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1. Introduction

We refer to standard books of Harary [1] and West [2] for graph theory. For the signed
graphs, we refer to Zaslavsky [3,4]. All the signed graphs considered in this paper are
simple, finite and loopless.

For the preliminaries, definition and notation of signed graph S, underlying graph 5%,
its negation #(S), signed isomorphism and its positive (negative) section, we refer to [5,6].

Some Basic Lemma and Theorems which are used in this paper are stated below as
a reference.

Lemma 1 ([7]). A signed graph in which every chordless cycle is positive is balanced.

Theorem 1 ([8]). A signed graph S is clusterable if—and only if—S does not contains a cycle with
exactly one negatively charged edge.

For balancing, clusterability, marking, canonical marking (C-marking), consistency,
C-consistency, S consistency, sign compatibility, line signed graph L(S), line signed root
graph, x-line signed graph, x-line signed root graph and the common-edge signed graph
Ce(S) of signed graph, S we refer to [6,9-16].

Addition Signed Cayley Graph ¥

A unitary addition Cayley graph G,, where n € I, I is set of positive integers, is
a graph in which the vertex set is a ring of integers modulo 7, Z,,. Any two vertices x; and
xp are adjacent in G, if—and only if—(x; + x) € U, where U, denotes the unit set.

Unitary addition Cayley graphs for n =2, 3, 4, 5, 6 and 7 are shown in Figure 1.

The study of unitary Cayley graphs began in order to gain some insight into the graph
representation problem (see [17]), and we can extend it to the signed graphs (see [18]).
Now, we introduce the definition of an addition signed Cayley graph ¥, as follows:

The addition signed Cayley graph £, = (Gy,,0") is a signed graph whose underlying
graph is a unitary addition Cayley graph G,, where n € I'" and for an edge ab of ¥,

if a,b € U,,
UA(ab) _ {+ if a e n
— otherwise.
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Figure 1. Examples of unitary addition Cayley graphs.

Examples of addition signed Cayley graph for n = 5, 6 and 10 can be seen in Figure 2a—c.
Throughout the paper, we consider n > 2.

Figure 2. Examples of addition signed Cayley graph .

2. Some Properties of I,
2.1. Balancing in ¥,
The balancing of some derived signed Cayley graphs has been studied in the literature

(see [19]). Here, we find out the property of balancing for the addition signed Cayley graph
¥/, for which the following well-known result can be used as a tool.

Theorem 2 ([20]). Gy, n > 2, is bipartite if—and only if—either n = 3 or n is even.
Lemma2. i€ U, = (n—i) € Uyandi ¢ U, = (n—1i) € Uy.
Lemma 3. Addition signed Cayley graph ¥y = (G, o), for n even, is an all-negative signed graph.

Proof. Given an addition signed Cayley graph ¥, = (G, 0”), where n is even.
Suppose the conclusion is false. Let there be a positive edge, say ij, in £. By the definition
of I, i, j € Uy. Since n is even, U, consists only of odd numbers. Thus, i and j are odd
numbers and their addition i + j is an even number. This shows thati+j ¢ U,, i.e., i and
j, are not adjacent in £. Thus, we have a contradiction. Hence, if 7 is even, then ¥, is
all-negative signed graph. O

Sampathkumar [21] gave the famous characterization to prove the balancing in a
signed graph, which is as follows:
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Theorem 3 (Marking Criterion [21]). A signed graph S = (G, o) is balanced if—and only
if—there exists a marking p of its vertices such that each edge uv in S satisfies o(uv) = p(u)u(v).

Lemma 4. For the addition signed Cayley graph %) = (G, 0”), £\ is a balanced signed graph,
if for any prime p, n = p*.

Proof. n = p®, where p is a prime number. Now, we assign a marking y to the vertices
of £)' in such a manner that if u € Uy, then u(u) = + and if u ¢ U,, then u(u) = —, V
u € V(X7). Suppose there is an edge, say ij, in X,.

Case I: Let 0" (ij) = +. Then, i,j € U, and according to the marking y(i) = u(j) = +.
Thus, o (if) = p(D)p(j) = +

Case II: Let 0\ (if) = —. Then, there are three possibilities:
(a) i€Uy,jé U,
(b) i¢ Uy, je€ Uy

(¢) 1,j¢ Uy
Now, for (a) and (b), by marking y, we get i(j) = — and u(i) = + or vice versa.
Therefore, 0\ (ij) = u(i)u(j) = —. Now, if i,j ¢ U,. Then, i and j are both multiples

of p, and then i + j = kp, where k is some positive integer and i +j ¢ U,. So ij ¢ E(X}).
Thus, condition (c) is not possible. So in every condition we get 0/ (ij) = u(i)u(j). Since ij
is an arbitrary edge, using Theorem 3, ¥} is balanced. [

Theorem 4. The addition signed Cayley graph £, is balanced if—and only if—either n is even
or if n has exactly one prime factor, then n is odd.

Proof. Necessity: First, suppose Y, is balanced. Now, let n = p{'p32 ... pi; p1, P2, - -, Pm
being distinct primes, p1 #2,p1 < p2 < ... < pu.

In the unitary addition Cayley graph G, p1 +1 # kyp; fori =1,2,...,m and k; are
some positive integers i.e., p; +1 € Uy, so p; is adjacent with one. Now, we claim that p;
and p, are adjacent in G,,. On the contrary, suppose p;p, is not an edge in G;,. Then, p; +
p2 & Uy. Thus, p1 + p2 = kop; for some i = 1,2,...,m and k; are some positive integers.
Let p; + p2 be a multiple of p;.

p1+p2=ap;
p2 = ap1 —p1
= (a—1)p

for the positive integer «, a contradiction. With the same argument, we can show that
p1 + pz2 is not a multiple of po. Now, let p; + po = ap;, fori = 3,4,...,m. As we know,
the addition of two prime factors is always even; p; + ps is even. So, « is even and is
at least 2. However, as p; < p2 < p;, p1 + p2 is always less than any multiple of p;
fori =3,4,...,m. Thus, p; + p2 € U, and p;p; is an edge in G,,. Next, if p; is adjacent to 1
in G, we get a cycle

C=(p1,p2,1, 1)

in ¥/. Clearly, p; and p, are not in Uy, then by definition of £/, C is a negative cycle.
Thus, we have a negative cycle in ¥, implying that ¥/ is not balanced. Now, suppose
p2+1 & E(Gy), since pp+1 & Uy,. Then, pp+1 = cp;; i = 1,2,...,m, c are positive
integers. Clearly,

p2+1=ap @

« is a positive integer.

Since pp ¢ Uy, according to Lemma 2, n — py ¢ U,. Next, we claim that n — py is
adjacenttolorn —py+1=n—(pa —1) € Uy,. If pp — 1 € Uy, then according to Lemma 2,
n—py+1=n—(pp—1) € Uy,. Suppose p» —1 ¢ Uy,. Then, pp —1 = Bp;;i=1,2,...,m,
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B are positive integers. Let pp —1 = Bp;. However, from Equation (1), p» = ap; — 1.

This implies
p2—1=pm
ap1—1—-1=pBp
ap1 —2 = pp1
apr —pp1 =2
(a—B)p1 =2

This is not possible, as p; is at least 3. Thus, p — 1 is not a multiple of any of the p;s,
whence p, —1 € U,. Hence, n — py +1 = n— (pp — 1) € Uy, whence n — p; is adjacent
tolin G,. Now, n —py+p1 = n— (p2 — p1). Since p1 < p2 < -+ Pm, P2 — P1 # kpi;
i =2,3,...m., kis a positive integer. Additionally, p» — p; is not a multiple of p;. This
shows that p, — p; € U, and by Lemma 2, n — (p — p1) € U,. This shows that n — p; is
adjacent to p; in £,. Thus, we get a cycle

C'=(p,n—p21pm)

in ¥,,. Clearly, p; and n — p, do not belong to U, and 1 € U,,. Then, by definition X/}, we
have a cycle C’ with three negative edges. Thus, a contradiction. So, by contraposition,
necessity is true.

Sufficiency: Let n be even. Then, according to Lemma 3, X/} is an all-negative signed
graph. Additionally, according to Theorem 2, G, is a bipartite graph. Hence, ¥}, by
Lemma 3 and Theorem 2, is balanced.

Now, let 7 be odd, with exactly one prime factor. Then, according to Lemma 4, ¥ is
balanced, hence the theorem. [

2.2. Clusterability in £,
Theorem 5. The addition signed Cayley graph ¥y = (G, o) is clusterable.

Proof. Given an addition signed Cayley graph £, = (Gy,0"). Suppose v € V(Z}).
Define V* C V(%), such that V* = {u; : u; € V(X)) and 0" (vu;) = +}. By the definition
of ¥/, clearly u; and v are in U,,.

If, for i and j, (i # f), u; and u; are adjacent, then U/\(uiuj) = +. Thus, U, C V*. Since
|U,| = ¢(n), n — ¢(n) = k (say) vertices are not in U,. Thus, only negative edges are
incident on these k vertices. Put all these vertices in the k partition Vi, V5, ..., V4, such that
each partition contains exactly only one vertex. The clearly induced subgraph < V* > is
all positive. Additionally, no positive edge joins the vertex of V* with the vertex of any
of V;, fori =1,2,...,k, and there is no edge xy, such that 0\ (xy) = — and x,y € V*. Thus,
there exists a partition of the V(X), such that every positive edge has end vertices within
the same subset and every negative edge has end vertices in a different subset. Hence,
the proof. O

2.3. Sign-Compatibility in L.}

Theorem 6 ([22]). A signed graph S is sign compatible if—and only if—S does not contain
a sub signed graph isomorphic to either of the two signed graphs. Sy formed by taking the path
Py = (x,u,v,y) with both edges xu and vy negative and edge uv positive, and S, formed by taking
Sq and identifying the vertices x and y (Figure 3).
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Figure 3. Two forbidden sub signed graphs for a sign-compatible signed graph [13].

Theorem 7. Addition signed Cayley graph X)) is sign compatible if—and only if—n is 3 or even.

Proof. Let addition signed Cayley graph X/ be sign compatible. If possible, suppose
the conclusion is not true. Let n be odd but not 3. Now, 01 € E(X}). As,n—2+1 =
n—1¢€ Uy, 1(n—2) € E(X}). Additionally, n —2+0 = n —2 € U,. Thus, we have
a triangle (0,1,n — 2,0) with one positive edge 1(n — 2) and two negative edges 01 and
(n —2)0, which again contradict Theorem 6. Hence, the condition is necessary.

Next, let n be even. Thus, according to Lemma 3, ¥/, which is all-negative, is trivially

sign compatible. If n = 3, then £/ is P3, which is trivially sign compatible. [

Acharya and Sinha [23] showed that every line signed graph is sign compatible. Next,
we discuss the value of n for which ¥, is a line signed graph.

Theorem 8. G, is a line graph if—and only if—n is equal to 2 or 3 or 4 or 6.

Proof. Necessity: Let G, be a line graph. Meanwhile, n is not equal to 2, 3, 4 and 6.

Case I: n1 is prime. It is clear that n > 5. Here, n is prime, so by the definition of U,,
there are numbers from 1 to (n — 1) in Uj,. 0 is connected to every vertex of G,,. The other
vertex, i # 0, in G, is not connected to only (n — i) by definition. For any i,j € V(Gy);
i # 0, j # 0 there is an induced subgraph in G, (see Figure 4).

n-i

i
Figure 4. A forbidden subgraph for a line graph in G;.

Thus, G, contains forbidden subgraph for a line graph. Thus, G, is not a line graph.
Case II: 7 is not prime. 1 is connected to 0 in G,. Next, 1 is connected to p1,as p; +1 €
U, where p; is the smallest factor of n. Let ap; = n, for a positive integer a. Now,

1+ (a—1)p1=1+ap; —p1
=l+n—p
=n—(p—1).



Mathematics 2022, 10, 3492

60f11

Since p; —1 € Uy, by Lemma 2, n — (p; — 1) € Uy. Thus, 1 and (a — 1)p; are adjacent
in G,. Additionally, 0 is not adjacent to p; and (a — 1) p;, because their sum is a multiple
of py. In the same way, p; and (2 — 1)p; are not connected in G, because their sum is
a multiple of p;. So, we have an induced subgraph in G, (see Figure 5). Thus, there is
a forbidden subgraph Kj 3 of a line graph. Additionally, G, is not a line graph.

Sufficiency: Letn = 2orn =3 orn =4orn = 6. Then, G, = L(P;), G3 = L(Py),
Gy = L(C4) and G = L(Cs) (see Figure 6). Hence, the result. [

0

(aD)ps Pe

Figure 5. A forbidden subgraph for a line graph in G;.

0 0 1 0 1
0 1
*————
5 4
1 2 3 2
2 3
G; G G4 Gs

Figure 6. Showing G;, G3, G4 and Gg.

Theorem 9. X, is a line signed graph if—and only if—n =2 orn =3 orn =4 orn = 6.

Proof. Necessity: Let, if possible, n be unequal to 2, 3, 4 and 6. Theorem 8 shows that
Gn 2 L(G), for any graph G. Thus, a contradiction and the condition are necessary.

Sufficiency: Now, supposen = 2orn = 3orn = 4 or n = 6. Line signed graphs
of an addition signed Cayley graph, for these values of n, are displayed in Figure 7, hence
the sufficiency. O

0 0 1 0 1
-------- ) o--—------a
0 1 RARN |’- : / AN
e o // \\ : ] // N
Vs N 1 1
’ A 1 1 5 ‘ » 4
, \
! > b o N
-------- \ /
3 2 N /
*-——--——- o
2 3
o e
| Seininieiii ? /s AN
1 H ’ \
1 1 /s N
! 1
¢---8-—--0 &--0--0--9 ! i € »
1 d AN d
1 i \ /
&--om- d AN ,/
*-——--——- o

Figure 7. Showing ¥/, 2, £ and ¥ and its line signed root graphs.

Remark 1. X is a x-line signed graph if—and only if—n =2 orn =3 orn =4 o0rn = 6.
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Proof. Let X/ be a x —line signed graph. We know that the underlying structure for line
signed graphs and X —line signed graphs is the same. Thus, the condition comes from
Theorem 8.

Next, let n € {2,3,4,6}. ), ¥, ¥} and ¥ and its x —line signed root graphs are
displayed in Figure 8. From Theorem 4, it is clear that for these values of 7, an addition signed
Cayley graph is balanced. Additionally, L (S) of any signed graph is always balanced, and its
underlying graph is a line graph (see [24]). This result comes from Theorems 4 and 8. [

0 0 1 0 1
r'Y ---=-=--- 4 -—-—----- e
0 7N\ 1 U \
1 //’ AN " i / AN
- () / \\\ : i /// \\\. A
’ \ 1 L
o ‘e ' i . K
/
1 2 b ® AN /
3 2 \ /
*-—--—-- )
2 3
r—
——————— ’ \
’ \
’ \
, \
’ \

e )

Figure 8. Showing ¥4, ¥4, £} and X/ and its x —line signed root graphs.

2.4. C-Consistency of ¥,
Lemma 5. For any prime p, p # 2 and n = p*, the d~ (2) and d~ (4) in £} is odd.

Proof. Given a X} = (G, 0"), where n = p* and p is an odd prime. Since # is odd; 2,
4 € Uy. Itis obvious that d~(2) and d~ (4) in £/} appear only when 2 and 4 are adjacent
to kp, where k is some positive integer. Now, (2 +4) + cp # kp; positive integers ¢ and
k. Additionally, 2 and 4 are connected to all the multiples of p, which are p*~!. Therefore
d=(2) (d=(4)) = p*~ ! is odd, hence the lemma. [

Theorem 10 ([25]). Let a, b and m be integers with m positive. The linear congruence ax = b
(mod m) is soluble if and only if (a, m)|b. If x¢ is a solution, there are exactly (a, m) incongruent
solutions given by {xo + tm/(a,m)}, wheret =0,1,...,(a,m) — 1.

Corollary 1. If (a,m) = 1 then the congruence ax = b (mod m) has exactly one incongruent so-
lution.

Lemma 6. In addition, signed Cayley graph ¥} = (Gy,0"), if n = p{'p52, where py and p; are
two distinct odd primes, then d— (2)(d~(4)) = odd.

Proof. Given that n = p{'p5? in £}, p1 and p; are distinct odd primes. As 7 is odd, 2 € U,,.
Now, the negative degree of 2 of &/} appears only when 2 is adjacent with the multiples
of p; and p,. Let A; = {cp;; ¢ certain positive integers,i = 1,2}. Then,

-1
|Ar| = p7' Py
ay ﬂz*l

|Az| = pi'py
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and
|A1N Ag| = p T pp !

Thus, using the inclusion—exclusion principle

[ll—l a—1

-1 _
AU Ao = p{ P+ pyt s =
Since cp1(p2) +2 = p2(p1), for certain positive integers ¢ and so, cp1(p2)2 ¢ E(X))
for those c. Thus, according to Theorem 10, we have
pix =—2 (mod py) ()
and
p2y = -2 (mod p1) @)

Due to Corollary 1, we have an incongruent solution xq (say), which is unique for
Equation (2). So, for Equation (2) where p1x + 2 < n, we have:

X0 + 0(p2), X0 + 1(]92), X0 + 2(p2), ..., X0+ (quilpgz_l — 1)(p2) (4)
Thus, Equation (2) has p{! - pngl total solutions. Similarly, the total solutions of Equa-

tion (3) are p1 ™' p#2 !, Hence,

dm() =pp R P e e
=p e (it pa - 3)
p1 and p, are odd primes, which implies d~ (2) is odd. The proof for d~(4) is analo-
gous. [J

Lemma?7. [nX) = (Gy,0"), if n = 315%, then d~ (7) = odd.
Proof. This is easy to prove using the same logic as mentioned in Lemma 6. [

Theorem 11. Let n have at most two distinct odd prime factors, then ¥, is C consistent if—and
only if—n is even or 3.

Proof. Necessity: Let n have, at most, two distinct prime factors and let &/ be C consistent.
If possible, let n be odd but not 3.

Case (@): Let n =1 (mod 3) or n =2 (mod 3). As nis odd, 2 € U,. Clearly, 0 is
adjacent with 1,2, n — 1in X). Since,n — 1+ 2 =1 € Uy, n — 1 and 2 are connected in X,
Since, 3 is not a factor of n, 3 € U,. Now, 2+ 1 = 3 € U,. Hence, 2 and 1 are adjacent
in ¥/'. Now, the cycles Z; = (0,1,2,0), Z, = (0,2,n — 1,0) have a common chord with end
vertices 0 and 2. By Lemma 6,

Ho(2) = —
Since the vertex 0 ¢ Uy, d(0) = d~(0) = ¢(n) = even. It follows,
]10(0) = +.

Now, if either Z; or Z, isnot a C-consistent cycle, a contradiction. Thus, Z; and
Z, both cycle are C-consistent. The common chord with end vertices zero and two are
oppositely marked, in contradiction with (Theorem 2, [26]).
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Case (b): Let n = 0 (mod 3). Then, either n = 3% or n = 3% x p,?. First, suppose
p2 # 5. Since, n is odd, 2,4 € U,. According to Lemma 2, n — 2 € U,,. Clearly, 0 is adjacent
tol,4and n—2in X).Since, n —2+4 =n+2 =2 € Uy, n — 2 is adjacent to 4 in X,.
Now, for cycle Z; = (0,1,4,0), Z, = (0,4,n — 2,0); Z1, Z, have a common chord with end
vertices 0 and 4. According to Lemma 6,

po(4) = —

Since the vertex 0 ¢ Uy, d(0) = d~(0) = ¢(n) = even. It follows,
uo(0) = +.

Now, if either Z; or Z; is a cycle which is not C consistent, a contradiction. There-
fore, Z1 and Z; are the cycles which are C-consistent. However, there is a chord whose
end vertices 0 and 4 have opposite marking. Here again, we find a contradiction to the
(Theorem 2, [26]).

Now, suppose p, = 5. In this case, we consider two cycles Z; = (0,1,7,0) and
Z, = (0,7,10,13,0) in . For cycles Z1, Z, have a common chord with end vertices 0 and
7, according to Lemma 7,

Since the vertex 0 ¢ U,, d(0) = d~(0) = ¢(n) = even. It follows that

Uy (0) = +.

Now, if either Z; or Z; is a cycle which is not C consistent, this is a contradiction.
Therefore, Z1 and Z, are the cycles which are C consistent. However, the end vertices 0
and 7 have the opposite marking. Here, we have a contradiction to the (Theorem 2, [26]).
Hence, n is either even or n = 3.

Sufficiency: Let n be even. According to Lemma 3, £/, is all negative. Additionally,
according to Theorem 13, d(v) = d~ (v) =evenV v € V(X}). So, according to canonical
marking js(v) = + Vo € V(Z}). So when n is even, ¥, is trivially C consistent. If n = 3,
then Gs is a path, which is trivially C- consistent, hence the result. [

3. Balance in Certain Derived Signed Graphs of £}

Theorem 12. (X)) is balanced if—and only if—n is 3 or even.

Proof. Let 77(X}) be balanced. If possible, 1 is odd but not 3, and p is the smallest prime
factor of n. Sincen —2+1=n—1 € U,, n—2 and 1 are connected in £,). p+1 € U,
implies that p and 1 are connected in ¥'. Additionally, as nis odd, 2 € U, and n — 2 € U,,.
according to Lemma 2. Since, n —2+p=n+(p—2) =p—2 € Uy, (n—2)p € E(X}).
Now, for the cycle Z = (1, p,n —2,1) in ¥}, we have a one positive edge 1(n — 2) and two
negative edges 1p and p(n — 2) in Z. However, in (X}, thereis a cycle Z’' = (1,p,n —2,1)
with one negative edge 1(n — 2) and two positive edges 1p and p(n — 2). Thus, we have
a negative cycle that contradicts the given condition. Therefore, the only possibility is that
nis 3 or even.

Conversely, let n be even. ¥}, according to Lemma 3 is an all-negative signed graph.
So 77(£}) is balanced and is all positive. 77(2}) for n = 3 is a tree which is trivially balanced,
hence the converse. [

We present the following theorem for the degree of the vertices of G, (see [20]).
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Theorem 13 ([20]). Let m be any vertex of the unitary addition Cayley graph Gy. Then,

$p(n) if n is even,
d(m) =14 ¢(n) if n isoddand (m,n) #1,
p(n)—1 if n isoddand (m,n) = 1.

Additionally, for a signed graph S, the balance property of L(S) is discussed in ([27],
Theorem 4).

Theorem 14. For an additional signed Cayley graph ¥y = (Gp, o), its line signed graph L(¥Z})
is balanced if—and only if—n € {2,3,4,6}.

Proof. Let L(X))) be balanced and n # 2,3,4 and 6. Now, according to Theorem 13, d(0) =
d~(0) = ¢(n) = even, which implies d(0) = d~(0) = ¢(n) > 4. This shows that condition ii
(of Theorem 4, [27]) is not satisfied for =/. This is a contradiction. Hence, n € {2,3,4,6}.
The converse part is easy to prove. [

For a signed graph S, the balance property of Cg(S) is discussed in ([9], Theorem 13).

Theorem 15. For an additional signed Cayley graph £} = (Gy,0"), its common-edge signed
graph Cg (X)) is balanced if—and only if—n € {3,4,6}.

Proof. Let n ¢ {3,4,6}. It is clear that 0 ¢ U,. Now, by Theorem 13, d(0) = d~(0) =
¢(n) = even, which implies d(0) = d~(0) = ¢(n) > 4. This shows that condition ii
(of Theorem 13, [9]) is not satisfied for &/, Thus, Cg (X)) is not balanced, which is a contradiction.
Hence, n € {3,4,6}. The converse part is easy to prove. [
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