

Article **On Some Properties of Addition Signed Cayley Graph** Σ_n^{\wedge}

Obaidullah Wardak ¹, Ayushi Dhama ² and Deepa Sinha ^{1,*}

- ¹ Department of Mathematics, South Asian University, New Delhi 110 021, India
- ² Centre for Mathematical Sciences, Banasthali University, Rajasthan 304 022, India
 - Correspondence: deepasinha@sau.ac.in

Abstract: We define an addition signed Cayley graph on a unitary addition Cayley graph G_n represented by Σ_n^{\wedge} , and study several properties such as balancing, clusterability and sign compatibility of the addition signed Cayley graph Σ_n^{\wedge} . We also study the characterization of canonical consistency of Σ_n^{\wedge} , for some *n*.

Keywords: addition signed Cayley graph Σ_n^{\wedge}

MSC: 05C 22; 05C 75

1. Introduction

We refer to standard books of Harary [1] and West [2] for graph theory. For the signed graphs, we refer to Zaslavsky [3,4]. All the signed graphs considered in this paper are simple, finite and loopless.

For the preliminaries, definition and notation of signed graph *S*, underlying graph S^u , its negation $\eta(S)$, signed isomorphism and its positive (negative) section, we refer to [5,6].

Some Basic Lemma and Theorems which are used in this paper are stated below as a reference.

Lemma 1 ([7]). A signed graph in which every chordless cycle is positive is balanced.

Theorem 1 ([8]). A signed graph S is clusterable if—and only if—S does not contains a cycle with exactly one negatively charged edge.

For balancing, clusterability, marking, canonical marking (*C-marking*), consistency, *C-consistency*, *S* consistency, sign compatibility, line signed graph L(S), line signed root graph, ×-line signed graph, ×-line signed root graph and the common-edge signed graph $C_E(S)$ of signed graph, *S* we refer to [6,9–16].

Addition Signed Cayley Graph Σ_n^{\wedge}

A unitary addition Cayley graph G_n , where $n \in I^+$, I^+ is set of positive integers, is a graph in which the vertex set is a ring of integers modulo n, Z_n . Any two vertices x_1 and x_2 are adjacent in G_n if—and only if— $(x_1 + x_2) \in U_n$, where U_n denotes the unit set.

Unitary addition Cayley graphs for n = 2, 3, 4, 5, 6 and 7 are shown in Figure 1. The study of unitary Cayley graphs began in order to gain some insight into the graph

representation problem (see [17]), and we can extend it to the signed graphs (see [18]). Now, we introduce the definition of an *addition signed Cayley graph* Σ_n^{\wedge} as follows:

The *addition signed Cayley graph* $\Sigma_n^{\wedge} = (G_n, \sigma^{\wedge})$ is a signed graph whose underlying graph is a unitary addition Cayley graph G_n , where $n \in I^+$ and for an edge *ab* of Σ_n^{\wedge} ,

$$\sigma^{\wedge}(ab) = egin{cases} + & ext{if } a,b \in U_n, \ - & ext{otherwise.} \end{cases}$$

Citation: Wardak, O.; Dhama, A.; Sinha, D. On Some Properties of Addition Signed Cayley Graph Σ_n^{\wedge} . *Mathematics* **2022**, *10*, 3492. https:// doi.org/10.3390/math10193492

Academic Editor: Emeritus Mario Gionfriddo

Received: 24 July 2022 Accepted: 8 September 2022 Published: 25 September 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

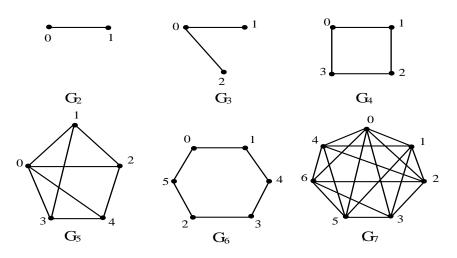


Figure 1. Examples of unitary addition Cayley graphs.

Examples of addition signed Cayley graph for n = 5, 6 and 10 can be seen in Figure 2a–c. Throughout the paper, we consider $n \ge 2$.

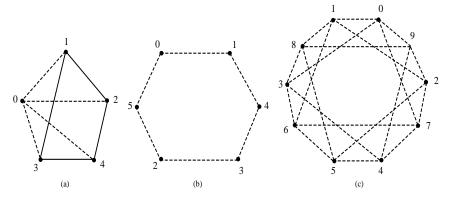


Figure 2. Examples of addition signed Cayley graph Σ_n^{\wedge} .

2. Some Properties of Σ_n^{\wedge}

2.1. Balancing in Σ_n^{\wedge}

The balancing of some derived signed Cayley graphs has been studied in the literature (see [19]). Here, we find out the property of balancing for the addition signed Cayley graph Σ_n^{\wedge} , for which the following well-known result can be used as a tool.

Theorem 2 ([20]). G_n , $n \ge 2$, is bipartite if—and only if—either n = 3 or n is even.

Lemma 2. $i \in U_n \Rightarrow (n-i) \in U_n$ and $i \notin U_n \Rightarrow (n-i) \notin U_n$.

Lemma 3. Addition signed Cayley graph $\Sigma_n^{\wedge} = (G_n, \sigma^{\wedge})$, for *n* even, is an all-negative signed graph.

Proof. Given an addition signed Cayley graph $\Sigma_n^{\wedge} = (G_n, \sigma^{\wedge})$, where *n* is even. Suppose the conclusion is false. Let there be a positive edge, say *ij*, in Σ_n^{\wedge} . By the definition of Σ_n^{\wedge} , $i, j \in U_n$. Since *n* is even, U_n consists only of odd numbers. Thus, *i* and *j* are odd numbers and their addition i + j is an even number. This shows that $i + j \notin U_n$, i.e., *i* and *j*, are not adjacent in Σ_n^{\wedge} . Thus, we have a contradiction. Hence, if *n* is even, then Σ_n^{\wedge} is all-negative signed graph. \Box

Sampathkumar [21] gave the famous characterization to prove the balancing in a signed graph, which is as follows:

Theorem 3 (Marking Criterion [21]). A signed graph $S = (G, \sigma)$ is balanced if—and only if—there exists a marking μ of its vertices such that each edge uv in S satisfies $\sigma(uv) = \mu(u)\mu(v)$.

Lemma 4. For the addition signed Cayley graph $\Sigma_n^{\wedge} = (G_n, \sigma^{\wedge}), \Sigma_n^{\wedge}$ is a balanced signed graph, *if for any prime p, n = p^a.*

Proof. $n = p^a$, where p is a prime number. Now, we assign a marking μ to the vertices of Σ_n^{\wedge} in such a manner that if $u \in U_n$, then $\mu(u) = +$ and if $u \notin U_n$, then $\mu(u) = -, \forall u \in V(\Sigma_n^{\wedge})$. Suppose there is an edge, say ij, in Σ_n^{\wedge} .

Case I: Let $\sigma^{\wedge}(ij) = +$. Then, $i, j \in U_n$ and according to the marking $\mu(i) = \mu(j) = +$. Thus, $\sigma^{\wedge}(ij) = \mu(i)\mu(j) = +$.

Case II: Let $\sigma^{\wedge}(ij) = -$. Then, there are three possibilities:

- (a) $i \in U_n, j \notin U_n$.
- (b) $i \notin U_n, j \in U_n$.
- (c) $i, j \notin U_n$.

Now, for (*a*) and (*b*), by marking μ , we get $\mu(j) = -$ and $\mu(i) = +$ or vice versa. Therefore, $\sigma^{\wedge}(ij) = \mu(i)\mu(j) = -$. Now, if $i, j \notin U_n$. Then, *i* and *j* are both multiples of *p*, and then i + j = kp, where *k* is some positive integer and $i + j \notin U_n$. So $ij \notin E(\Sigma_n^{\wedge})$. Thus, condition (*c*) is not possible. So in every condition we get $\sigma^{\wedge}(ij) = \mu(i)\mu(j)$. Since *ij* is an arbitrary edge, using Theorem 3, Σ_n^{\wedge} is balanced. \Box

Theorem 4. The addition signed Cayley graph Σ_n^{\wedge} is balanced if—and only if—either n is even or if n has exactly one prime factor, then n is odd.

Proof. *Necessity*: First, suppose $\sum_{n=1}^{n}$ is balanced. Now, let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$; p_1, p_2, \dots, p_m being distinct primes, $p_1 \neq 2$, $p_1 \leq p_2 \leq \dots \leq p_m$.

In the unitary addition Cayley graph G_n , $p_1 + 1 \neq k_1 p_i$ for i = 1, 2, ..., m and k_1 are some positive integers i.e., $p_1 + 1 \in U_n$, so p_1 is adjacent with one. Now, we claim that p_1 and p_2 are adjacent in G_n . On the contrary, suppose $p_1 p_2$ is not an edge in G_n . Then, $p_1 + p_2 \notin U_n$. Thus, $p_1 + p_2 = k_2 p_i$ for some i = 1, 2, ..., m and k_2 are some positive integers. Let $p_1 + p_2$ be a multiple of p_1 .

$$p_1 + p_2 = \alpha p_1$$
$$p_2 = \alpha p_1 - p_1$$
$$= (\alpha - 1)p_1$$

for the positive integer α , a contradiction. With the same argument, we can show that $p_1 + p_2$ is not a multiple of p_2 . Now, let $p_1 + p_2 = \alpha p_i$, for i = 3, 4, ..., m. As we know, the addition of two prime factors is always even; $p_1 + p_2$ is even. So, α is even and is at least 2. However, as $p_1 < p_2 < p_i$, $p_1 + p_2$ is always less than any multiple of p_i for i = 3, 4, ..., m. Thus, $p_1 + p_2 \in U_n$ and $p_1 p_2$ is an edge in G_n . Next, if p_2 is adjacent to 1 in G_n , we get a cycle

$$C = (p_1, p_2, 1, p_1)$$

in Σ_n^{\wedge} . Clearly, p_1 and p_2 are not in U_n , then by definition of Σ_n^{\wedge} , *C* is a negative cycle. Thus, we have a negative cycle in Σ_n^{\wedge} , implying that Σ_n^{\wedge} is not balanced. Now, suppose $p_2 + 1 \notin E(G_n)$, since $p_2 + 1 \notin U_n$. Then, $p_2 + 1 = cp_i$; i = 1, 2, ..., m, *c* are positive integers. Clearly,

$$p_2 + 1 = \alpha p_1 \tag{1}$$

 α is a positive integer.

Since $p_2 \notin U_n$, according to Lemma 2, $n - p_2 \notin U_n$. Next, we claim that $n - p_2$ is adjacent to 1 or $n - p_2 + 1 = n - (p_2 - 1) \in U_n$. If $p_2 - 1 \in U_n$, then according to Lemma 2, $n - p_2 + 1 = n - (p_2 - 1) \in U_n$. Suppose $p_2 - 1 \notin U_n$. Then, $p_2 - 1 = \beta p_i$; i = 1, 2, ..., m,

 β are positive integers. Let $p_2 - 1 = \beta p_1$. However, from Equation (1), $p_2 = \alpha p_1 - 1$. This implies

$$p_2 - 1 = \beta p_1$$

$$\alpha p_1 - 1 - 1 = \beta p_1$$

$$\alpha p_1 - 2 = \beta p_1$$

$$\alpha p_1 - \beta p_1 = 2$$

$$(\alpha - \beta) p_1 = 2.$$

This is not possible, as p_1 is at least 3. Thus, $p_2 - 1$ is not a multiple of any of the p_i s, whence $p_2 - 1 \in U_n$. Hence, $n - p_2 + 1 = n - (p_2 - 1) \in U_n$, whence $n - p_2$ is adjacent to 1 in G_n . Now, $n - p_2 + p_1 = n - (p_2 - p_1)$. Since $p_1 < p_2 < \cdots p_m$, $p_2 - p_1 \neq kp_i$; $i = 2, 3, \ldots m$., k is a positive integer. Additionally, $p_2 - p_1$ is not a multiple of p_1 . This shows that $p_2 - p_1 \in U_n$ and by Lemma 2, $n - (p_2 - p_1) \in U_n$. This shows that $n - p_2$ is adjacent to p_1 in Σ_n . Thus, we get a cycle

$$C' = (p_1, n - p_2, 1, p_1)$$

in Σ_n . Clearly, p_1 and $n - p_2$ do not belong to U_n and $1 \in U_n$. Then, by definition Σ_n^{\wedge} , we have a cycle C' with three negative edges. Thus, a contradiction. So, by contraposition, necessity is true.

Sufficiency: Let *n* be even. Then, according to Lemma 3, Σ_n^{\wedge} is an all-negative signed graph. Additionally, according to Theorem 2, G_n is a bipartite graph. Hence, Σ_n^{\wedge} , by Lemma 3 and Theorem 2, is balanced.

Now, let *n* be odd, with exactly one prime factor. Then, according to Lemma 4, Σ_n^{\wedge} is balanced, hence the theorem. \Box

2.2. Clusterability in Σ_n^{\wedge}

Theorem 5. The addition signed Cayley graph $\Sigma_n^{\wedge} = (G_n, \sigma^{\wedge})$ is clusterable.

Proof. Given an addition signed Cayley graph $\Sigma_n^{\wedge} = (G_n, \sigma^{\wedge})$. Suppose $v \in V(\Sigma_n^{\wedge})$. Define $V^* \subseteq V(\Sigma_n^{\wedge})$, such that $V^* = \{u_i : u_i \in V(\Sigma_n^{\wedge}) \text{ and } \sigma^{\wedge}(vu_i) = +\}$. By the definition of Σ_n^{\wedge} , clearly u_i and v are in U_n .

If, for *i* and *j*, $(i \neq j)$, u_i and u_j are adjacent, then $\sigma^{\wedge}(u_i u_j) = +$. Thus, $U_n \subseteq V^*$. Since $|U_n| = \phi(n)$, $n - \phi(n) = k$ (say) vertices are not in U_n . Thus, only negative edges are incident on these *k* vertices. Put all these vertices in the *k* partition V_1, V_2, \ldots, V_k , such that each partition contains exactly only one vertex. The clearly induced subgraph $\langle V^* \rangle$ is all positive. Additionally, no positive edge joins the vertex of V^* with the vertex of any of V_i , for $i = 1, 2, \ldots, k$, and there is no edge *xy*, such that $\sigma^{\wedge}(xy) = -$ and $x, y \in V^*$. Thus, there exists a partition of the $V(\Sigma_n^{\wedge})$, such that every positive edge has end vertices within the same subset and every negative edge has end vertices in a different subset. Hence, the proof. \Box

2.3. Sign-Compatibility in Σ_n^{\wedge}

Theorem 6 ([22]). A signed graph S is sign compatible if—and only if—S does not contain a sub signed graph isomorphic to either of the two signed graphs. S_1 formed by taking the path $P_4 = (x, u, v, y)$ with both edges xu and vy negative and edge uv positive, and S_2 formed by taking S_1 and identifying the vertices x and y (Figure 3).

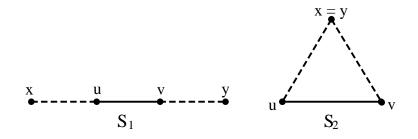


Figure 3. Two forbidden sub signed graphs for a sign-compatible signed graph [13].

Theorem 7. Addition signed Cayley graph Σ_n^{\wedge} is sign compatible if—and only if—n is 3 or even.

Proof. Let addition signed Cayley graph Σ_n^{\wedge} be sign compatible. If possible, suppose the conclusion is not true. Let *n* be odd but not 3. Now, $01 \in E(\Sigma_n^{\wedge})$. As, $n - 2 + 1 = n - 1 \in U_n$, $1(n - 2) \in E(\Sigma_n^{\wedge})$. Additionally, $n - 2 + 0 = n - 2 \in U_n$. Thus, we have a triangle (0, 1, n - 2, 0) with one positive edge 1(n - 2) and two negative edges 01 and (n - 2)0, which again contradict Theorem 6. Hence, the condition is necessary.

Next, let *n* be even. Thus, according to Lemma 3, Σ_n^{\wedge} , which is all-negative, is trivially sign compatible. If n = 3, then Σ_n^{\wedge} is P_3 , which is trivially sign compatible. \Box

Acharya and Sinha [23] showed that every line signed graph is sign compatible. Next, we discuss the value of *n* for which Σ_n^{\wedge} is a line signed graph.

Theorem 8. G_n is a line graph if—and only if—n is equal to 2 or 3 or 4 or 6.

Proof. *Necessity*: Let G_n be a line graph. Meanwhile, *n* is not equal to 2, 3, 4 and 6.

Case I: *n* is prime. It is clear that $n \ge 5$. Here, *n* is prime, so by the definition of U_n , there are numbers from 1 to (n - 1) in U_n . 0 is connected to every vertex of G_n . The other vertex, $i \ne 0$, in G_n is not connected to only (n - i) by definition. For any $i, j \in V(G_n)$; $i \ne 0, j \ne 0$ there is an induced subgraph in G_n (see Figure 4).

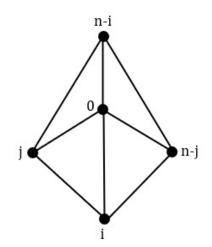


Figure 4. A forbidden subgraph for a line graph in G_n .

Thus, G_n contains forbidden subgraph for a line graph. Thus, G_n is not a line graph. **Case II:** *n* is not prime. 1 is connected to 0 in G_n . Next, 1 is connected to p_1 , as $p_1 + 1 \in U_n$, where p_1 is the smallest factor of *n*. Let $\alpha p_1 = n$, for a positive integer α . Now,

$$1 + (\alpha - 1)p_1 = 1 + \alpha p_1 - p_1$$

= 1 + n - p_1
= n - (p_1 - 1).

Since $p_1 - 1 \in U_n$, by Lemma 2, $n - (p_1 - 1) \in U_n$. Thus, 1 and $(a - 1)p_1$ are adjacent in G_n . Additionally, 0 is not adjacent to p_1 and $(a - 1)p_1$, because their sum is a multiple of p_1 . In the same way, p_1 and $(a - 1)p_1$ are not connected in G_n because their sum is a multiple of p_1 . So, we have an induced subgraph in G_n (see Figure 5). Thus, there is a forbidden subgraph $K_{1,3}$ of a line graph. Additionally, G_n is not a line graph.

Sufficiency: Let n = 2 or n = 3 or n = 4 or n = 6. Then, $G_2 \cong L(P_3)$, $G_3 \cong L(P_4)$, $G_4 \cong L(C_4)$ and $G_6 \cong L(C_6)$ (see Figure 6). Hence, the result. \Box

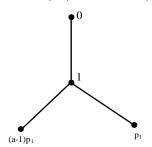


Figure 5. A forbidden subgraph for a line graph in G_n .

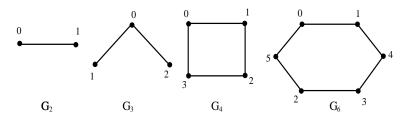


Figure 6. Showing *G*₂, *G*₃, *G*₄ and *G*₆.

Theorem 9. Σ_n^{\wedge} is a line signed graph if—and only if—n = 2 or n = 3 or n = 4 or n = 6.

Proof. *Necessity*: Let, if possible, *n* be unequal to 2, 3, 4 and 6. Theorem 8 shows that $G_n \ncong L(G)$, for any graph *G*. Thus, a contradiction and the condition are necessary.

Sufficiency: Now, suppose n = 2 or n = 3 or n = 4 or n = 6. Line signed graphs of an addition signed Cayley graph, for these values of n, are displayed in Figure 7, hence the sufficiency. \Box

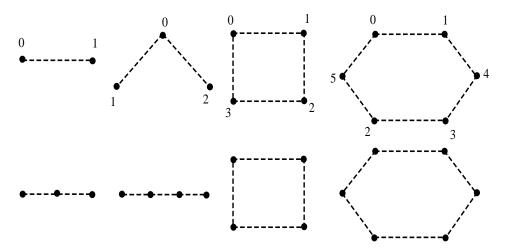


Figure 7. Showing Σ_2^{\wedge} , Σ_3^{\wedge} , Σ_4^{\wedge} and Σ_6^{\wedge} and its line signed root graphs.

Remark 1. Σ_n^{\wedge} is a \times -line signed graph if—and only if—n = 2 or n = 3 or n = 4 or n = 6.

Proof. Let Σ_n^{\wedge} be a \times -line signed graph. We know that the underlying structure for line signed graphs and \times -line signed graphs is the same. Thus, the condition comes from Theorem 8.

Next, let $n \in \{2, 3, 4, 6\}$. Σ_2^{\wedge} , Σ_3^{\wedge} , Σ_4^{\wedge} and Σ_6^{\wedge} and its \times -line signed root graphs are displayed in Figure 8. From Theorem 4, it is clear that for these values of n, an addition signed Cayley graph is balanced. Additionally, $L_{\times}(S)$ of any signed graph is always balanced, and its underlying graph is a line graph (see [24]). This result comes from Theorems 4 and 8.

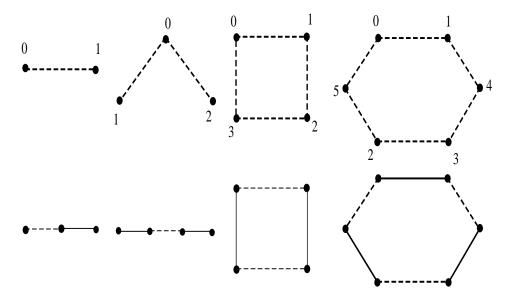


Figure 8. Showing Σ_2^{\wedge} , Σ_3^{\wedge} , Σ_4^{\wedge} and Σ_6^{\wedge} and its \times -line signed root graphs.

2.4. *C*-Consistency of Σ_n^{\wedge}

Lemma 5. For any prime $p, p \neq 2$ and $n = p^{\alpha}$, the $d^{-}(2)$ and $d^{-}(4)$ in Σ_{n}^{\wedge} is odd.

Proof. Given a $\Sigma_n^{\wedge} = (G_n, \sigma^{\wedge})$, where $n = p^{\alpha}$ and p is an odd prime. Since n is odd; 2, $4 \in U_n$. It is obvious that $d^-(2)$ and $d^-(4)$ in Σ_n^{\wedge} appear only when 2 and 4 are adjacent to kp, where k is some positive integer. Now, $(2 + 4) + cp \neq kp$; positive integers c and k. Additionally, 2 and 4 are connected to all the multiples of p, which are $p^{\alpha-1}$. Therefore $d^-(2) (d^-(4)) = p^{\alpha-1}$ is odd, hence the lemma. \Box

Theorem 10 ([25]). Let *a*, *b* and *m* be integers with *m* positive. The linear congruence $ax \equiv b \pmod{m}$ is soluble if and only if (a, m)|b. If x_0 is a solution, there are exactly (a, m) incongruent solutions given by $\{x_0 + tm/(a, m)\}$, where t = 0, 1, ..., (a, m) - 1.

Corollary 1. *If* (a, m) = 1 *then the congruence* $ax \equiv b \pmod{m}$ *has exactly one incongruent solution.*

Lemma 6. In addition, signed Cayley graph $\Sigma_n^{\wedge} = (G_n, \sigma^{\wedge})$, if $n = p_1^{a_1} p_2^{a_2}$, where p_1 and p_2 are two distinct odd primes, then $d^-(2)(d^-(4)) = odd$.

Proof. Given that $n = p_1^{a_1} p_2^{a_2}$ in Σ_n^{\wedge} , p_1 and p_2 are distinct odd primes. As n is odd, $2 \in U_n$. Now, the negative degree of 2 of Σ_n^{\wedge} appears only when 2 is adjacent with the multiples of p_1 and p_2 . Let $A_i = \{cp_i; c \text{ certain positive integers}, i = 1, 2\}$. Then,

$$|A_1| = p_1^{a_1 - 1} p_2^{a_2}$$
$$|A_2| = p_1^{a_1} p_2^{a_2 - 1}$$

and

$$|A_1 \cap A_2| = p_1^{a_1 - 1} p_2^{a_2 - 1}$$

Thus, using the inclusion-exclusion principle

$$|A_1 \cup A_2| = p_1^{a_1 - 1} p_2^{a_2} + p_1^{a_1} p_2^{a_2 - 1} - p_1^{a_1 - 1} p_2^{a_2 - 1}$$

Since $cp_1(p_2) + 2 = p_2(p_1)$, for certain positive integers c and so, $cp_1(p_2)2 \notin E(\Sigma_n^{\wedge})$ for those c. Thus, according to Theorem 10, we have

$$p_1 x \equiv -2 \pmod{p_2} \tag{2}$$

and

$$p_2 y \equiv -2 \pmod{p_1} \tag{3}$$

Due to Corollary 1, we have an incongruent solution x_0 (say), which is unique for Equation (2). So, for Equation (2) where $p_1x + 2 < n$, we have:

$$x_0 + 0(p_2), x_0 + 1(p_2), x_0 + 2(p_2), \dots, x_0 + (p_1^{a_1-1}p_2^{a_2-1} - 1)(p_2)$$
 (4)

Thus, Equation (2) has $p_1^{a_1-1}p_2^{a_2-1}$ total solutions. Similarly, the total solutions of Equation (3) are $p_1^{a_1-1}p_2^{a_2-1}$. Hence,

$$\begin{aligned} & d^{-}(2) = p_{1}^{a_{1}-1}p_{2}^{a_{2}} + p_{1}^{a_{1}}p_{2}^{a_{2}-1} - p_{1}^{a_{1}-1}p_{2}^{a_{2}-1} - p_{1}^{a_{1}-1}p_{2}^{a_{2}-1} - p_{1}^{a_{1}-1}p_{2}^{a_{2}-1} \\ & = p_{1}^{a_{1}-1}p_{2}^{a_{2}-1}(p_{1}+p_{2}-3) \end{aligned}$$

 p_1 and p_2 are odd primes, which implies $d^-(2)$ is odd. The proof for $d^-(4)$ is analogous. \Box

Lemma 7. In $\Sigma_n^{\wedge} = (G_n, \sigma^{\wedge})$, if $n = 3^{a_1} 5^{a_2}$, then $d^-(7) = odd$.

Proof. This is easy to prove using the same logic as mentioned in Lemma 6. \Box

Theorem 11. Let *n* have at most two distinct odd prime factors, then Σ_n^{\wedge} is *C* consistent if—and only if—*n* is even or 3.

Proof. *Necessity*: Let *n* have, at most, two distinct prime factors and let Σ_n^{\wedge} be C consistent. If possible, let *n* be odd but not 3.

Case (a): Let $n \equiv 1 \pmod{3}$ or $n \equiv 2 \pmod{3}$. As *n* is odd, $2 \in U_n$. Clearly, 0 is adjacent with 1, 2, n - 1 in Σ_n^{\wedge} . Since, $n - 1 + 2 = 1 \in U_n$, n - 1 and 2 are connected in Σ_n^{\wedge} . Since, 3 is not a factor of $n, 3 \in U_n$. Now, $2 + 1 = 3 \in U_n$. Hence, 2 and 1 are adjacent in Σ_n^{\wedge} . Now, the cycles $Z_1 = (0, 1, 2, 0), Z_2 = (0, 2, n - 1, 0)$ have a common chord with end vertices 0 and 2. By Lemma 6,

$$\mu_{\sigma}(2) = -$$

Since the vertex $0 \notin U_n$, $d(0) = d^-(0) = \phi(n) =$ even. It follows,

$$\mu_{\sigma}(0) = +.$$

Now, if either Z_1 or Z_2 is not a C-consistent cycle, a contradiction. Thus, Z_1 and Z_2 both cycle are C-consistent. The common chord with end vertices zero and two are oppositely marked, in contradiction with (Theorem 2, [26]).

Case (b): Let $n \equiv 0 \pmod{3}$. Then, either $n = 3^{a_1}$ or $n = 3^{a_1} \times p_2^{a_2}$. First, suppose $p_2 \neq 5$. Since, *n* is odd, $2, 4 \in U_n$. According to Lemma 2, $n - 2 \in U_n$. Clearly, 0 is adjacent to 1, 4 and n - 2 in Σ_n^{\wedge} . Since, $n - 2 + 4 = n + 2 = 2 \in U_n$, n - 2 is adjacent to 4 in Σ_n^{\wedge} . Now, for cycle $Z_1 = (0, 1, 4, 0), Z_2 = (0, 4, n - 2, 0); Z_1, Z_2$ have a common chord with end vertices 0 and 4. According to Lemma 6,

$$\mu_{\sigma}(4) = -$$

Since the vertex $0 \notin U_n$, $d(0) = d^-(0) = \phi(n) =$ even. It follows,

$$\mu_{\sigma}(0) = +.$$

Now, if either Z_1 or Z_2 is a cycle which is not C consistent, a contradiction. Therefore, Z_1 and Z_2 are the cycles which are C-consistent. However, there is a chord whose end vertices 0 and 4 have opposite marking. Here again, we find a contradiction to the (Theorem 2, [26]).

Now, suppose $p_2 = 5$. In this case, we consider two cycles $Z_1 = (0, 1, 7, 0)$ and $Z_2 = (0, 7, 10, 13, 0)$ in Σ_n^{\wedge} . For cycles Z_1 , Z_2 have a common chord with end vertices 0 and 7, according to Lemma 7,

$$\mu_{\sigma}(7) = -$$

Since the vertex $0 \notin U_n$, $d(0) = d^-(0) = \phi(n) =$ even. It follows that

$$\mu_{\sigma}(0) = +.$$

Now, if either Z_1 or Z_2 is a cycle which is not C consistent, this is a contradiction. Therefore, Z_1 and Z_2 are the cycles which are C consistent. However, the end vertices 0 and 7 have the opposite marking. Here, we have a contradiction to the (Theorem 2, [26]). Hence, *n* is either even or n = 3.

Sufficiency: Let *n* be even. According to Lemma 3, Σ_n^{\wedge} is all negative. Additionally, according to Theorem 13, $d(v) = d^-(v) = \text{even } \forall v \in V(\Sigma_n^{\wedge})$. So, according to canonical marking $\mu_{\sigma}(v) = + \forall v \in V(\Sigma_n^{\wedge})$. So when *n* is even, Σ_n^{\wedge} is trivially *C* consistent. If n = 3, then G_3 is a path, which is trivially *C*-consistent, hence the result. \Box

3. Balance in Certain Derived Signed Graphs of Σ_n^{\wedge}

Theorem 12. $\eta(\Sigma_n^{\wedge})$ is balanced if—and only if—n is 3 or even.

Proof. Let $\eta(\Sigma_n^{\wedge})$ be balanced. If possible, *n* is odd but not 3, and *p* is the smallest prime factor of *n*. Since $n - 2 + 1 = n - 1 \in U_n$, n - 2 and 1 are connected in Σ_n^{\wedge} . $p + 1 \in U_n$ implies that *p* and 1 are connected in Σ_n^{\wedge} . Additionally, as *n* is odd, $2 \in U_n$ and $n - 2 \in U_n$. according to Lemma 2. Since, $n - 2 + p = n + (p - 2) = p - 2 \in U_n$, $(n - 2)p \in E(\Sigma_n^{\wedge})$. Now, for the cycle Z = (1, p, n - 2, 1) in Σ_n^{\wedge} we have a one positive edge 1(n - 2) and two negative edges 1*p* and p(n - 2) in *Z*. However, in $\eta(\Sigma_n^{\wedge})$, there is a cycle Z' = (1, p, n - 2, 1) with one negative edge 1(n - 2) and two positive edges 1*p* and p(n - 2). Thus, we have a negative cycle that contradicts the given condition. Therefore, the only possibility is that *n* is 3 or even.

Conversely, let *n* be even. Σ_n^{\wedge} , according to Lemma 3 is an all-negative signed graph. So $\eta(\Sigma_n^{\wedge})$ is balanced and is all positive. $\eta(\Sigma_n^{\wedge})$ for n = 3 is a tree which is trivially balanced, hence the converse. \Box

We present the following theorem for the degree of the vertices of G_n (see [20]).

Theorem 13 ([20]). Let *m* be any vertex of the unitary addition Cayley graph G_n . Then,

$$d(m) = \begin{cases} \phi(n) & \text{if } n \text{ is even,} \\ \phi(n) & \text{if } n \text{ is odd and } (m,n) \neq 1, \\ \phi(n) - 1 & \text{if } n \text{ is odd and } (m,n) = 1. \end{cases}$$

Additionally, for a signed graph *S*, the balance property of L(S) is discussed in ([27], Theorem 4).

Theorem 14. For an additional signed Cayley graph $\Sigma_n^{\wedge} = (G_n, \sigma^{\wedge})$, its line signed graph $L(\Sigma_n^{\wedge})$ is balanced if—and only if— $n \in \{2, 3, 4, 6\}$.

Proof. Let $L(\Sigma_n^{\wedge})$ be balanced and $n \neq 2, 3, 4$ and 6. Now, according to Theorem 13, $d(0) = d^-(0) = \phi(n) = \text{even}$, which implies $d(0) = d^-(0) = \phi(n) \ge 4$. This shows that condition *ii* (of Theorem 4, [27]) is not satisfied for Σ_n^{\wedge} . This is a contradiction. Hence, $n \in \{2, 3, 4, 6\}$. The converse part is easy to prove. \Box

For a signed graph *S*, the balance property of $C_E(S)$ is discussed in ([9], Theorem 13).

Theorem 15. For an additional signed Cayley graph $\Sigma_n^{\wedge} = (G_n, \sigma^{\wedge})$, its common-edge signed graph $C_E(\Sigma_n^{\wedge})$ is balanced if—and only if— $n \in \{3,4,6\}$.

Proof. Let $n \notin \{3,4,6\}$. It is clear that $0 \notin U_n$. Now, by Theorem 13, $d(0) = d^-(0) = \phi(n) = even$, which implies $d(0) = d^-(0) = \phi(n) \ge 4$. This shows that condition *ii* (of Theorem 13, [9]) is not satisfied for Σ_n^{\wedge} . Thus, $C_E(\Sigma_n^{\wedge})$ is not balanced, which is a contradiction. Hence, $n \in \{3,4,6\}$. The converse part is easy to prove. \Box

Author Contributions: Conceptualization, D.S.; Formal analysis, O.W., D.S. and A.D.; Methodology, O.W.; Supervision, D.S.; Writing—review & editing, O.W. and D.S. All authors have read and agreed to the published version of the manuscript.

Funding: The first author thanks the South Asian University for research grant support. The third author is grateful to DST [MTR/2018/000607] for the support under the Mathematical Research Impact Centric Support (MATRICS).

Data Availability Statement: No data were used to support the findings of the study.

Conflicts of Interest: All the authors declare that they have no conflict of interest regarding the publication of this paper.

References

- 1. Harary, F. Graph Theory; Addison-Wesley Publ. Comp.: Boston, MA, USA, 1969.
- 2. West, D.B. Introduction to Graph Theory; Prentice-Hall of India Pvt. Ltd.: New Delhi, India, 1996.
- 3. Zaslavsky, T. A mathematical bibliography of signed and gain graphs and allied areas. Electron. J. Combin. 2018, DS8. [CrossRef]
- 4. Zaslavsky, T. Glossary of signed and gain graphs and allied areas. *Electron. J. Combin.* **1998**, DS9. Available online: https://www.combinatorics.org/files/Surveys/ds9/ds9v1-1998.pdf (accessed on 11 July 2022).
- 5. Harary, F. On the notion of balance of a signed graph. Mich. Math. 1953, 2, 143–146. [CrossRef]
- 6. Sinha, D.; Wardak, O.; Dhama, A. On Some Properties of Signed Cayley Graph Sn. *Mathematics* 2022, 10, 2633. [CrossRef]
- 7. Zaslavsky, T. Signed analogs of bipartite graphs. Discrete Math. 1998, 179, 205–216. [CrossRef]
- 8. Davis, J.A. Clustering and structural balance in graphs. *Hum. Relat.* **1967**, 20, 181–187. [CrossRef]
- 9. Acharya, M.; Sinha, D. Common-edge sigraphs. AKCE Int. J. Graphs Comb. 2006, 3, 115–130.
- 10. Behzad, M.; Chartrand, G.T. Line coloring of signed graphs. Elem. Math. 1969, 24, 49-52.
- 11. Gill, M.K. Contribution to Some Topics in Graph Theory and It's Applications. Ph.D. Thesis, Indian Institute of Technology, Bombay, India, 1969.
- 12. Sharma, P.; Acharya, M. Balanced signed total graphs of commutative ring. Graphs Combin. 2016, 32, 1585–1597. [CrossRef]
- 13. Sinha, D. New Frontiers in the Theory of Signed Graphs. Ph.D. Thesis, University of Delhi, New Delhi, India, 2005.
- 14. Acharya, B.D. A characterization of consistent marked graphs. Nat. Acad. Sci. Lett. USA 1983, 6, 431–440.
- 15. Sinha, D.; Acharya, M. Characterization of signed graphs whose iteratied line graphs are balanced and *S*-consistent. *Bull. Malays. Math. Sci. Soc.* **2016**, *39*, 297–306. [CrossRef]

- 16. Zaslavsky, T. Consistency in the naturally vertex-signed line graph of a signed graph. *Bull. Malays. Math. Sci. Soc.* **2016**, *39*, 307–314. [CrossRef]
- 17. Evans, A.B.; Fricke, G.H.; Maneri, C.C.; McKee, T.A.; Perkel, M. Representations of graphs modulo *n. J. Graph Theory* **1994**, *18*, 801–815. [CrossRef]
- 18. Sinha, D.; Dhama, A. Unitary Cayley Meet Signed Graphs. Electron. Notes Discret. Math. 2017, 63, 425–434. [CrossRef]
- 19. Sinha, D.; Garg, P. On the unitary Cayley signed graphs. Electron. J. Comb. 2011, 18, P229. [CrossRef]
- 20. Sinha, D.; Garg, P.; Singh, A. Some properties of unitary addition Cayley graphs. Notes Number Theory Discret. Math. 2011, 17, 49–59.
- 21. Sampathkumar, E. Point-signed and line-signed graphs. Natl. Acad. Sci. Lett. 1984, 7, 91–93.
- Sinha, D.; Dhama, A. Sign-Compatibility of common-edge signed graphs and 2-path signed graphs. *Graph Theory Notes N.Y.* 2013, 65, 55–61.
- 23. Acharya, M.; Sinha, D. Characterizations of line sigraphs. Nat. Acad. Sci. Lett. 2005, 28, 31-34. [CrossRef]
- 24. Acharya, M. ×-line sigraph of a sigraph. J. Combin. Math. Combin. Comput. 2009, 69, 103–111.
- 25. Rose, H.E. A Course in Number Theory; Oxford Science Publications; Oxford University Press: Oxford, UK, 1988.
- 26. Hoede, C. A characterization of consistent marked graphs. J. Graph Theory 1992, 16, 17–23. [CrossRef]
- 27. Acharya, M.; Sinha, D. A Characterization of Sigraphs Whose Line Sigraphs and Jump Sigraphs are Switching Equivalent. *Graph Theory Notes N. Y.* **2003**, *44*, 30–34.