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Abstract: Recently, research on the methods that use images captured during day and night times has
been actively conducted in the field of person re-identification (ReID). In particular, ReID has been
increasingly performed using infrared (IR) images captured at night and red-green-blue (RGB) images,
in addition to ReID, which only uses RGB images captured during the daytime. However, insufficient
research has been conducted on ReID that only uses IR images because their color and texture
information cannot be identified easily. This study thus proposes an original and attention-guided
DenseNet-based ensemble network (OADE-Net)—a ReID model that can recognize pedestrians using
only IR images captured during the day and night times. The OADE-Net consists of the original and
attention-guided DenseNets and a shallow convolutional neural network for the ensemble network
(SCE-Net), which is a model used for combining the two models. Owing to the lack of existing
open datasets that only consist of IR images, the experiments are conducted by creating a new
dataset that only consists of IR images retrieved from two open databases (DBPerson-Recog-DB1 and
SYSU-MM01). The experimental results of the OADE-Net showed that the achieved ReID accuracy
of the DBPerson-Recog-DB1 is 79.71% in rank 1, while the mean average precision (mAP) is 78.17%.
Furthermore, an accuracy of 57.30% is achieved in rank 1 in the SYSU-MM01 case, whereas the
accuracy of the mAP was 41.50%. Furthermore, the accuracy of the OADE-Net in both datasets is
higher than that of the existing score-level fusion and state-of-the-art methods.

Keywords: person re-identification; infrared image; original and attention-guided DenseNet-based
ensemble network; shallow convolutional neural network; ensemble network

MSC: 68T07; 68U10

1. Introduction

In recent years, research on object detection and identification [1] has been actively
conducted in various fields owing to advancements in pattern recognition technology. As
one of the object identification fields, person re-identification (ReID) is a technology used
to identify whether a pedestrian captured by a camera is the same person as a pedestrian
captured by a camera at a different location [2,3]. Currently, person ReID is extensively used
in security applications, particularly for tracking pedestrians based on images captured
with a surveillance camera (CCTV) [4,5]. Visible-light (visible) and infrared light (IR) images
are typically used for person ReID, even though most studies on ReID have traditionally
used visible images captured during the daytime. However, visible images are not easily
captured during nighttime or low illuminance conditions; thus, recent research has focused
on person ReID where visible images and IR images are combined [4,5]. The person
ReID performance in low-illuminance or nighttime environments was improved, but the
necessity of using visible images still remained. Specifically, costs increase because both the
visible and IR cameras are used. In addition, an issue still arises that objects are difficult to
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be discriminated in visible images at night. To overcome this problem, the utilization of
IR images for ReID can be considered, but there is very little previous research conducted
until [6]. However, it has the disadvantage of not considering various problems that occur
in IR images captured during the daytime, e.g., the difficulty of distinguishing an object
owing to similar background temperatures and the object, and the consequent accuracy of
ReID is low. Accordingly, this study proposes an IR image-based ReID method considering
the problems, and the advantage of our method is that the proposed method shows the
high accuracies of the person ReID for both daytime and night IR images.

In general, there are other problems associated with the cases wherein only IR images
are used compared with the use of visible images. In effect, there is no color information
in IR images. Considering the color information of clothing is not available, only shape
information can be used. Furthermore, there is much noise in input images and the
resolution of IR images is usually low, making it difficult to re-identify a person in IR
images. In addition, ReID performance is drastically degraded when the illuminance
values of the background and person are similar, when the image is acquired from afar,
or when the appearances of different people are similar [6,7]. To resolve these issues, this
study proposes a ReID method based on an original and attention-guided DenseNet-based
ensemble network (OADE-Net). The study contributions are as follows:

- This study proposes the OADE-Net for IR image-based person ReID for solving person
ReID performance affected considerably by illuminance and environmental changes
of visible images;

- In the OADE-Net, DenseNet was combined with the attention-guided DenseNet,
including the convolutional block attention module (CBAM), in the form of an ensem-
ble network. A shallow convolutional neural network (CNN) for ensemble network
(SCE-Net) was newly proposed for combining the DenseNet and attention-guided
DenseNet;

- SCE-Net uses a multiple channel input consisting of feature and score maps obtained
from DenseNet and attention-guided DenseNet, achieving higher person ReID accura-
cies compared to those obtained using conventional score-level fusion methods;

- The proposed models are disclosed on the GitHub site [8] for a fair performance
evaluation by other researchers.

The remaining parts of this paper are organized as follows. Section 2 introduces
related studies. Section 3 explains the proposed method in detail. Section 4 presents the
experimental results and relevant analyses, and Section 5 outlines the conclusions.

2. Related Works

Previous studies on person ReID methods can be classified into the following three
categories: only using a visible camera, using both visible and IR cameras, and only using
IR cameras. Related explanations are provided in the following subsections.

2.1. Person ReID Using Visible Camera

Previous studies on person ReID using visible camera images typically focused on the
recognition problems related to various clothes colors, posture, illuminance, and image
quality. Bai et al. [9] proposed a deep-person method that performs person ReID by
applying a long short-term memory (LSTM) method to the head, body, and legs of a
pedestrian. These researchers claimed that their proposed method of processing partial
information about a person’s body parts is more effective than processing the entire area
of a person. Lin et al. [10] proposed an attribute-person recognition (APR) network. This
network performs person ReID by using identity labels and attribute annotation. Zheng
et al. [11] focused on the excessive background and missing part errors that occur in person
ReID. These researchers developed a pedestrian alignment network (PAN) that trains
models to ensure detected images are properly aligned. Zheng et al. [12] proposed pose-
invariant embedding (PIE) to solve the misalignment problem of pedestrian images found
in datasets. A PoseBox fusion (PBF) CNN was also proposed to reduce pose estimation
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errors. Song et al. [13] researched person ReID performed in an unsupervised domain.
These researchers applied the conventional method and adaptive classification principles
based on unsupervised domain to ReID tasks and proposed a scheme for performing self-
training. Wu et al. [14] examined video-based person ReID and focused on how previous
methods independently performed two steps of discriminative feature learning and metric
learning, thus failing to fully utilize temporal and spatial information; a Siamese-attention
architecture was proposed as a solution. Zheng et al. [15] examined methods to combine
verification and identification models. These researchers proposed a Siamese network
capable of simultaneously computing identification and verification losses to improve
person ReID performance. All these studies used only visible cameras; thus, the person
ReID performance was influenced by surrounding illuminance and was especially difficult
to apply in night environments because of the absence of lighting. To identify solutions
to this problem, the following subsection explains the research on methods wherein both
visible and IR cameras are used simultaneously.

2.2. Person ReID Using Visible and IR Cameras

Wu et al. [7] proposed a cross-modality ReID that also used IR camera images to
solve the problem of single-modality ReID, where only visible cameras were used. In
addition, the Sun Yat-sen University multiple modality Re-ID (SYSU-MM01) dataset [16],
which includes IR images, was constructed to perform person ReID, and the possibility
of improving performance by zero-padding was proven. Kang et al. [17,18] indicated
problems where person ReID using visible cameras may become unsolvable depending
on lighting conditions and showed that computational complexity increases when the
images of two or more channels are input for person ReID. Multimodal, camera-based
person ReID was researched to overcome these drawbacks; the adaptive selection of
reconstructed input by generator or interpolation (AS-RIG) method was proposed to
lower computational complexity through adaptive image selection, solving the problem of
increased computational complexity. Liu et al. [19] emphasized ways to decrease the
accuracy of person ReID when images captured with a visible camera at night were
used. Accordingly, skip-connection for the mid-level features of two CNNs was used,
and enhancing the discriminative feature learning (EDFL) that uses dual-modality triplet
loss was proposed. Wang et al. [20] proposed an alignment generative adversarial network
(AlignGAN), comprising a pixel generator, feature generator, and joint discriminator, for
person ReID. This network can simultaneously perform pixel and feature alignments. The
methods that use both visible and IR cameras can be used during the day and night times,
but computational complexity and processing costs increase as input images from the two
cameras need to be processed. Therefore, person ReID methods using only IR cameras
have been researched. Relevant details are provided in the following subsection.

2.3. Person ReID Using IR Camera
2.3.1. Method Using Night IR Image

Zhang et al. [6] pointed out that previous studies on person ReID were mostly based
on visible images, including studies that combined visible and IR images, but only a few
used only IR images. These researchers also focused on the lack of proper datasets for
the studies that only used IR images, and thus built KneightReID—the dataset for person
ReID. KneightReID is a dataset consisting of IR images captured at night. The problems
associated with this dataset, including the resolution of IR images, were identified. A
preprocessing method was proposed to restore the resolution during model training.

2.3.2. Method Using Daytime and Night IR Images

A previous study [6] proposed a person ReID method for IR images captured at night.
According to our research, no prior study examined person ReID approaches using IR
images captured during the daytime and night hours. To solve these problems, this study
proposes the OADE-Net model for recognizing pedestrians using night IR images.



Mathematics 2022, 10, 3503 4 of 26

Table 1 summarizes the advantages and disadvantages of the proposed and existing
person ReID methods.

Table 1. Comparisons of previous and proposed methods on person re-identification (ReID).

Category Method Advantages Disadvantages

Use of visible cameras

Deep-person [9]
Used partial information of a person’s body
parts to outperform the method that used
the entire area of a person

When only visible
images are used, ReID
performance is
degraded due to
weather, changes in
lighting, and night
environment

APR [10] Improved person ReID by using identity
labels and attribute annotation

PAN [11] Used a network that aligned detected
images that is advantageous for training

PIE [12]
Solved the misalignment problem of
pedestrian images in the dataset and
reduced pose estimation errors

Unsupervised domain
adaptive
re-identification [13]

Applied unsupervised domain adaptive
classification theories to ReID tasks and
performed self-training

Siamese attention
architecture [14]

Proposed a Siamese attention architecture
that sufficiently utilized temporal and
spatial information to improve performance

Siamese network using
identification and
verification losses [15]

Improved person ReID performance based
on a Siamese network capable of
simultaneously computing identification
and verification losses

Use of visible and infrared
(IR) cameras

Inter-channel pair
between the visible
light and thermal
images (IPVT-1) and
multi-scale Retinex
(MSR) [17]

Lowered computational complexity of ReID
by combining various input images

Computational
complexity increases
due to processing
images input by two
cameras, and the cost
also increases from the
use of two cameras

Zero padding [7] Proved that performance can be improved
through zero-padding

AS-RIG [18]
Improved ReID performance through
adaptive selection of reconstructed inputs
by generator or interpolation methods

EDFL [19]

Performed skip-connection for mid-level
features of two convolutional neural
networks (CNNs) and improved
performance by using dual-modality
triplet loss

AlignGAN [20] Enhanced performance by simultaneously
performing pixel and feature alignment

Use of IR
cameras

Uses night IR
images

Peak signal-to-noise
ratio (PSNR) loss-based
method [6]

Pointed out the problem in the resolution of
IR images and proposed a pre-processing
method for restoring the resolution during
model training

Did not consider
various problems that
occur in IR images
captured daytime
(difficult to distinguish
an object owing to
similar background
temperatures and the
object)

Uses daytime
and night IR
images

OADE-Net (Proposed
method)

Proposed the person ReID method for both
daytime and night IR images based on the
OADE-Net

Long training time due
to the use of three
CNNs
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3. Proposed Method

The overall procedure of the proposed method is illustrated in Figure 1. As proposed
by Kang et al. [17], starting from the input IR image, image composition is performed based
on the inter-channel pair between the visible-light and thermal images (IPVT-1), which
combines two images of enrolled and query images in two channels; an intra-channel pair
between the visible-light and thermal images (IPVT-2), which pastes two images of enrolled
and query images in the horizontal way of one channel; inter-channel and intra-channel
pairs between the visible-light and thermal images (IIPVT), which combines IPVT-1 and
IPVT-2 in three channels as shown in Figure 2. Subsequently, a composited image is used
as an input for DenseNet-161 (original DenseNet) and the attention-guided DenseNet; the
same or different persons were determined based on the output of SCE-Net, which used
the multiple-channel input extracted accordingly.

Figure 1. Overall procedure of proposed method. (OADE-Net: original and attention-guided
DenseNet-based ensemble network; SCE-Net: shallow convolutional neural network for ensemble
network).

3.1. Image Composition

The IPVT-1, IPVT-2, and IIPVT—performed for preprocessing—are the methods used
for combining images given as an input. When this preprocessing is applied, a network can
be designed with one-stream instead of two-stream architectures that require two images
as an input. IPVT-1 is an inter-channel combination wherein two images are concatenated
in the channel direction. IPVT-2 is an intra-channel combination wherein two images are
concatenated in one channel at half of their original size. IIPVT is created by combining
IPVT-1 and IPVT-2. Accordingly, IPVT-1 and IPVT-2 are concatenated in the channel
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direction to create a three-channel image [17]. Therefore, a model is trained with features to
distinguish whether the recognized person is the same person (or not) when the combined
images are input into the one-stream architecture.

Figure 2. Architecture of OADE-Net. (IPVT-1: the inter-channel pair between the visible-light and
thermal images; IPVT-2: intra-channel pair between the visible-light and thermal images; IIPVT:
inter-channel and intra-channel pairs between the visible-light and thermal images).

3.2. OADE-Net

The OADE-Net proposed in this study is a network where the original DenseNet
and the attention-guided DenseNet are combined by SCE-Net. SCE-Net uses a multiple
channel input consisting of feature and score maps obtained from DenseNet and attention-
guided DenseNet as shown in Figure 2. Fundamentally, IR images have less color and
texture information than visible images. They are thus associated with limitations in
terms of person feature extraction from images. Hence, accurate person ReID cannot be
expected if only the original DenseNet is used. This study proposed a method to improve
performance by combining the attention-guided DenseNet added with CBAM and the
original DenseNet as an ensemble. DenseNet-161 was used as the base model of the
original DenseNet and the attention-guided DenseNet, and the combined image (IPVT-1,
IPVT-2, IIPVT) of two pedestrian images (probe and query images) was used as an input
of the network. Furthermore, the model was trained to output a score indicating whether
the pedestrian in the images is the same or a different person. The architecture of the
OADE-Net is illustrated in Figure 2.

DenseNet connects the feature map of a previous layer with the feature map of a
subsequent layer. When the layers are connected, concatenation is applied instead of
simple addition. Specifically, there is a condition in which the size of feature maps must be
identical. Each layer comprises a few channels because the number of channels increases
as feature maps are connected [21]. When the DenseNet architecture is used, the initial
value is directly delivered to the last layer, which reduces the number of reused features,
the number of parameters, and the computational workload. Another characteristic is that
a dense block is used for pooling computation. A dense block consists of multiple layers,
and pooling computation is performed between dense blocks. Pooling computation is
performed in the order of batch normalization [22], 1 × 1 convolution, and 2 × 2 average
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pooling, collectively referred to as a transition layer. For the experiment, the growth rate, a
hyperparameter of the original DenseNet, was set to 46. Fully connected (FC) layers, which
previously had 1000 outputs, were adjusted to have two outputs and were then fine-tuned
with the training data of this study. The architecture of the original DenseNet is shown in
Figure 3, while the structure is presented in Table A1 (Appendix A).

Figure 3. Architecture of original DenseNet. (DenseNet-161).

3.3. Attention-Guided DenseNet

Conventional attention schemes have been mostly applied in the fields where image
and text are jointly used [23]. Therefore, attention techniques have been receiving relatively
less attention in CNNs where single images are used. Vaswani et al. [24] proposed a self-
attention method that enables attention to be applied with the intention of focusing on
something, ultimately leading to the use of attention techniques in image classification and
image detection applications. Existing attention models can improve performances but
entail a significant computational workload. Woo et al. [25] proposed CBAM as a solution.
The characteristics of CBAM include the fact that channel and spatial attention modules are
sequentially connected, max pooling and average pooling are used together in the spatial
attention module, and the computational workload is reduced compared with conventional
attention models. The attention-guided DenseNet proposed in this study has a form such
that the original DenseNet and CBAM are combined. The attention module was connected
at the bottom of a transition block; the growth rate, which is a hyperparameter, was set to
46. Furthermore, the FC layer, which previously comprised 1000 outputs, was adjusted to
have two outputs as in the original DenseNet and was then fine-tuned with the training
data of this study. The architecture of the attention-guided DenseNet is shown in Figure 4,
while the structure is presented in Table A2 (Appendix A).

Equations (1) and (2) represent CBAM [25]. If the input feature map is F ∈ RC×H×W ,
the channel attention map is a one-dimensional channel Mc ∈ RC×1×1, while the spatial
attention map is a two-dimensional channel Ms ∈ R1×H×W . The overall attention process
is as follows:

F′ = Mc(F)⊗ F, (1)

F′′ = Ms
(

F′
)
⊗ F′, (2)

Herein, ⊗ denotes element-wise multiplication. The attention value is broadcast as
channel attention values are broadcast in a spatial dimension, and vice versa. F′ is the
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element-wise multiplication value between the output of the channel attention module
and F. In addition, F′′ is the element-wise multiplication value between the output of the
spatial attention module and F’. An overview of CBAM is shown in Figure 5.

Figure 4. Architecture of attention-guided DenseNet.

Figure 5. Overview of CBAM.

3.4. SCE-Net

This study proposes the SCE-Net for the ensemble of the original DenseNet and the
attention-guided DenseNet. The SCE-Net consists of the following two convolution layers:
one global average pooling layer and an FC layer. The network has a residual structure
where feature information of an input end is imported through a shortcut to be added with
the features that have passed through the convolution layer. Feature maps (extracted from
the ends of the original DenseNet and the attention-guided DenseNet), score maps (maps
for which the score of a model is reshaped with 7 × 7 × 1 metrics), and a feature map
(extracted from the spatial attention module of CBAM in 7 × 7 × 1) are concatenated to be
used as the SCE-Net input. The feature map extracted from the ends of the original and
the attention-guided DenseNet refers to a 7 × 7 × 2208 size feature map of Dense Block
4 before it passes through the global average pooling layer. Consequently, concatenating
a total of five feature maps, including the CBAM spatial attention feature map, reshape
score, and DenseNet block features, creates a composite 7 × 7 × 4419 feature map that is
used as an input. The features that have passed through the first convolution layer are
applied with batch normalization and a rectified linear unit (ReLU), while the features that
have passed through the second convolution layer are applied with batch normalization,
whereby the feature information of the data used as an input of the SCE-Net is imported
through a short-cut and added. Furthermore, the scores of the same or different persons
are expressed through softmax after passing through ReLU, and the global average pooling
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and FC layers. The architecture of the SCE-Net is shown in Figure 6, while the structure is
presented in Table A3 (Appendix A).

Figure 6. Architecture of ensemble network. (SCE-Net).

4. Experimental Results
4.1. Experimental Data and Setup

Although there are many open databases for the performance evaluation of person
ReID such as Market-1501 [26], DukeMTMC-reID [27], MSMT17 [28], and CHUK03 [2],
etc. all these databases include only visible light images and they do not have IR im-
ages. Therefore, they cannot be used for our experiments. There exist only two open
databases of IR images, such as DBPerson-Recog-DB1 [29] and SYSU-MM01 [16], and
we used these two databases for our experiments. DBPerson-Recog-DB1 contains visible
images and thermal images of 412 persons captured from different locations. SYSU-MM01
also contains visible images and thermal images of 491 persons captured from different
locations. DBPerson-Recog-DB1 contains 8240 images, including 4120 visible and 4120 ther-
mal images. SYSU-MM01 comprises 45,863 images, including 30,071 visible images and
15,792 IR images. Only the thermal images of the two databases were used in this study.
Two datasets were divided into training, validation, and testing sets to conduct the ex-
periments in two-fold cross-validation where the validation set was set to be 10% of the
training set. To evaluate the generality of the proposed model, data from the same person
were not included between training, validation, and testing sets based on open-world
configuration. The images in DBPerson-Recog-DB1 were captured from the front, side,
and back using a visible-light camera (Logitech C600 [30]) and a thermal camera (FLIR
Tau2 [31]) in an outdoor environment. Visible-light images in DBPerson-Recog-DB1 have
a size of 37 × 102 × 3 pixels on average, while thermal images have an average size of
42 × 112 × 3 pixels. The images in SYSU-MM01 were captured from the front, side, and
back views by using the Kinect V1 and IR cameras in an indoor environment. Visible-light
images in SYSU-MM01 have an average size of 112 × 284 × 3 pixels, while IR images have
an average size of 108 × 303 × 3 pixels. The sizes of the images used in the experiment
were set to 224 × 224 × 3 pixels based on bilinear interpolation and were used as the input
for pretrained and fine-tuned models. Figure 7 shows the examples of IR images of the
same or different persons in DBPerson-Recog-DB1 and SYSU-MM01.
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Figure 7. Experiment dataset examples. (a) DBPerson-Recog-DB1 thermal dataset and (b) Sun Yat-sen
University multiple modality Re-ID (SYSU-MM01) IR dataset. In (a,b), two pairs from the left show
the same persons, whereas the remaining two pairs present different persons. In each pair, left and
right images show the enrolled and input query images, respectively.

The similarities among images in DBPerson-Recog-DB1 are high as there are numerous
temporally continuous images. Hence, the images obtained with time intervals were
used in the experiment. The computer used for the experiment was equipped with an
Intel(R) Core(TM) i5-4690 central processing unit (CPU) @ 3.50 GHz, 16 GB random access
memory (RAM), and an NVIDIA GeForce GTX 1070 graphics card (with an 8 GB RAM and
1920 cores) [32]. Pytorch (version, 1.8.1) [33] was used for model implementation.

4.2. Training and Validation

In this study, the adaptive moment estimation (Adam) optimizer [34] was used for
CNN training. The advantage of the Adam optimizer is that the step size is not affected by
rescaling the gradient value and that stable training is possible regardless of the objective
function used, as the step size is bounded. Table 2 presents the parameters and input image
types used for training each model. A softmax function shown in Equation (3) [35] was
used as a function to represent the output score of each model, and a cross-entropy loss
shown in Equation (4) [36] was used as a training loss.

f (s)i =
esi

∑C
j esj

(3)

CE = −
C

∑
i

ti log( f (s)i) (4)

In the above equation, ti is the ground truth, while C is the number of classes. In
addition, si and sj are the ith and jth elements of the output for each class. In Equation (3), it
adopts the standard exponential function to each element si of the input vector s and normal-
izes them by dividing them by the sum of all these exponentials, which makes the sum of the
components of the output vector f (s) become 1. In Equation (4), if model training is success-
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ful, ti is almost similar to log( f (s)i) and the consequent ti log( f (s)i) becomes large value,
which causes the CE to be minimized.

Table 2. Training parameters and input image types for each model.

Type Original DenseNet Attention-Guided
DenseNet SCE-Net

Learning rate 10−3 10−3 10−5

Decay learning rate 0.1 every three epochs 0.1 every three epochs 0.1 every three epochs
Weight decay 10−4 10−4 10 −4

Batch size 16 16 16
Epoch 10 10 10

Input image type DBPerson-Recog-DB1 IIPVT IPVT1 -
SYSU-MM01 IPVT2 IPVT2 -

In DBPerson-Recog-DB1, the training of the original DenseNet and the attention-
guided DenseNet resulted in almost 100% accuracy, as shown in Figure 8, while the loss
converged to almost 0%. In SYSU-MM01, the training of the original DenseNet and the
attention-guided DenseNet resulted in an accuracy almost equal to 100%, as shown in
Figure 9, while the loss converged to almost 0%. In both DBPerson-Recog-DB1 and SYSU-
MM01, the training of the SCE-Net also resulted in 100% accuracy, as shown in Figure 10,
while the loss converged to almost 0%. The validation accuracy measured by DBPerson-
Recog-DB1 yielded values closer to 100% compared with the SYSU-MM01 dataset, with the
loss also converging to values close to 0%. The validation accuracy measured by the SYSU-
MM01 dataset showed that accuracy did not converge to 100%, but accuracy improved as
the number of epochs increased; the loss also did not converge to 0% but decreased as the
number of epochs increased. Thus, ReID difficulties between object images are fewer in the
DBPerson-Recog-DB1 case than in SYSU-MM01. The training loss and accuracy graphs
in Figures 8–10 imply that the proposed models are sufficiently trained by the training
data. Furthermore, the validation loss and accuracy graphs in Figures 8–10 imply that the
proposed models are not overfitted to the training data.

4.3. Testing of Proposed Method with DBPerson-Recog-DB1
4.3.1. Performance Metrics

We adopted Rank 1, Rank 10, Rank 20, and the mean average precision (mAP) for
accuracy evaluations. Rank N is used for measuring the correct matching accuracy for the
cases including true positive data from N matching candidates. The mAP means the mean
of the average precision scores for each input query [37]. The average precision method
shows an area size under the precision-recall graph that measures the performance of the
identification algorithm. Precision and recall are expressed by Equations (5) and (6) [38].
TP, FN, and FP denote the true positive (positive data is correctly classified as positive
one), false negative (positive data is incorrectly classified as negative one), and false
positive values (negative data is incorrectly classified as positive one), respectively. In our
experiments, we considered matching of the same class (genuine matching) as positive
data and that of different classes (imposter matching) as negative data. In addition, mAP is
expressed according to Equation (7).

Precision = TP/(TP + FP) (5)

Recall = TP/(TP + FN) (6)

mAP =
∑IQ

q=1 AveP(q)

IQ
(7)

In Equation (7), IQ shows the number of input queries, and AveP(q) denotes the
average precision scores for each input query.
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Figure 8. Training, validation loss, and accuracy graphs with DBPerson-Recog-DB1 dataset. (a,b) are
training and validation graphs of the original DenseNet for (a) fold 1 and (b) fold 2. (c) and (d) are
training and validation graphs of the attention-guided DenseNet for (c) fold 1 and (d) fold 2.

Figure 9. Cont.
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Figure 9. Training, validation loss, and accuracy graphs with SYSU-MM01 dataset. (a,b) are training
and validation graphs of the original DenseNet for (a) fold 1 and (b) fold 2. (c) and (d) are training
and validation graphs of the attention-guided DenseNet for (c) fold 1 and (d) fold 2.

Figure 10. Training, validation loss, and accuracy graphs of SCE-Net. (a,b) are training and validation
graphs of DBPerson-Recog-DB1 for (a) fold 1 and (b) fold 2. (c) and (d) are training and validation
graphs of the SYSU-MM01 dataset for (c) fold 1 and (d) fold 2.
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4.3.2. Ablation Studies

In the first experiment, the accuracy of various image compositions explained in
Section 3.1 was evaluated. As shown in Table 3, the original DenseNet yielded the best
performance in IIPVT, while the attention-guided DenseNet yielded the best performance
in IPVT1.

Table 3. Comparisons of ReID accuracies according to various input image compositions with
DBPerson-Recog-DB1 (unit: %).

Method Image Composition Rank 1 Rank 10 Rank 20 mAP

Original DenseNet
IPVT1 73.36 87.27 92.33 76.13
IPVT2 73.36 89.80 94.87 75.40
IIPVT 73.39 88.55 92.37 76.91

Attention-guided
DenseNet

IPVT1 72.14 91.12 96.18 75.73
IPVT2 72.11 87.33 94.90 67.63
IIPVT 67.05 87.30 96.15 70.15

Subsequently, comparisons of the ReID accuracies of the original DenseNet, attention-
guided DenseNet, and proposed OADE-Net were performed. As shown in Table 4, the
highest accuracy resulted when the original DenseNet, attention-guided DenseNet, and
SCE-Net were all used. To evaluate the performance of the SCE-Net in the subsequent
experiment, the accuracies of weighted sum (WS), weighted product (WP) [39], and support
vector machine (SVM) were compared [40]. SVM, a model defining the decision boundary
for classification, aims to identify the decision boundary that maximizes the margin. When
the output score of the original DenseNet was assumed to be so, the attention-guided
DenseNet’s output score was assumed to be sa, and the weight was assumed to be w;
WS, WP, and SVM can be defined according to Equations (8)–(11). The weights demon-
strating the highest ReID accuracy in the experiment, based on the use of the training
data, were used as the optimal weights of WS and WP. For example, w of Equation (8)
was determined as 0.3 and 0.515 in the cases of DBPerson-Recog-DB1 and SYSU-MM01,
respectively, whereas w of Equation (9) was determined as 0.1 and 0.528 in the cases of
DBPerson-Recog-DB1 and SYSU-MM01, respectively. For SVM, the radial basis function
(RBF) was determined as the optimal kernel, which showed the highest accuracies of ReID
with the training data. Optimal parameters (b, γ) of the SVM and RBF were also determined
by using the training data. For example, b was determined as −0.5086 and −0.00012 in the
cases of DBPerson-Recog-DB1 and SYSU-MM01, respectively. γ was determined as 1 and
0.1 in the case of DBPerson-Recog-DB1 and SYSU-MM01, respectively. In Equation (10), ai
is the Lagrange multiplier, which is different according to support vector i whereas yi is the
classifier output, which is +1 or −1 because our research deals with the two-class problem,
e.g., same or different people.

outputws = so × w + sa × (1− w) (8)

outputwp = so
w × sa

(1−w) (9)

outputsvm = sign
(
∑ aiyiK(so, sa) + b

)
(10)

RBF kernel : K(so, sa) = e−γ||So−Sa ||2 , γ > 0 (11)

Table 5 presents the comparisons of ReID accuracies by the proposed method and
various score-level fusions where the proposed SCE-Net demonstrates the highest accuracy.
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Table 4. Comparisons of ReID accuracies of the original DenseNet, attention-guided DenseNet, and
proposed OADE-Net with DBPerson-Recog-DB1 (unit: %).

Method Rank 1 Rank 10 Rank 20 mAP

Original DenseNet 73.39 88.55 92.37 76.91
Attention-guided DenseNet 72.14 91.12 96.18 75.73

Original DenseNet +
Attention-guided DenseNet +
SCE-Net (proposed method)

79.71 92.37 94.90 78.17

Table 5. Comparisons on the ReID accuracies of the proposed and various score-level fusions with
DBPerson-Recog-DB1 (unit: %).

Method Rank 1 Rank 10 Rank 20 mAP

Weighted sum (WS) 73.42 92.37 97.46 77.33
Weighted product (WP) 73.42 92.37 97.46 77.39

Support vector machine (SVM) 75.96 94.93 97.46 77.79
SCE-Net (proposed method) 79.71 92.37 94.90 78.17

4.3.3. Comparisons of Proposed Method with State-of-the-Art Methods

Table 6 presents the comparisons of the ReID accuracies of the proposed and state-
of-the-art methods. The methods compared in the experiment are omni-scale network
(OSNet) [41], DualNorm [42], attention pyramid networks (APNet) [43], self-inspirited
feature learning (SIF) [44], Deep-person [9], relation-aware global attention (RGA) [45],
batch normalization neck (BNNeck) [46], horizontal pyramid matching (HPM) [47], and
pyramidal model [48]. The experimental results showed that the proposed OADE-Net
demonstrated the highest ReID accuracy in which the OADE-Net was 6.25% higher in rank
1, while the OADE-Net in mAP was 8.78% higher than the pyramidal model. Other models
compared in this study, including OSNet, produced excellent results as they were trained
while they extracted various features when they received visible images as an input. In this
study, however, the ReID performance was low when IR images were input because the
features required for ReID were not detected adequately as IR images do not include color
and detailed texture information as visible images. Furthermore, OSNet uses multiscale
features extracted from high- to low-resolution. Considering the low-image resolution
and the low quality of IR images, the important features for ReID obtained by numerous
convolution layers are much lost compared with the case in which visible images were
used, and this decreased accuracy. Figure 11 shows the graphs of precision versus recall
for the proposed and state-of-the-art methods. Figure 11 also illustrates how the proposed
OADE-Net produced the highest ReID accuracy.

Table 6. Comparisons of the ReID accuracies by the proposed method and state-of-the-art methods
with DBPerson-Recog-DB1 (unit: %).

Method Rank 1 Rank 10 Rank 20 mAP

DualNorm [42] 58.20 63.26 67.05 48.20
APNet [43] 59.48 69.64 77.27 46.89
OSNet [41] 59.51 70.89 78.52 48.50

SIF [44] 62.01 79.64 86.05 54.89
RGA [45] 63.26 74.64 81.02 58.77

BNNeck [46] 65.83 78.46 84.80 58.99
Deep-person [9] 68.30 84.74 91.05 67.74

HPM [47] 68.36 78.49 83.55 65.37
Pyramidal model [48] 73.46 83.58 87.40 69.39

OADE-Net (proposed method) 79.71 92.37 94.90 78.17
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Figure 11. Graphs of precision versus recall of the proposed and state-of-the-art methods with
DBPerson-Recog-DB1.

4.4. Testing of Proposed Method with SYSU-MM01
4.4.1. Ablation Studies

In the first experiment, the accuracy of various image compositions explained in
Section 3.1 was evaluated. As shown in Table 7, both original DenseNet and attention-
guided DenseNet yielded the best performances in IPVT2.

Table 7. Comparisons of ReID accuracies according to various input image compositions with
SYSU-MM01 (unit: %).

Method Image Composition Rank 1 Rank 10 Rank 20 mAP

Original DenseNet
IPVT1 37.98 56.65 60.51 22.64
IPVT2 50.01 63.97 66.33 33.76
IIPVT 36.05 53.86 55.58 20.23

Attention-guided
DenseNet

IPVT1 36.04 55.57 58.78 21.26
IPVT2 48.92 61.36 64.59 33.39
IIPVT 39.05 54.07 58.15 19.75

Subsequently, the comparisons of ReID accuracies by original DenseNet, attention-
guided DenseNet, and proposed OADE-Net were performed. As shown in Table 8, the
highest accuracy was obtained when the original DenseNet, attention-guided DenseNet,
and SCE-Net were all used. To evaluate the performance of the SCE-Net, its accuracy was
also compared with that of WS, WP, and SVM. Table 9 presents the comparisons of ReID
accuracies by the proposed method and various score-level fusions in which the proposed
SCE-Net demonstrates the highest accuracy.
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Table 8. Comparisons on the ReID accuracies of the original DenseNet, attention-guided DenseNet,
and proposed OADE-Net with SYSU-MM01 (unit: %).

Method Rank 1 Rank 10 Rank 20 mAP

Original DenseNet 50.01 63.97 66.33 33.76
Attention-guided DenseNet 48.92 61.36 64.59 33.39

Original DenseNet +
Attention-guided DenseNet +
SCE-Net (proposed method)

57.30 67.41 71.07 41.50

Table 9. Comparisons of ReID accuracies of the proposed method and various score-level fusions
with SYSU-MM01 (unit: %).

Method Rank 1 Rank 10 Rank 20 mAP

WS 53.86 65.23 67.40 38.30
WP 54.29 65.25 67.83 38.22

SVM 54.29 64.61 67.19 38.81
SCE-Net (proposed method) 57.30 67.41 71.07 41.50

4.4.2. Comparisons of Proposed Method with State-of-the-Art Methods

Table 10 presents the comparisons of the ReID accuracies of the proposed and state-
of-the-art methods. The experimental results showed that the OADE-Net demonstrated
higher accuracy than the state-of-the-art methods regarding the most important metrics,
rank 1 and mAP. Specifically, 57.30% was achieved in rank 1, while mAP achieved 41.50%.
The proposed model outperformed the second-best model of RGA in rank 1 by 2.62%
and the second-best model of Deep-person in mAP by 24.03%. The performances of the
state-of-the-art methods were relatively low because the features required for ReID were
not adequately detected as IR images do not contain color and detailed texture information
in comparison to visible images. In addition, as shown in Table 10, the proposed OADE-
Net performed poorer than the state-of-the-art methods in rank 10 and rank 20, whereas
OADE-Net shows the highest accuracies in rank 1 and mAP, which are the more important
metrics for measuring the performance of person ReID.

Table 10. Comparisons of the ReID accuracies by the proposed and state-of-the-art methods with
SYSU-MM01 (unit: %).

Method Rank 1 Rank 10 Rank 20 mAP

SIF [44] 40.11 80.88 91.18 13.60
OSNet [41] 42.70 84.77 92.92 12.20
APNet [43] 44.40 85.17 92.90 14.89
HPM [47] 46.57 80.92 88.42 13.78

Pyramidal model [48] 49.38 87.14 92.71 16.29
Deep-person [9] 50.00 88.62 93.77 17.47
DualNorm [42] 51.93 83.27 90.55 13.03

BNNeck [46] 53.86 88.61 94.62 15.03
RGA [45] 54.68 90.33 95.27 14.34

OADE-Net (proposed method) 57.30 67.41 71.07 41.50

Figure 12 shows the graphs of precision versus recall by the proposed and state-of-
the-art methods. It illustrates how the proposed OADE-Net produced the highest ReID
accuracy. In rank 1, there is no large difference between other state-of-the-art methods and
OADE-Net, but in the mAP, there is a large difference because rank is calculated by 1:N
matching, whereas mAP is by 1:1 matching.
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Figure 12. Graphs of precision versus recall of the proposed and state-of-the-art methods with
SYSU-MM01.

4.5. Analysis of Proposed Method
4.5.1. Visual Inspection of Extracted Features by Gradient-Weighted Class Activation
Mapping (Grad-Cam) and Analyses of Correct and Incorrect Matching Cases

In this subsection, visual inspections of extracted features were performed based
on Grad-cam [49] to examine whether important features for ReID were extracted from
the original DenseNet, attention-guided DenseNet, and SCE-Net. In Grad-cam images,
important features are marked in red color, while unimportant features are marked in blue
color.

Figure 13 shows Grad-cam images obtained by the original DenseNet, attention-
guided DenseNet, and SCE-Net, in the case of genuine matching. Figure 13a shows the
Grad-cam images extracted from the original DenseNet, while Figure 13b shows the Grad-
cam images extracted from the attention-guided DenseNet. In Figure 13a,b, Grad-cam
images extracted from dense blocks 1 to 4 in Tables A1 and A2 (Appendix A) are arranged
from left to right. Figure 13c shows Grad-cam images extracted from the SCE-Net in which
the left-side images were extracted from conv layer 1 of Table A3 (Appendix A), while the
right-side images were extracted from conv layer 2. Figure 14 shows Grad-cam images
obtained by the original DenseNet, attention-guided DenseNet, and SCE-Net in the case of
imposter matching. When Figures 13 and 14 are compared, a genuine matching of Figure 13
is achieved when the objects in the enrolled and input query images are of the same person.
In this case, important features for ReID were extracted from similar body part regions.
Furthermore, imposter matching in Figure 14 is achieved when the objects in the enrolled
and input query images are of different classes. In this case, important features for ReID
are extracted from different body part regions (especially from the legs). Based on genuine
matching and imposter matching shown in Figures 13 and 14, it can be considered that
important features for ReID are extracted adequately based on the proposed model from
the body part regions instead of the background.
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Figure 13. Grad-cam images obtained by the original DenseNet, attention-guided DenseNet, and
SCE-Net in case of genuine matching. Grad-cam images extracted from (a) the original DenseNet, and
(b) the attention-guided DenseNet. Grad-cam images extracted from dense blocks 1 to 4 in Tables A1
and A2 (Appendix A) are arranged from left to right in (a,b). (c) Grad-cam images extracted from the
SCE-Net where the left-side images were extracted from conv layer 1 of Table A3 (Appendix A), while
the right-side images were extracted from conv layer 2. In (a–c), the left-hand side of the composition
image is the enrolled image, while the right-hand side is the input query image.

Figure 15 shows examples of correct acceptance and correct rejection as determined
based on the proposed method. As shown in genuine matching in Figure 15a, even the
objects that have different shapes or views in the enrolled and input query images resulted
in correct acceptance. As shown in the imposter matching in Figure 15b, even the objects
which had similar shapes or views between the enrolled and input query images resulted
in correct rejection.

In addition, Figure 16 shows the examples of incorrect acceptance and incorrect
rejection determined based on the proposed method. As shown in the case of genuine
matching in Figure 16a, the objects in the enrolled and input query images are different in
view. As shown in imposter matching in Figure 16b, the objects in the enrolled and input
query images are very similar to each other in terms of shape and appearance, therefore
resulting in incorrect acceptance.

Figure 14. Cont.
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Figure 14. Grad-cam images obtained by the original DenseNet, attention-guided DenseNet, and SCE-
Net, in the case of imposter matching. Grad-cam images extracted from (a) the original DenseNet and
(b) the attention-guided DenseNet. Grad-cam images extracted from dense blocks 1 to 4 in Tables A1
and A2 (Appendix A) are arranged from left to right in (a,b). (c) Grad-cam images extracted from the
SCE-Net in which the left-side images were extracted from conv layer 1 of Table A3 (Appendix A),
while the right-side images were extracted from conv layer 2. In (a–c), the left-hand side of the
composition image is the enrolled image, while the right-hand side is the input query image.

Figure 15. Examples of (a) correct acceptance from genuine matching and (b) correct rejection from
imposter matching.
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Figure 16. Examples of (a) incorrect rejection from genuine matching and (b) incorrect acceptance
from imposter matching.

4.5.2. Computational Cost and Processing Time

The computational cost of the models used in the OADE-Net was measured using
floating-point operations (FLOPs) and a number of parameters. For measurements, the
ptflops [50] of Python were used. When FLOPs and the number of parameters of each
model were measured, the FLOPs of the original DenseNet, attention-guided DenseNet,
and SCE-Net were 15.64 ×109, 15.64 ×109, and 17.22 ×109, respectively, as indicated
in Table 11. The number of parameters of the three models were 26.48 M, 26.64 M, and
175.82 M. SCE-Net has larger numbers of FLOPs and parameters compared with the
original DenseNet and attention-guided DenseNet because the number of input channels of
SCE-Net is considerably greater than those of the original DenseNet and attention-guided
DenseNet in Tables A1 and A2 (Appendix A).

Table 11. Comparison of the FLOPs and number of parameters of the original DenseNet, attention-
guided DenseNet, and SCE-Net.

Model FLOPs Number of Parameters

Original DenseNet 15.64× 10 9 26.48 M
Attention-guided DenseNet 15.64× 10 9 26.64 M

SCE-Net 17.22× 10 9 175.82 M

In the following experiment, the average processing time per image of the proposed
model was measured. The measurements were saved on a desktop computer (specifications
are listed in Section 4.1) and a Jetson TX2 embedded system (NVIDIA Pascal™-family CPU
including 256 compute unified device architecture (CUDA) cores) shown in Figure 17 [51].
The reason for acquiring the measurements on the Jetson TX2 embedded system is that
most scenarios for an intelligent surveillance camera system to which the proposed method



Mathematics 2022, 10, 3503 22 of 26

is applied involve embedded systems at the camera end (on-board computing) instead of
the server end (server computing) owing to communication failures.

Figure 17. Jetson TX2 embedded system.

As shown in the experimental results in Table 12, the original DenseNet required
158.42 ms when measured on the Jetson TX2 embedded system; this is 118.07 ms longer than
that obtained by the desktop computer. The attention-guided DenseNet required 160.06 ms
when measured on the Jetson TX2 embedded systems; this is 116.89 ms longer than that
obtained by the desktop computer. The SCE-Net required 155.07 ms when measured on the
Jetson TX2 embedded system, which is 136.98 ms longer than that obtained by the desktop
computer. The SCE-Net showed a large difference in required time between the desktop
computer and Jetson TX2 because the SCE-Net model has a fewer number of layers but a
greater number of parameters (Table 11), thus requiring a longer processing time on the
Jetson TX2 embedded system with fewer cores compared to the desktop computer. In
addition, when the processing times on the desktop computer are compared, as shown in
Table 12, the SCE-Net with larger FLOPs and parameters yielded shorter processing times
than those obtained by the other two models. This is because the amount of memory access
has a greater impact than FLOPs when measuring the model’s inference time. In addition,
the skip connection of ResNet has a relatively high inference time due to high memory
access, and DenseNet also has a similar dense connection, resulting in a higher inference
time [52]. Therefore, the difference in processing time in Table 12 is due to the differences
in memory access. As shown in Table 12, the processing times of the proposed method,
including all the three models, were 101.61 ms and 473.55 ms on the desktop computer and
the Jetson TX2 embedded system, respectively, which represent processing speeds of 9.84
and 2.11 frames per second, respectively. Therefore, it can be considered that the proposed
method can be executed on an embedded system with limited resources.

Table 12. Comparison of the processing time among the original DenseNet, attention-guided
DenseNet, and SCE-Net (unit: ms).

Model Desktop Computer Jetson TX2 Embedded System

Original DenseNet 40.35 158.42
Attention-guided DenseNet 43.17 160.06

SCE-Net 18.09 155.07
Total 101.61 473.55
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5. Conclusions

This study proposed the OADE-Net—a ReID model that recognizes pedestrians using
day- and night-time IR images. The OADE-Net consisted of the original and attention-
guided DenseNets as well as SCE-Net. The optimal construction of our OADE-Net was
experimentally made based on the ReID accuracies of ablation studies in Sections 4.3.2
and 4.4.1. The open databases used in the experiment were DBPerson-Recog-DB1 and
SYSU-MM01, and the person ReID performance was measured using only IR images in
terms of rank 1, rank 10, rank 20, and mAP. The experimental results showed that the
highest performance was demonstrated when the proposed OADE-Net was used compared
with the case where only the original DenseNet and attention-guided DenseNet were
used. Additionally, the proposed SCE-Net outperformed other existing score-level fusion
methods. When compared with the state-of-the-art methods, the proposed OADE-Net
demonstrated an outstanding ReID accuracy. Analyzing the features based on Grad-cam
confirmed that the proposed model adequately extracted important features for person
ReID. Its execution on a desktop computer as well as an embedded system with limited
resources was verified. However, it was confirmed that the proposed method caused ReID
errors in cases of different views in genuine matching or similar shape and appearance in
imposter matching.

In future studies, more sophisticated models and ensemble model-based methods
will be examined to improve the correct recognition of ReID robust to different views in
genuine matching or similar shape and appearance in imposter matching. Furthermore,
the applicability of the proposed model in other image recognition fields (e.g., facial, iris
recognition, etc.) will be studied.
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Appendix A

Table A1. Structure of original DenseNet.

Layer Filter
(Number of Filters, Size, Stride) Padding Input Output

Input layer 224 × 224 × 3 224 × 224 × 3
Convolution (Conv) block 96, 7 × 7 × 3, 2 3 × 3 224 × 224 × 3 112 × 112 × 96
Maximum (Max) pooling 96, 3 × 3 × 96, 2 1 × 1 112 × 112 × 96 56 × 56 × 96

Dense block 1 6 × 192, 1 × 1 × 96, 1
6 × 48, 3 × 3 × 192, 1 1 × 1 56 × 56 × 96 56 × 56 × 384

Transition block 1 192, 1 × 1 × 384, 1
192, 2 × 2 × 192, 2 56 × 56 × 384 28 × 28 × 192

Dense block 2 12 × 192, 1 × 1 × 192, 1
12 × 48, 3 × 3 × 48, 1 1 × 1 28 × 28 × 192 28 × 28 × 768

Transition block 2 384, 1 × 1 × 768, 1
384, 2 × 2 × 384, 2 28 × 28 × 768 14 × 14 × 384
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Table A1. Cont.

Layer Filter
(Number of Filters, Size, Stride) Padding Input Output

Dense block 3 36 × 192, 1 × 1 × 384, 1
36 × 48, 3 × 3 × 192, 1 1 × 1 14 × 14 × 384 14 × 14 × 2112

Transition block 3 1056, 1 × 1 × 2112, 1
1056, 2 × 2 × 1056, 2 14 × 14 × 2112 7 × 7 × 1056

Dense block 4 24 × 192, 1 × 1 × 1056, 1
24 × 48, 3 × 3 × 192, 1 1 × 1 7 × 7 × 1056 7 × 7 × 2208

Global average pooling 2208, 7 × 7 × 2208, 1 7 × 7 × 2208 1 × 1 × 2208
Fully connected layer 1 × 1 × 2208 1 × 1 × 2

Softmax 1 × 1 × 2 1 × 1 × 2

Table A2. Structure of attention-guided DenseNet.

Layer Filter
(Number of Filters, Size, Stride) Padding Input Output

Input layer 224 × 224 × 3 224 × 224 × 3
Conv block 96, 7 × 7 × 3, 2 3 × 3 224 × 224 × 3 112 × 112 × 96

Max pooling 96, 3 × 3 × 96, 2 1 × 1 112 × 112 × 96 56 × 56 × 96

Dense block 1 6 × 192, 1 × 1 × 96, 1
6 × 48, 3 × 3 × 192, 1 1 × 1 56 × 56 × 96 56 × 56 × 384

Transition block 1 192, 1 × 1 × 384, 1
192, 2 × 2 × 192, 2 56 × 56 × 384 28 × 28 × 192

Convolutional block attention
module (CBAM) 1

2, 28 × 28 × 192, 28
1, 7 × 7 × 2, 1 3 × 3 28 × 28 × 192 28 × 28 × 192

Dense block 2 12 × 192, 1 × 1 × 192, 1
12 × 48, 3 × 3 × 48, 1 1 × 1 28 × 28 × 192 28 × 28 × 768

Transition block 2 384, 1 × 1 × 768, 1
384, 2 × 2 × 384, 2 28 × 28 × 768 14 × 14 × 384

CBAM 2 2, 14 × 14 × 384, 14
1, 7 × 7 × 2, 1 3 × 3 14 × 14 × 384 14 × 14 × 384

Dense block 3 36 × 192, 1 × 1 × 384, 1
36 × 48, 3 × 3 × 192, 1 1 × 1 14 × 14 × 384 14 × 14 × 2112

Transition block 3 1056, 1 × 1 × 2112, 1
1056, 2 × 2 × 1056, 2 14 × 14 × 2112 7 × 7 × 1056

CBAM 3 2, 7 × 7 × 1056, 7
1, 7 × 7 × 2, 1 3 × 3 7 × 7 × 1056 7 × 7 × 1056

Dense block 4 24 × 192, 1 × 1 × 1056, 1
24 × 48, 3 × 3 × 192, 1 1 × 1 7 × 7 × 1056 7 × 7 × 2208

Global average pooling 2208, 7 × 7× 2208, 1 7 × 7 × 2208 1 × 1 × 2208
Fully connected layer 1 × 1 × 2208 1 × 1 × 2

Softmax 1 × 1 × 2 1 × 1 × 2

Table A3. Structure of SCE-Net.

Layer Filter
(Number of Filters, Size, Stride) Padding Input Output

Input layer 7 × 7 × 4419 7 × 7 × 4419
Conv layer 1 2210, 3 × 3 × 4419, 1 1 × 1 7 × 7 × 4419 7 × 7 × 2210
Conv layer 2 4419, 3 × 3 × 2210, 1 1 × 1 7 × 7 × 2210 7 × 7 × 4419

Global average pooling 4419, 7 × 7 × 4419, 1 7×7 × 4419 1 × 1 × 4419
Fully connected layer 1 × 1 × 4419 1 × 1 × 2

Softmax 1 × 1 × 2 1 × 1 × 2
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