve up to b customers simultaneously.
This indicates that if the server completes a service and finds less than the quorum a in
the queue, it will become idle until a is reached. The service times of each server are
independently–identically exponentially distributed random variables (i.i.e.d.r.v.′s). We
consider the system to be in a steady state with the traffic intensity ρ = λ/(bcµ) < 1.
The queue discipline is first-come first-serve (FCFS) by batches.

3. Transition Probability Matrix (t.p.m.)

In the queueing system GI/Ma, b/c, the states occurring at the instants immediately
before the arrivals form an embedded Markov chain (I.M.C.). The state seen by an arriv-
ing customer can be described by (Sn, n), where n ≥ 0 is the queue-length and Sn is a
supplementary flag defined as

Sn =

{
I(k), if k servers are idle, 1 ≤ k ≤ c, 0 ≤ n ≤ a− 1,
B, if all servers are busy, n ≥ 0.

We define the system as busy if all the servers are busy (Sn = B), and idle if at least
one server is idle (Sn = I(k), k is the number of idle servers). The queue-length n can be
written as n = qb + n0, 0 ≤ n0 ≤ b− 1, where q is the nearest lower non-negative integer of
the fraction n/b, denoting the available number of full size batches (the batch size is b) in
the queue waiting for service.

To build a t.p.m. of the system, we first define the following probabilities.

1. [l|m; t] and [l|m], where 0 ≤ l ≤ m ≤ c, and there are less than a customers waiting in
the queue at the beginning of the period, thus q = 0. Here,

[l|m; t] =
(

m
l

)
(1− e−µt)l(e−µt)m−l

is the conditional probability that l of m servers complete services during an inter-
arrival period of duration t, given that m servers are busy (c−m servers are idle) at
the beginning of the period. Moreover, [l|m] is defined as

[l|m] =
∫ ∞

0
[l|m; t]dA(t), 0 ≤ l ≤ m ≤ c. (1)

2. {l|c; q} is the conditional probability that l of c servers become idle during an inter-
arrival period, given that all c servers are busy at the beginning of the period, and q
(q ≥ 1) batches of customers are waiting for the services. Assume that a time V has
elapsed when the last batch of q batches enters service. In this case, the c servers have
been processed at a rate of cµ until time V has elapsed. When all c servers are busy,
the number of departed batches follows a Poisson process with a rate cµ. The time V
is Erlang-distributed, so it is the sum of q exponential random variables with a rate
cµ, implying that the probability density function (p.d.f.) of V is given by

p(v) =
(cµ)(cµv)q−1e−cµv

(q− 1)!
, v > 0.

After all the waiting q batches leave the queue, there is time t−V remaining to have l
batches processed. The probability that these l batches complete the service during
period t−V is [l|c; t−V]. Therefore
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{l|c; q} =
∫ ∞

0

∫ t

0

(
c
l

)
(1− e−(t−v)µ)l(e−(t−v)µ)c−l (cµ)(cµv)q−1e−cµv

(q− 1)!
dvdA(t). (2)

3. (l|c) is the conditional probability that l batches complete service during an inter-
arrival period of duration t, given that all the c servers are busy at the beginning of
the period and still busy at the end of the period. In this case, the number of batches
served in time t is distributed as a Poisson process at a rate of cµ:

(l|c) =
∫ ∞

0

e−cµt(cµt)l

l!
dA(t), l ≥ 0. (3)

Remark 1.

1. [0|c] = (0|c) =
∫ ∞

0 e−cµtdA(t) ≡ K0.
Though [0|c] and (0|c) give identical results, they have totally different meanings. [0|c] is for
the case when (c− 1) servers are busy and (a− 1) customers are in queue. After one customer
arrives, all the servers become busy without any departures during the inter-arrival time.
In this situation, the number of customers in the queue must be zero. Moreover, (0|c) is for the
case that all the servers are already busy before an arrival, and no departures happen during
an inter-arrival time. In this situation, the queue-length can be any non-negative number.

2. It is easy to prove that (l|c) = {0|c; l}.

Let Jr be the system state on the arrival of the rth customer who sees n customers in
the queue. The entry of the one-step t.p.m. T from state (Si, i) to state (Sj, j) is

[T(Si ,i),(Sj ,j)] = P(Jr+1 = (Sj, j)|Jr = (Si, i)), i ≥ 0, j ≥ 0,

implying that the (r + 1)th arriving customer sees j customers waiting in the queue with
the server state Sj, given that the previous rth arriving customer saw i customers waiting
in the queue with the server state Si.

The Markov chain (see Tables 1–4) for this system is two-dimensional rather than the
usual one-dimensional. The t.p.m. can be formed as four sub-matrices, which are shown in
Tables 1–4.

We describe the four sub-matrices that form the t.p.m.

T =

[
TIdle→Idle TIdle→Busy
TBusy→Idle TBusy→Busy

]
. (4)

(I) TIdle→Idle. In this situation, the number of customers waiting in queue is less than a.
Assume that there are ki servers idle at the beginning of the inter-arrival time period,
and k j servers idle at the end of the inter-arrival time period, 1 ≤ ki ≤ k j ≤ c.

[T(Si ,i),(Sj ,j)] =

{
[T(I(ki),i),(I(kj),i+1)] = [(k j − ki)|(c− ki)] if 0 ≤ i < a− 1, j = i + 1,

[T(I(ki),a−1),(I(ki),0)] = [(k j − ki + 1)|(c− ki + 1)] if i = a− 1, j = 0.
(5)

(II) TBusy→Idle. All the servers are busy at the beginning of the period, and k(1 ≤ k ≤ c)
servers are idle at the end of the period, implying that the number of customers in
the queue, say j, at the end of the period, must be less than a, i.e., j < a. In a manner
similar to what we define for n = qb + n0, 0 ≤ n0 ≤ b − 1, we need to arrange i
customers who are waiting in queue, with FCFS discipline, into q full-size batches
and a batch holding the remainders, i.e., i = qb + i0, 0 ≤ i0 ≤ b− 1.

[T(Si ,i),(Sj ,j)] =


[T(B,i),(I(k),i+1)] = [k|c] if 0 ≤ i < a− 1, j = i + 1,

[T(B,qb+i0),(I(k),i0+1)] = {k|c; q} if 0 ≤ i0 < a− 1, q ≥ 1, j = i0 + 1,

[T(B,qb+i0),(I(k),0)] = {k|c; q + 1} if a− 1 ≤ i0 ≤ b− 1, q ≥ 0, j = 0.

(6)

(III) TIdle→Busy. The system is idle at the beginning of the time period. After one customer
arrives, all the servers become busy and are still busy at the end of the time period.
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This case appears only if the number of customers waiting in queue is a− 1, and there
is only one server idle at the beginning of the time period.

[T(Si ,i),(Sj ,j)] =

{
[T(I(1),a−1),(B,0)] = [0|c] if i = j− 1, j = 0,
[T(I(ki),i),(B,j)] = 0 otherwise.

(7)

(IV) TBusy→Busy. All the servers are busy from the beginning to the end of the period, and
the number of batches served in time t follows the Poisson process with rate cµ.

[T(Si ,i),(Sj ,j)] =


[T(B,qb+i0),(B,(q−l)b+i0+1)] = (l|c) if 0 ≤ i0 < b− 1, 0 ≤ l ≤ q,

i = qb + i0, j = (q− l)b + 1,
[T(B,qb+i0),(B,0)] = (q + 1|c) if a− 1 ≤ i0 ≤ b− 1 and j = 0, q ≥ 0.

(8)

Finally, [T(Si ,i),(Sj ,j)] = 0 if j > i + 1 is true for all of the above I–IV cases. By using
identities 1 and 2, it can be easily proven that the sum of all the entries in t.p.m. equals one.

Identity 1. ∑c
l=1{l|c; q}+ ∑

q
i=0(i|c) = 1 for q > 0. This equation shows that the sum of all the

conditional probabilities in each row of t.p.m. (when the initial system state is busy) equals one.

Proof.
c

∑
l=1
{l|c; q} =

∫ ∞

0

∫ t

0

c

∑
l=1

(
c
l

)
(1− e−(t−v)µ)l(e−(t−v)µ)

c−l
× (cµ)(cµv)q−1e−cµv

(q− 1)!
dvdA(t)

=
∫ ∞

0

∫ t

0
(1− e−cµ(t−v))

(cµ)(cµv)q−1e−cµv

(q− 1)!
dvdA(t)

=
∫ ∞

0

∫ t

0

(cµ)(cµv)q−1e−cµv

(q− 1)!
dvdA(t)︸ ︷︷ ︸

Term 1

−
∫ ∞

0

∫ t

0

(cµ)(cµv)q−1e−cµt

(q− 1)!
dvdA(t).︸ ︷︷ ︸

Term 2

“Term 1” in the above equation can be simplified as 1−∑
q−1
i=0 (i|c) by using the results that the

CDF of Erlang is 1− ∑
q−1
i=0

(cµt)ie−cµt

i! and (i|c) =
∫ ∞

0
(cµt)ie−cµt

i ! dA(t). “Term 2” can be simplified to

(q|c). Combining these two terms gives
c
∑

l=1
{l|c; q} = 1−

q
∑

i=0
(i|c).

Identity 2. ∑c
i=m[(i−m)|(c−m)] = 1, 0 ≤ m ≤ c. This equation shows that, when the initial

system state is idle, the sum of all the conditional probabilities in each row of t.p.m. equals one.

Proof. ∑c
i=m[(i−m)|(c−m)]

=
∫ ∞

0 ∑c
i=m (c−m

i−m)(1− e−µt)i−m(e−µt)c−idA(t)
=
∫ ∞

0 dA(t) = 1.



Mathematics 2022, 10, 3445 6 of 22

Table 1. Submatrix TIdle→Idle.

(Sn, n) (I(c), 0) (I(c), 1) · · · (I(c), a− 1) (I(c− 1), 0) (I(c− 1), 1) · · · (I(c− 1), a− 1) · · · (I(2), 0) (I(2), 1) · · · (I(2), a− 1) (I(1), 0) (I(1), 1) · · · (I(1), a− 1)

(I(c), 0) [0|0]
...

. . .

(I(c), a− 2) [0|0]

(I(c), a− 1) [1|1] [0|1]

(I(c− 1), 0) [1|1] [0|1]
...

...
. . . . . .

(I(c− 1), a− 2) [1|1] [0|1]

(I(c− 1), a− 1) [2|2] [1|2]
...

...
. . . . . . . . .

(I(2), 0) [(c-2)|(c-2)] [(c-1)|(c-2)] [0|(c-2)]
...

...
. . . . . . . . . . . .

(I(2), a− 2) [(c-2)|(c-2)] [[c-3|c-2] [0|(c-2)]

(I(2), a− 1) [(c-1)|(c-1)] [(c-2)|c-1)] [1|(c-1)] [0|(c-1)]

(I(1), 0) [(c-1)|(c-1)] [(c-2)|(c-1)] [1|(c-1)] [0|(c-1)]
...

...
. . . . . . . . . . . .

(I(1), a− 2) [(c-1)|(c-1)] [(c-2)|(c-1)] [1|(c-1)] [0|(c-1)]

(I(1), a− 1) [c|c] [(c-1)|c] [2|c] [1|c]
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Table 2. Submatrix TBusy→Idle.

(Sn, n) (I((c), 0) (I((c), 1) · · · (I(c), a− 1) (I(c− 1), 0) (I(c− 1), 1) · · · (I(c− 1), a− 1) · · · (I(2), 0) (I(2), 1) · · · (I(2), a− 1) (I(1), 0) (I(1), 1) · · · I((1), a− 1)

(B, 0) [c|c] [(c-1)|c] [2|c] [1|c]
...

...
. . . . . . . . . . . .

(B, a− 2) [c|c] [(c-1)|c] [2|c] [1|c]

(B, a− 1) {c|c;1} {(c-1)|c;1} {2|c;1} {1|c;1}
...

...
. . . . . . . . . . . .

(B, b− 1) {c|c;1} {(c-1)|c;1} {2|c;1} {1|c;1}

(B, b) {c|c;1} {(c-1)|c;1} {2|c;1} {1|c;1}
...

...
. . . . . . . . . . . .

(B, b + a− 2) {c|c;1} {(c-1)|c;1} {2|c;1} {1|c;1}

(B, b + a− 1) {c|c;2} {(c-1)|c;2} {2|c;2} {1|c;2}
...

...
. . . . . . . . . . . .

(B, 2b− 1) {c|c;2} {(c-1)|c;2} {2|c;2} {1|c;2}

(B, 2b) {c|c;2} {(c-1)|c;2} {2|c;2} {1|c;2}
...

...
. . . . . . . . . . . .

(B, (q− 1)b) {c|c;q-1} {(c-1)|c;q-1} {2|c;q-1} {1|c;q-1}
...

...
. . . . . . . . . . . .

(B, (q− 1)b + a− 2) {c|c;q-1} {(c-1)|c;q-1} {2|c;q-1}] {1|c;q-1}

(B, (q− 1)b + a− 1) {c|c;q} {(c-1)|c;q} {2|c;q} {1|c;q}
...

...
. . . . . . . . . . . .

(B, qb− 1) {c|c;q} {(c-1)|c;q} {2|c;q} {1|c;q}

(B, qb) {c|c;q} {(c-1)|c;q} {2|c;q} {1|c;q}
...

...
. . . . . . . . . . . .
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Table 3. Submatrix TBusy→Busy.

(Sn, n) (B, 0) (B, 1) (B, 2) · · · (B, a) · · · (B, b) · · ·
(B, 0) (0|c)

(B, 1) (0|c)
...

...
. . . . . . . . .

(B, a− 2)

(B, a− 1) (1|c) (0|c)
...

...
. . . . . . . . .

(B, b− 1) (1|c) (0|c)

(B, b) (1|c)
...

...
. . . . . . . . .

(B, b + a− 2)

(B, b + a− 1) (2|c)
...

...
. . . . . . . . .

(B, 2b− 1) (2|c)

(B, 2b) (2|c)
...

...
. . . . . . . . .

(B, (q− 1)b) ((q-1)|c)
...

...
. . . . . . . . .

(B, (q− 1)b + a− 2)

(B, (q− 1)b + a− 1) (q|c) ((q-1)|c)
...

...
. . . . . . . . .

(B, qb− 1) (q|c) ((q-1)|c)

(B, qb) (q|c)
...

...
. . . . . . . . .

Since the Markov chain under consideration is irreducible, positive recurrent and
aperiodic, it has a limiting distribution if and only if ρ = λ/bcµ < 1. In view of this,
lim
r→∞

P(Jr = (Sn, n)) = X(Sn, n) exists. In this case, the limiting distribution is given by

X = XT where T is t.p.m. defined in (4), and the vector X has the form

X = [X(I(c), 0), · · · , X(I(c), a − 1), · · · , X(I(1), 0), · · · ,

X(I(1), a− 1), X(B, 0), · · ·X(B, 1), · · · ],
(9)

where X(I(k), n), 0 ≤ n < a and X(B, n), n ≥ 0, respectively, denote the p.a.e. unnormal-
ized probabilities that an arriving customer sees n customers in queue, k of c servers idle,
and n customers in queue, with all servers busy. If such a vector X exists, it will be the
vector of the steady state p.a.e. probabilities up to some normalizing constant.



Mathematics 2022, 10, 3445 9 of 22

Table 4. Submatrix TIdle→Busy.

(Sn, n) (B, 0) (B, 1) · · · (B, a− 1) · · · (B, b) · · ·
(I(c), 0)

...

(I(c), a− 2)

(I(c), a− 1)

(I(c− 1), 0)
...

(I(c− 1), a− 2)

(I(c− 1), a− 1)
...

(I(2), 0)
...

(I(2), a− 2)

(I(2), a− 1)

(I(1), 0)
...

(I(1), a− 2)

(I(1), a− 1) [0|c]

4. Queue-Length Distributions at Pre-Arrival Epoch
4.1. The Busy Server Probabilities

When all the servers are busy during an inter-arrival time period, for the queueing
model GI/Ma, b/c, the service times for batches are i.i.d.r.v.′ s, having exponential distribu-
tions. Thus, the number of batches that complete service during an arbitrary inter-arrival
time will have a Poisson distribution, which implies that the probability of l service comple-
tions during an inter-arrival time A is (l|c), and the probability generating function (p.g.f.)
of (l|c) is

D(z) =
∞

∑
l=0

(l|c)zl = ā(cµ(1− z)), (10)

where ā(α) is the Laplace–Stieltjes transform (L.-S.T.) of A(t), i.e., ā(α) =
∫ ∞

0 exp(−αt)dA(t)
and

K0 = ā(cµ) =
∫ ∞

0
exp(−cµt)dA(t). (11)

Theorem 1. For the queueing system GI/Ma, b/c, in the steady state case, the busy-server probabili-
ties of queue length at pre-arrival epoch are given by P−(B, n) = X(B, n)/CN = wn/CN , n ≥ 0,
where w is a real root inside the unit circle of equation D(zb) = z = ā(cµ(1− zb)) and CN is a
normalizing constant given by CN = ∑c

j=1 ∑a−1
i=0 X(I(j), i) + 1

1−w.

Proof. When the system is busy and n customers are waiting in the queue, it is evident
from t.p.m. that

X(B, n) =
∞

∑
j=0

(j|c)X(B, jb + n− 1), n > 0. (12)

To solve the difference Equation (12), in the same manner as by Chaudhry and
Madill [5], a solution of the form X(B, n) = zn (z 6= 0), n ≥ 1 is assumed. For more
details on this method, one may see Chaudhry and Templeton ( [14], page 350). Substitut-
ing X(B, n) = zn into Equation (12), we have
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zn =
∞

∑
j=0

zjb+n−1(j|c) = zn−1
∞

∑
j=0

(j|c)zjb = zn−1D(zb). (13)

Combining this with Equation (10), and simplifying, we obtain the root equation

D(zb) = z = ā(cµ(1− zb)). (14)

By Rouché’s theorem, it can be shown that Equation (14) has a real root w inside the
unit circle if ρ = λ

bcµ < 1. Once the root w is found, X(B, 1), X(B, 2), · · · can be obtained by
using X(B, n) = wn, n ≥ 1.

Next, we can solve for X(B, 0) from Equation (12) by setting n = 1,

X(B, 1) = w =
∞

∑
j=0

(j|c)X(B, jb),

implying
w = (0|c)X(B, 0) + (1|c)wb + (2|c)w2b + · · · = D(wb). (15)

Combining (10), (14), and (15), we conclude X(B, 0) = 1. This implies that the
assumption X(B, n) = zn is true even for n = 0.

Finally, P−(B, n) can be obtained as the normalized X(B, n) by dividing a normalizing
constant CN (see Equations (23) and (24)).

4.2. The Idle Server Probabilities

The idle server unnormalized probabilities X(I(c), 0), · · · , X(I(c), a− 1), · · · , X(I(1), 0),
· · · , X(I(1), a − 1) can be obtained by c × a linear equations generated from the t.p.m.
In fact, there are “c× a + 1” equations, with (as usual) one being redundant.

These “c× a + 1” equations are

X(B, 0) =X(I(1), a− 1)[0|c] +
∞

∑
i=1

(i|c)
b

∑
l=a

X(B, (i− 1)b + l − 1), (16)

X(I(k), j) =
k

∑
m=1

X(I(m), j− 1)[(k−m)|(c−m)] + X(B, j− 1)[k|c]+

∞

∑
i=1

X(B, ib + j− 1){k|c; i}, (17)

and

X(I(k), 0) =
k+1

∑
m=1

X(I(m), a− 1)[(k−m + 1)|(c−m + 1)]+

∞

∑
i=1
{k|c; i}

b

∑
l=a

X(B, (i− 1)b + l − 1), (18)

where 1 ≤ j ≤ a− 1, 1 ≤ k ≤ c and X(I(c + 1), a− 1) = 0.

Remark 2. The c× a idle server unknown probabilities (unnormalized)

[X(I(c), 0), · · · , X(I(c), a− 1), · · · , X(I(1), 0), · · · , X(I(1), a− 1)]

can be obtained simultaneously by using the above c× a equations. However, large values of c or a
may cause a computational problem, since the last terms in both Equations (17) and (18) are infinite
series related to complex double integrals {k|c; i} (defined in Equation (2)). In general, when we
operate on an infinite series without a closed form, the series has to be truncated. Therefore, the
result is approximated as we lose the tails due to this truncation. To fix these problems, we want to
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simplify Equations (17) and (18) by deriving a closed form for these series. Before we move on, we
need to prove the following two lemmas.

Lemma 1. The last term in Equation (16)

∞

∑
i=1

(i|c)
b

∑
l=a

X(B, (i− 1)b + l − 1) =
wa−b−1 − 1

1− w
(w− K0).

Proof.

∞

∑
i=1

(i|c)
b

∑
l=a

X(B, (i− 1)b + l − 1)

= wa−b−1
∞

∑
i=1

(i|c)
b−a

∑
k=0

wib+k = wa−b−1 1− wb−a+1

1− w

∞

∑
i=1

(i|c)wib

= wa−b−1 1− wb−a+1

1− w
(D(wb)− K0) =

wa−b−1 − 1
1− w

(w− K0)

by using (0|c) = K0, and Equation (13).

Lemma 2. Define J(k) = ∑∞
i=1 wib{k|c; i}, and

J(k) = cµwb
∫ ∞

0

∫ t

0

(
c
k

)
(1− e−(t−v)µ)k(e−(t−v)µ)c−ke−cµv(1−wb)dvdA(t). (19)

Proof.
∞

∑
i=1

wib{k|c; i}

=
∞

∑
i=1

wib
∫ ∞

0

∫ t

0

(
c
k

)
(1− e−(t−v)µ)k(e−(t−v)µ)c−k (cµ)(cµv)i−1e−cµv

(i− 1)!
dvdA(t)

=
∫ ∞

0

∫ t

0

(
c
k

)
(1− e−(t−v)µ)k(e−(t−v)µ)c−k

∞

∑
i=1

wib (cµ)(cµv)i−1e−cµv

(i− 1)!
dvdA(t)

= cµwb
∫ ∞

0

∫ t

0

(
c
k

)
(1− e−(t−v)µ)k(e−(t−v)µ)c−ke−cµv(1−wb)

∞

∑
i=1

(cµvwb)i−1e−cµvwb

(i− 1)!︸ ︷︷ ︸
=1, Poisson p.m.f

dvdA(t).

Theorem 2. For the queueing system GI/Ma, b/c, in the steady state case, the idle server probabili-
ties of queue length at the pre-arrival epoch are given by P−(I(k), n) = X(I(k), n)/CN , 0 ≤ n <
a− 1, 1 ≤ k ≤ c, where CN is a normalizing constant given by CN = ∑c

j=1 ∑a−1
i=0 X(I(j), i)+ 1

1−w
and X(I(k), n) satisfy the following equations:

(i) X(I(1), a− 1) =
1

(1− w)K0
(1− wa−b + K0wa−b−1 − K0), (20)

(ii) X(I(k), j) =
k

∑
m=1

X(I(m), j− 1)[(k−m)|(c−m)] + wj−1([k|c] + J(k)), 1 < j < a− 1, (21)

(iii) X(I(k), 0) =
k+1

∑
m=1

X(I(m), a− 1)[(k−m + 1)|(c−m + 1)] +
wa−b−1 − 1

1− w
J(k). (22)

Proof. (i) Using Lemma 1 and [0|c] = K0, we can rewrite Equation (16) and directly solve
for X(I(1), a− 1).
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(ii) and (iii) Using Theorem 1, replacing X(B, j− 1) by wj−1, X(B, ib+ j− 1) by wib+j−1,
and X(B, (i − 1)b + l − 1) by w(i−1)b+l−1, then applying the result of Lemma 2, we can
rewrite Equations (17) and (18) as Equations (21) and (22), respectively.

We first solved X(I(1), a− 1) using Equation (20), and then solved other idle server
probabilities recursively by using Equations (21) and (22). For more details on this, see the
algorithm developed in Appendix A.

Finally, we obtained all queue-length probabilities, and needed to normalize the vector

X = [X(I(c), 0), · · · , X(I(c), a − 1), · · · ,X(I(1), 0), · · · ,

X(I(1), a− 1), X(B, 0), · · ·X(B, 1), · · · ].

by dividing a normalizing constant CN , which is given by

CN =
c

∑
j=1

a−1

∑
i=0

X(I(j), i) +
∞

∑
i=0

X(B, i) =
c

∑
j=1

a−1

∑
i=0

X(I(j), i) +
1

1− w
. (23)

Define P− as the vector of normalized p.a.e. such that

P− =
X

CN
. (24)

Further, P−(I(k), n) and P−(B, n), respectively, are normalized p.a.e. probabilities and
represent that k of the c servers are idle, 0 ≤ n < a− 1, and all servers are busy, n ≥ 0.

4.3. Special Cases

4.3.1. Single-Server Probabilities for GI/Ma, b/1

The system GI/Ma, b/1 is a special case of GI/Ma, b/c when c = 1.

(A) When c = 1, the root Equation (14) is simplified to D(z) = z = ā(µ(1− z)), which
agrees with the root equation in the work by Chaudhry and Madill [5]; consequently,
the same results of X(B, 0), · · · , X(B, 1), · · · , X(B, M) can be obtained.

(B) Moreover, k = m = c = 1, [0|0] = 1, [1|1] = 1− [0|1] = 1−K0, and ∑∞
i=1 wib{1|1; i} =

1
(1−wb)

(wb − w + (1− wb)K0). Equation (21) can be simplified to

X(I(1), j) = X(I(1), j− 1) + wj−1(1− K0 +
1

(1− wb)
(wb − w + (1− wb)K0))

= X(I(1), j− 1) + wj−1 1− w
1− wb .

This agrees with the equation in Chaudhry and Madill [5] for solving the idle server
probabilities.

4.3.2. Multi-Server Queueing System GI/Mb/c

The system GI/Mb/c is a special case of GI/Ma, b/c when a = 1.
In GI/Mb/c, the system is idle only if there is no customer waiting in queue. Instead

of evaluating the queue-length distributions, Chaudhry and Templeton [14] consider the
distribution for the number of customers in the system for GI/Mb/c without considering
the server being busy or idle. The numerical results for the system GI/Mb/c are also
not available. We can see that our model includes this model as a special case, it not
only produces the numerical solutions for the queue-length distributions, but also the
information of the server utilization.

5. Queue-Length Distributions at Random Epoch

We are now interested in knowing the probability that the system will be in a given
state at a random epoch (r.e.) in time. A random epoch is said to occur at the end of
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a random period of time, R, since the last p.a.e. From renewal theory, the probability
associated with R, dR(t) is given by dR(t) = λ(1− A(t))dt, t > 0 (see Chaudhry and
Templeton [14]). Proceeding in a manner directly analogous to that used for developing
(l|c), [l|m] and {l|c; q}, where the services are considered during the inter-arrival time A
(see Equations (1)–(3)), (l|c)R, [l|m]R and {l|c; q}R are defined as the probabilities that such
services take place during time R. The p.g.f. of (l|c)R (see proof in Appendix B) is

DR(z) =
∞

∑
l=0

(l|c)Rzl =
ρb

1− z
[1− ā(cµ(1− z))], (25)

and
(0|c)R = [0|c]R = λ

∫ ∞

0
exp(−cµt)(1− A(t))dt = ρb(1− K0). (26)

Similar to the definition for the p.a.e probability vector P− in Equation (24), we define
P as the vector of the r.e. probabilities, such that

P = [P(I(c), 0), · · · , P(I(c), a− 1), · · · , P(I(1), 0), · · · , P(I(1), a− 1), P(B, 0), · · · P(B, 1), · · · ],

where P(I(k), n), 0 ≤ n < a and P(B, n), n ≥ 0, respectively, denote the r.e. probabilities
that, at the end of a random period of time R after arrival, k of the c servers are idle,
0 ≤ n < a − 1 customers are in the queue , and all servers are busy, n ≥ 0 customers
are in the queue. The forms of the t.p.m. T in Tables 1–4 contain all of the information
required on transitions within the queueing system in a period measured from the last p.a.e.
The nature of the entries in the t.p.m. serve to indicate the probabilities associated with
the transitions. Thus, if the limiting distribution is P− = P−T when the timeframe is the
inter-arrival time, A, instead of the entries (l|c), [l|m] and {l|c; q}, the entries (l|c)R, [l|m]R
and {l|c; q}R are used with the timeframe, R, and P = P−TR, where the newly formed t.p.m.
TR describes how the steady-state p.a.e. probabilities are transformed into steady-state
probabilities for the system at a random epoch after the last p.a.e.

Remark 3. Similar to those in the p.a.e. systems, it can be proven that the following three equations
still hold for the case of r.e. systems:

• [0|c]R = (0|c)R ≡ ρb(1− K0) (see Equation (26));
• ∑c

l=1 {l|c; q}R + ∑
q
i=0 (i|c)R = 1 for q > 0; and

• ∑c
i=m [(i−m)|(c−m)]R = 1, 0 ≤ m ≤ c.

Thus, the sum of entries in each row of t.p.m. TR equals one.

5.1. The Busy-Server Probabilities

The busy-server r.e. probabilities P(B, n), n ≥ 0 can be calculated in a similar manner
as the queue-length distributions at the pre-arrival epoch described in Section 4.1. Here, we
derive the closed-form busy-server probability distribution of the queue length at a random
epoch. The probabilities P(B, n), n ≥ 0 can be obtained using Equations (27) and (28)
(see below). Since both are in terms of the root w, the calculations become extremely
simple. The key idea to derive these two equations is based on the relations between two
probabilities: P(B, n) and P−(B, n), n ≥ 0.

Theorem 3. For the queueing system GI/Ma, b/c, in the steady state case, the busy-server probabili-
ties of the queue length at the random epoch are given by

(i) P(B, n) = 1
CN

ρb(1−w)wn−1

1−wb , n > 0.

(ii) P(B, 0) = ρb(1−K0)
CN(1−w)K0

(1− wa−b) + ρb(wa−b−1−1)
CN(1−wb)

.

Proof. (i) At the end of a random period of time R after arrival, if all servers are busy and
the waiting line is not empty (n > 0), then the sizes for those batches that were taken into
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service during time R must be maximum (= b, full batch size). Since the queue length at a
pre-arrival epoch will be n− 1 + mb, m ≥ 0, it leads to r.e. probabilities as

P(B, n) =
∞

∑
m=0

(m|c)RP−(B, mb + n− 1), n > 0.

By using the fact that P−(B, n) = wn, and Equations (14) and (25), we have

P(B, n) =
1

CN

∞

∑
m=0

(m|c)Rwmb+n−1

=
1

CN

ρb(1− w)wn−1

1− wb , n > 0.

(27)

(ii) In this situation, the queue length is empty at a random time while all the servers
are busy, then the size for the last batch into service can be any number between [a, b],
and the servers at the moment when the last customer arrives are either all busy or one
idle. Combining all of these possibilities, using Equation (20) and the following equation

∞

∑
i=1

(i|c)R

b

∑
j=a

P−(B, (i− 1)b + j− 1) =
wa−b−1 − 1
CN(1− w)

[
∞

∑
i=0

(i|c)Rwib − (0|c)R

]

=
wa−b−1 − 1
CN(1− w)

(
ρb(1− w)

1− wb − ρb(1− K0)

)
,

P(B, 0) can be expressed as

P(B, 0)

= (0|c)RP−(I(1), a− 1) +
∞

∑
i=1

(i|c)R

b

∑
j=a

P−(B, (i− 1)b + j− 1)

=
ρb(1− K0)

CN(1− w)K0
(1− wa−b + K0wa−b−1 − K0) +

wa−b−1 − 1
CN(1− w)

(
ρb(1− w)

1− wb − ρb(1− K0))

=
ρb(1− K0)

CN(1− w)K0
(1− wa−b) +

ρb(wa−b−1 − 1)
CN(1− wb)

.

(28)

At the end of a random period of time R after arrival, if all servers are busy, the queue
length n (n ≥ 0) distribution can be evaluated by using Equations (27) and (28). In this
case, both the results are in closed-form in terms of the root w.

5.2. The Idle Server Probabilities

Corollary 1. The idle server r.e. probabilities P(I(k), n), 0 ≤ n < a can be obtained by using
Theorem 2. The Equations (30) and (31) (see below) are modified from Equations (21) and (22)
in Theorem 2 by replacing the term[l|m] with [l|m]R, and normalizing the probabilities from
X(I(m), j− 1) to P−(I(m), j− 1), 1 < j < a. Moreover, we redefine JR(k) as

JR(k) =
∞

∑
i=1

wib{k|c; i}R

= cλµwb
(∫ ∞

0

∫ t

0

(
c
k

)
(1− e−(t−v)µ)k(e−(t−v)µ)c−ke−cµv(1−wb)(1− A(t))dvdt

)
(29)

Then, P(I(k), 0) =
k+1

∑
m=1

P−(I(m), a− 1)[k−m + 1|c−m + 1]R +
wa−b−1 − 1

1− w
JR(k), (30)

P(I(k), j) =
k

∑
m=1

P−(I(m), j− 1)[k−m|c−m]R + wj−1([k|c]R + JR(k)), (31)
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where 1 ≤ j ≤ a− 1, 1 ≤ k ≤ c, P−(I(c + 1), a− 1) = 0.

5.3. The Special Case: Eη/Ma, b/c Queue

The system Eη/Ma, b/1 is a special case of GI/Ma, b/c when the inter-arrival time is
Erlang (with η phase)-distributed. Then the root Equation (14) can be simplified to(

ηρb
ηρb + 1− zb

)η

− z = 0.

By replacing dA(t) with (λη)η tη−1e−ληt

(η−1)! dt, we can calculate p.a.e. probability distribu-
tions for both busy and idle servers by using the algorithm introduced in Appendix A.
Then the r.e. probability distributions can be obtained by using Equations (27)–(31).

Sim [10] solved the η-phase Erlangian arrivals system Eη/Ma, b/c only for the prob-
abilities at r.e. and discussed the results in the context of transportation systems. Our
algorithms can not only solve the systems with general inter-arrival time distributions,
but also provide the solutions at different epochs. Our numerical results agree with those
provided by Sim [10].

6. Queue-Length Distributions at Post-Departure Epoch

In this section, we derive the probabilities for the state of the system immediately after
a real service completion takes place. It was assumed that no time elapsed after the server
completed a batch before accepting a quorum-complete batch from the queue. Thus, the
post-departure epoch (p.d.e.) occurred immediately after a server had either reduced the
queue or became idle.

To find the p.d.e. probabilities, we need to first define an epoch—a pre-service comple-
tion epoch (p.s.e.), i.e., the instant in the time immediately before a real departure occurs
(before a real service completes). Then, PS−(I(k), n) and PS−(B, n), n ≥ 0, 1 ≤ k ≤ c, respec-
tively, are defined as the probabilities at p.s.e., when there are n customers in queue, k of c
servers idle, and n customers in queue, all servers busy. It is apparent that PS−(I(c), n) = 0
for any n.

Similarly, we define P+(I(k), n), 0 ≤ n < a, 1 ≤ k ≤ c and P+(B, n), n ≥ 0, as the
probabilities of the queue length at a p.d.e.

Conjecture 1. The following relationships between p.d.e. and p.s.e. probabilities apply

P+(I(k), n) = PS−(I(k− 1), n), 0 ≤ n ≤ a− 1, 2 ≤ k ≤ c

P+(I(1), n) = PS−(B, n), 0 ≤ n ≤ a− 1,
(32)

and

P+(B, n) = PS−(B, n + b), n ≥ 1,

P+(B, 0) =
b

∑
n=a

PS−(B, n).
(33)

Corollary 2. PS−(I(k), n), 0 ≤ n < a, 1 ≤ k ≤ c and PS−(B, n), n ≥ 0 satisfy the following
equations:

PS−(I(k), n) =
P(I(k), n)

1−∑a−1
i=0 P(I(c), i)

, 0 ≤ n ≤ a− 1, 1 ≤ k ≤ c− 1,

PS−(B, n) =
P(B, n)

1−∑a−1
i=0 P(I(c), i)

, n ≥ 0.
(34)
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Proof. When the service time distribution is exponential, service completions, real or
potential, occur at random epochs. The probabilities, PS−(I(k), n), 0 ≤ n < a, 1 ≤ k ≤ c
and PS−(B, n), n ≥ 0 can be found by conditioning the r.e. probabilities to ensure that at
least one server is busy. Thus, using the results of r.e. probabilities given in Theorem 3, we
can obtain p.d.e. probabilities for both busy and idle servers from Equations (32)–(34).

Remark 4.

(i) When we set c = 1, these probabilities agree with those of Chaudhry and Madill [5] for the
system GI/Ma, b/1.

(ii) As a check on the algebra, also useful as a computational check, we note that, using (32)–(34),

c

∑
k=1

a−1

∑
j=0

P+(I(k), j) +
∞

∑
j=0

P+(B, j) =
∑c−1

k=1 ∑a−1
j=0 P(I(k), j) + ∑∞

j=0 P(B, j)

1−∑a−1
i=0 P(I(c), i)

=
1−∑a−1

i=0 P(I(c), i)

1−∑a−1
i=0 P(I(c), i)

= 1,

as it should be.

7. Numerical Results

In this section, we present some numerical results for various inter-arrival time distri-
butions such as η-phase Erlang (Eη), deterministic (D), and uniform (U). All the examples
we considered have the same mean value of the inter-arrival time E(A) = 1/λ. The root
equation (see Equation (14)), probability density functions (p.d.f.) of inter-arrival time
A, and p.d.f. of a random period time R for these three distributions are summarized in
Table 5.

Table 5. Root Equations, p.d.f.s of A(t), R(t), and mean value of of A(t) for Eη/Ma, b/c, D/Ma, b/c
and U/Ma, b/c.

Inter-arrival time
distributions Root Equations (Equation (14)) p.d.f. of A(t) p.d.f. of R(t) E(A)

η-phase Erlang

(
ηρb

ηρb+1−zb

)η
− z = 0 (λη)η tη−1exp(−ληt)

(η−1)! λ ∑
η−1
n=0

(ληt)nexp(−ληt)
n! 1/λ

Deterministic exp(− 1−zb

ρb )− z = 0 δ(t− 1/λ)

{
λ, i f t < 1

λ

0, i f t ≥ 1
λ

1/λ

Uniform

exp(− 1−zb
ρb )

ϕcµ(1−zb)
× [exp(ϕcµ(1 −

zb)/2)− exp(−ϕcµ(1 − zb))/2] − z =
0, ϕ = t2 − t1, is the interval width

1/ϕ


λ, i f t < t1
1
ϕ + λ

2 −
λt
ϕ , i f t1 ≤ t < t2

0, i f t ≥ t2

t1 =

1
λ −

ϕ
2 , t2 = 1

λ +
ϕ
2

1/λ

Besides the calculations for the queue-length probabilities at the pre-arrival, random, and
post-departure epochs for both idle and busy systems, we also considered the performance
measures, such as the mean (denoted as LQe) and the standard deviations (denoted as SDLQe)
of the queue length; the mean (denoted as Ee[I(k)]) and variance (denoted as Vare[I(k)] ) of
the idle servers. The symbol “e” denotes the epoch state, which can be pre-arrival (e = “−”),
random (e = “ ”), or post-departure (e = “+”). We define PBe = ∑∞

n=0 Pe(B, n) as the probability
that an arriving customer sees the system busy at e epoch, and PIe = ∑a−1

n=0 ∑c
k=1 Pe(I(k), n) is

the probability that the system is idle at e epoch. The probabilities of the queue length at three
different epochs are presented in closed form. Since most of these probabilities are irrational,
for computational purposes, we need to set the precision ε. Throughout all computations in
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the following examples, we use ε = 10−20 as the precision. Due to the rounding error, the sum
of the probabilities may not be one.

The results of the E6/M5,10/5 queue with traffic intensities ρ = 0.1, 0.5, 0.9 for both
busy and idle servers at pre-arrival epoch are presented in Tables 6 and 7, respectively.
When we set the number of servers to 1, our results match with those obtained for
E6/M5,10/1 by Chaudhry et al. [5].

We considered three systems E6/Ma,10/5, D/Ma,10/5, and U/Ma,10/5 (t1 = 0.875/λ,
t2 = 1.125/λ, ϕ = 0.25/λ). All three systems have the same mean value of inter-arrival time
E(A) = 1/λ. In Table 8, we present the performance measures for these three systems for
idle servers at three different epochs with varied a = 1, 4, 7 and ρ = 0.1, 0.5, 0.9. In Figure 1,
we compare the performance of D/M4,10/5 for busy servers at pre-arrival epochs with
ρ = 0.1, 0.3, 0.5, 0.7 and 0.9. In Figure 2, we compare the performance of U/Ma,10/5 for
busy servers at pre-arrival epochs with a = 1, 4, 7.

Table 6. Distribution of queue lengths at pre-arrival epochs for the busy system E6/M5,10/5,
ρ = 0.1, 0.5, 0.9, ε = 10−20.

n
P−(B, n)

ρ = 0.1 ρ = 0.5 ρ = 0.9
0 1.12 × 10−5 0.0715625 0.0198544
1 4.45 × 10−6 0.0612334 0.0194400
2 1.76 × 10−6 0.0523951 0.0190343
3 7.00 × 10−7 0.0448325 0.0186371
4 2.77 × 10−7 0.0383615 0.0182481
5 1.10 × 10−7 0.0328244 0.0178673

...
...

...
...

10 1.08 × 10−9 0.015056 0.0160790

...
...

...
...

50 9.28 × 10−26 2.95 × 10−5 0.0069163

...
...

...
...

296
... 6.55 × 10−22 3.86 × 10−5

...
...

...
...

2184
...

... 1.96 × 10−22

PB− 0.0000186 0.4957989 0.9513294
PI− 0.9999815 0.5042011 0.0486706

SUM 1.0000001 1.0000000 1.0000000
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Table 7. Distribution of queue lengths at the pre-arrival epochs for the idle system E6/M5,10/5,
ρ = 0.1, 0.5, 0.9, ε = 10−20.

ρ = 0.9
n

Probabilities of k servers idle
0 1 2 3 4

I(k)

1 0.0045133 0.0062023 0.0077054 0.0090392 0.0102190 0.0376792

2 0.0008471 0.0012652 0.0017914 0.0024039 0.0030832 0.0093908

3 0.0000996 0.0001656 0.0002602 0.0003883 0.0005533 0.0014670

4 0.0000058 0.0000116 0.0000210 0.0000351 0.0000554 0.0001289

5 0.0000001 30.0000003 0.0000007 0.0000013 0.0000023 0.0000047

# in queue 0.0054659 0.0076450 0.0097787 0.0118678 0.0139132 SUM: 0.0486706

ρ = 0.5
n

Probabilities of k servers idle
0 1 2 3 4

I(k)

1 0.0476528 0.0526108 0.0551242 0.0557986 0.0551149 0.2663013

2 0.0231853 0.0281785 0.0331282 0.0377295 0.0417906 0.1640121

3 0.0064926 0.0089895 0.0118683 0.0150732 0.0185253 0.0609489

4 0.0008326 0.0014196 0.0021965 0.0031834 0.0043942 0.0120263

5 0.0000258 0.0000722 0.0001465 0.0002567 0.0004115 0.0009126

# in queue 0.0781891 0.0912706 0.1024636 0.1120414 0.1202365 SUM: 0.5042011

ρ = 0.1
n

Probabilities of k servers idle
0 1 2 3 4

I(k)

1 0.0005343 0.0002563 0.0001226 0.0000585 0.0000279 0.0009995

2 0.009807 0.0057356 0.0033333 0.0019273 0.0011097 0.0219129

3 0.0620315 0.0455535 0.0329312 0.0235189 0.0166373 0.1806724

4 0.1067216 0.1061743 0.1006805 0.0923661 0.0827349 0.4886774

5 0.0208943 0.0422757 0.0629306 0.0821285 0.0994901 0.0009996

# in queue 0.1999887 0.1999954 0.1999982 0.1999993 0.1999999 SUM: 0.9999815

 Queue Length 

Probabilities 

Figure 1. Comparison of performance measures of D/M4,10/5 for busy servers, ρ = 0.1, 0.3, 0.5, 0.7,
0.9, ε = 10−20.
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Table 8. Comparison of performance measures of E6/Ma,10/5, D/Ma,10/5, and U/Ma,10/5 for idle servers, a = 1, 4, 7, ρ = 0.1, 0.5, 0.9, ε = 10−20.

ρ a PI− L−Q SDLQ− E−[I(k)] PI LQ SDLQ E[I(k)] PI+ L+
Q SDLQ+ E+[I(k)]

E6/Ma, 10/5

0.1
1 0.5918 0.2683 0.7409 1.0643 0.4824 0.4082 0.8821 0.8093 0.7533 0.0000 0.0095 1.5576
4 0.9998 1.5000 1.1181 3.8502 0.9997 1.5000 1.1181 3.7500 1.0000 1.3564 1.1081 4.4644
7 1.0000 3.0000 2.0000 4.3430 1.0000 3.0000 2.0000 4.2857 1.0000 2.3522 1.9248 4.8083

0.5
1 0.0205 5.8067 6.3981 0.0223 0.0107 6.2025 6.4242 0.0115 0.1047 1.3049 3.8825 0.1163
4 0.3396 4.4994 5.6122 0.4972 0.3140 4.7317 5.7188 0.4523 0.6218 1.8572 3.1865 1.0733
7 0.7796 3.7588 3.6688 1.6043 0.7670 3.8177 3.7469 1.5536 0.9205 3.0814 2.5287 2.4557

0.9
1 0.0015 46.8450 47.4120 0.0016 0.0007 47.2590 47.4150 0.0008 0.0137 38.2720 46.5250 0.0145
4 0.0285 45.6330 47.3290 0.0340 0.0249 46.0310 47.3480 0.0295 0.0991 37.4040 46.1810 0.1287
7 0.1149 41.9250 46.7130 0.1636 0.1093 42.2760 46.7680 0.1543 0.2295 34.6680 44.9320 0.3837

D/Ma, 10/5

0.1
1 0.6002 0.2327 0.6704 1.0461 0.4601 0.3998 0.8399 0.7354 0.7471 0.0000 0.0063 1.4800
4 0.9999 1.5000 1.1180 3.8708 0.9998 1.5000 1.1800 3.7500 1.0000 1.3556 1.1077 4.4753
7 1.0000 3.0000 2.0000 4.3548 1.0000 3.0000 2.0000 4.2857 1.0000 2.3415 1.9220 4.8142

0.5
1 0.0182 5.6832 6.2591 0.0194 0.0076 6.1610 6.2870 0.0080 0.0924 1.2518 3.7652 0.1004
4 0.3390 4.4119 5.4834 0.4914 0.3076 4.6909 5.6106 0.4374 0.6211 1.8256 3.0937 1.0579
7 0.7842 3.7155 3.5716 1.6102 0.7690 3.7841 3.6631 1.5491 0.9229 3.0714 2.4851 2.4549

0.9
1 0.0013 45.0490 46.6060 0.0014 0.0005 46.5470 46.6100 0.0005 0.0120 37.5580 45.7220 0.0125
4 0.0280 44.8720 46.5260 0.0331 0.0237 45.3500 46.5470 0.0278 0.0983 36.7210 45.3830 0.1261
7 0.1151 41.2030 45.9100 0.1630 0.1083 41.6240 45.9770 0.1518 0.2302 34.0240 44.1370 0.3819

U/Ma, 10/5

0.1
1 0.6000 0.2338 0.6726 1.0468 0.4608 0.4001 0.8412 0.7378 0.7473 0.0000 0.0064 1.4825
4 0.9999 1.5000 1.1180 3.8702 0.9998 1.5000 1.1180 3.7500 1.0000 1.3557 1.1077 4.4799
7 1.0000 3.0000 2.0000 4.3544 1.0000 3.0000 2.0000 4.2857 1.0000 2.3419 1.9221 4.8140

0.5
1 0.0182 5.6870 6.2634 0.0195 0.0076 6.1623 6.2913 0.0081 0.0928 1.2535 3.7689 0.1001
4 0.3390 4.4117 5.4874 0.4916 0.3079 4.6921 5.6140 0.4378 0.6211 1.8266 3.0966 1.0584
7 0.7840 3.7168 3.5746 1.6100 0.7690 3.7852 3.6657 1.5492 0.9229 3.0717 2.4865 2.4549

0.9
1 0.0013 46.0740 46.6320 0.0014 0.0005 46.5690 46.6350 0.0005 0.0120 37.5810 45.7480 0.0125
4 0.0280 44.8960 46.5500 0.0332 0.0238 45.3720 46.5720 0.0279 0.0983 36.7420 45.4080 0.1262
7 0.1151 41.2260 45.9350 0.1631 0.1083 41.6440 46.0020 0.1519 0.2302 34.0450 44.1620 0.3819
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 Queue Length 

Probabilities 

Figure 2. Comparison of performance measures of U/Ma,10/5 for busy servers, a = 1, 4, 7, ρ = 0.5,
ε = 10−20.

8. Conclusions

The queue GI/Ma, b/c was successfully investigated by using the two-dimensional em-
bedded Markov chain. Simple and exact analyses to determine queue-length distributions
are presented. An algorithm was derived for the analysis of the steady state behaviour of
the system. Our recursive solution approach is not only very efficient, but also accurate by
providing the exact queue-length probabilities at p.a.e. In a similar manner, we studied
the queue-length distribution at r.e. and derived closed-form formulae in terms of the root
w for evaluating the exact queue-length probabilities at r.e. We also obtained the proba-
bilities of p.d.e. through the relations between r.e. and p.d.e. The results for this system
were provided numerically by considering three inter-arrival time distributions—Erlang,
deterministic, and uniform. The work on higher order moments and other distributions
can be conducted similarly.

There are two special features in this work. The first is the effort to express the
important results in closed form; the second is the development of the methodology and
algorithms to efficiently derive accurate results. The models under consideration were
validated by using MAPLE to obtain numerical results with sufficient accuracy and trivial
computational costs.
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Appendix A. Algorithm for Calculating p.a.e. Probabilities

The method for determining the complete solution to the stationary queue-length
probabilities at p.a.e. for the model GI/Ma, b/c is described in the following steps:

1. Find the unique real root w inside the unit circle of Equation (14).
2. X(B, n) = wn, n ≥ 0. Let k = 1.
3. Calculate X(I(1), a− 1) by using Equation (20).
4. Calculate J(k) by using Equation (19).
5. Calculate X(I(k), a− 2), · · · , X(I(k), 0) recursively by using Equation (21).
6. Substitute X(I(k), a− 1) and X(I(k), 0) into Equation (22) to find X(I(k + 1), a− 1).

Let k = k + 1.
7. Repeat step 4 to step 6, and solve for the rest of the idle server probabilities.
8. Finally, find the normalized p.a.e. vector using P− = X

CN
.

Appendix B. Proof of Equation (25)

DR(z) =
∞

∑
l=0

(l|c)Rzl =
ρb

1− z
[1− ā(cµ(1− z))].

Proof.

∞

∑
l=0

(l|c)Rzl =
∞

∑
l=0

zl
∫ ∞

0

e−cµt(cµt)l

l!
dR(t)

=
∫ ∞

0
e−cµt

∞

∑
l=0

(cµtz)l

l!
dR(t)

=
∫ ∞

0
e−cµtecµtzdR(t)

=
∫ ∞

0
e−cµ(1−z)tλ(1− A(t))dt

= λ
∫ ∞

0
e−cµt(1−z)dt︸ ︷︷ ︸

=1/cµ(1−z)

−λ
∫ ∞

0
e−cµ(1−z)t A(t)dt

=
ρb

1− z
+

ρb
1− z

∫ ∞

0
A(t)de−cµ(1−z)t

=
ρb

1− z
(1−

∫ ∞

0
e−cµ(1−z)tdA(t)︸ ︷︷ ︸
=ā(cµ(1−z))

). (using Equation (11))
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