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Abstract: Motivated by some practical applications of post-disaster supply delivery, we study a
multi-trip time-dependent vehicle routing problem with split delivery (MTTDVRP-SD) with an
unmanned aerial vehicle (UAV). This is a variant of the VRP that allows the UAV to travel multiple
times; the task nodes’ demands are splittable, and the information is time-dependent. We propose a
mathematical formulation of the MTTDVRP-SD and analyze the pattern of the solution, including
the delivery routing and delivery quantity. We developed an algorithm based on the simulation
anneal (SA) framework. First, the initial solution is generated by an improved intelligent auction
algorithm; then, the stochastic neighborhood of the delivery route is generated based on the SA
algorithm. Based on this, the model is simplified to a mixed-integer linear programming model
(MILP), and the CPLEX optimizer is used to solve for the delivery quantity. The proposed algorithm
is compared with random–simulation anneal–CPLEX (R-SA-CPLEX), auction–genetic algorithm–
CPLEX (A-GA-CPLEX), and auction–simulation anneal–CPLEX (A-SA) on 30 instances at three scales,
and its effectiveness and efficiency are statistically verified. The proposed algorithm significantly
differs from R-SA-CPLEX at a 99% confidence level and outperforms R-SA-CPLEX by about 30%. In
the large-scale case, the computation time of the proposed algorithm is about 30 min shorter than that
of A-SA. Compared to the A-GA-CPLEX algorithm, the performance and efficiency of the proposed
algorithm are improved. Furthermore, compared to a model that does not allow split delivery, the
objective function values of the solution of the MTTDVRP-SD model are reduced by 52.67%, 48.22%,
and 34.11% for the three scaled instances, respectively.

Keywords: multi-trip; split delivery; auction mechanism; simulated annealing; mixed-integer linear
programming model

MSC: 90C11

1. Introduction

The purpose of any post-disaster relief activity is to deliver requested (or even urgent)
supplies and services to a place and within the time frame needed while trying to ensure
minimal costs [1]. A disaster often results in road destruction or special traffic control,
which poses great challenges for ground transportation and rescue. Therefore, the use
of UAVs may be a good choice. The development of many technologies has made it
feasible for rescue organizations to implement UAV delivery. Carbon fiber has enabled
the development of lightweight airframes [2]. Lithium polymer batteries have a relatively
high energy density, effectively increasing the flight time of UAVs [3]. GPS can be used for
UAV navigation [4]. Technologies such as light detection and image processing can identify
obstacles and targets [5]. In fact, a number of large enterprises have begun to use UAVs to
complete deliveries, such as Amazon, Google, and Alibaba.

This study is motivated by the use of UAVs for the emergency delivery of supplies to
a disaster area for post-disaster relief. Each disaster camp has a demand and urgency for
supplies. Rescue supplies are centrally stored in a depot on the outskirts of the disaster
area. UAVs bring relief supplies to the disaster camps for delivery. Each UAV needs to
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perform multiple trips due to its limited single-load capacity and battery power, resulting
in the need to constantly return to the depot to replenish supplies and batteries. When a
UAV runs out of power, the depot replaces the battery with a new fully charged one [6,7],
ensuring that the UAV can be dispatched again with negligible time consumption in the
process. Another challenging issue is that the urgent needs of disaster camps for supplies
vary continuously over time and are discrete with supply delivery work. In fact, this is
similar to a soft time window constraint, where different moments and different delivery
quantities gain different revenues and have different costs for the UAV. We model this new
variant as a multi-trip time-dependent vehicle routing problem with split delivery, which
is based on the classic multi-trip vehicle routing problem (MTVRP), which also takes into
account the following characteristics: multiple trips per UAV, time-dependent urgency,
split delivery, and a UAV battery power limit.

For the vehicle routing problem with multiple trips, Taillard et al. [8] first introduced
multiple trips into the vehicle routing problem (VRP) and proposed a tabu search heuristic
algorithm for this problem. They proposed the MTVRP in order to extend the standard VRP
and obtain high-quality solutions for a series of test problems. Salhi et al. [9] proposed a
new hybrid genetic algorithm for the MTVRP problem with encouraging results. Mingozzi
et al. [10] argued that the MTVRP was proposed because of the consideration of vehicle
capacity constraints and maximum travel time constraints, and they proposed an exact
solution algorithm that divided the solution into two parts—the feasible route for the
vehicle and the travel departure schedule. In fact, exact approaches for the MTVRP and its
variants are rare, and a discussion thereof is omitted due to space constraints. Interested
readers are referred to [11–13]. Paradiso et al. [14] also focused on the MTVRP with time
windows and proposed an exact solution framework that relied on column generation,
column enumeration, and cutting planes. However, they proposed a significant point:
that MTVRPs with different side constraints require special formulations and solution
methods to solve them, which means that MTVRPs themselves generate different variants
depending on different constraints, and each variant requires special models to model, as
well as special approaches to its solution.

The studies cited above only investigated the vehicle routing problem while consid-
ering multiple trips. The time-dependent characteristic and split delivery were not taken
into consideration in their studies. However, the MTVRP is the basis for the study of such
variant problems.

The time-dependent characteristic has different interpretations. Donati et al. [15]
and Ichoua et al. [16] described travel speed as time-dependent, or rather, travel time
as time-dependent. Sun et al. [17] improved a time-dependent travel speed model in
the background of delivery services under city congestion. They verified the realism and
superiority of the proposed model through an experimental case study. There are many
more studies investigating time-dependent travel time [18,19], and some other studies
describing costs as time-dependent [20]. However, the time-dependent characteristic
considered in this paper—from the practical point of UAV emergency supply delivery—is
that the information of the task is time-varying, while the speed of the UAV is constant. The
relationship between speed, load, and power consumption of UAVs was thoroughly studied
by Liu et al. [21]. Similarly, Nguyen et al. [22] proposed a time-dependent characterization
of demand and described it with two conditional assumptions. They proposed a taboo
search metaheuristic algorithm that introduced an elite solution set and a frequency-based
memory diversification strategy with encouraging results. Later, they added constraints for
both the inbound and outbound traffic with success in [23]. However, they did not describe
the dependence of the task demand on time and whether demand can be met multiple
times much. These points are necessary for consideration in the UAV emergency supply
delivery problem.

The introduction of a split-delivery constraint in the VRP problem was first proposed
by Dror and Trudeau [24], who used a heuristic algorithm to find a cost reduction of
almost 14% with split deliveries. Nowak et al. [25] pointed out that split delivery means
delivering certain loads in multiple trips rather than one trip. Their study also focused
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on analyzing the extent to which the benefits of split delivery are related to the size of the
load, the cost of the load, and the frequency of the load destination. Some other researchers
limited split delivery to specific dimensions, such as the demand for a single task being
satisfied in at most two [26] or three [27,28] times. Lai et al. [29] investigated the problem
of unlimited times of split delivery in city services and developed a tabu search algorithm
by combining dynamic programming, neighborhood search, and perturbation processes.
They also analyzed the impact of split delivery on the back of the favorable results achieved
by the algorithm. Naturally, the main focus of their study was on the combination of split
delivery and the VRP, which may not describe the actual situation in disaster relief well.

The MTTDVRP-SD problem is NP-hard because it contains the MTVRP as its special
case, and the MTVRP is NP-hard [30]. It is interesting to note that this problem develops its
unique characteristics and difficulties by modeling various practical features together, and
that this is a blind spot in the current research. Now, we briefly analyze the difficulties of
the MTTDVRP-SD model. First, the solution should include not only the delivery routing
order, but also the delivery quantity. At the same time, the delivery routing order implicitly
includes the arrival time of the UAV. Therefore, the solution computation process includes
two layers of optimization for the delivery routing and delivery quantity, leading to a huge
solution search space. In particular, as the size of the problem increases, it is difficult for
traditional algorithms to achieve a trade-off between solution quality and computation
time. Second, the feasibility check for trips includes the demand constraint of the disaster
camp, the load constraint of the UAV, and the maximum battery power constraint. It is
possible to make infeasible trips to deliver to remote camps that exceed the battery power
that is feasible if the UAV is loaded with a small quantity of supplies, but then it is necessary
to check that the camps’ supply demands are met. The feasibility check of the solution
requires a thorough evaluation of the UAV’s trip allocation and careful scheduling of the
UAV’s routing and dispatch of supplies. These challenging characteristics necessitate a
rigorous investigation of the problem in order to propose suitable models and design
tailored algorithms.

Considering both the use of delivery vehicles (i.e., UAVs) in the practical transportation
industry and the theoretical gap in terms of modeling in the current study, we investigate a
problem model that is more adapted to the emergency rescue scenario. Due to the com-
plexity of the problem, we try to design a new heuristic algorithm (named A-SA-CPLEX)
based on the intelligent auction mechanism, the simulated annealing (SA) algorithm, and
the CPLEX optimizer. Specifically, the main contributions of this paper can be summarized
as follows.

• A formal description of the UAV emergency supply delivery problem is provided.
This problem is described as a new variant of the MTVRP problem, denoted as
MTTDVRP-SD, and it is modeled as mixed-integer programming (MIP). MTTDVRP-
SD considers the actual problem characteristics more comprehensively and defines
the time-dependent urgency function explicitly as a piecewise linear function. The
solution to the MTTDVRP-SD problem (i.e., the UAV’s delivery pattern) consists of
the delivery routing and delivery quantity, i.e., it contains two decision variables.

• The A-SA-CPLEX algorithm is proposed. Firstly, an intelligent auction mechanism
that integrates single-task auctions and a pre-authorization mechanism are developed
to construct a feasible and better solution in a short time. Then, the combination of the
SA algorithm with the CPLEX optimizer is proposed to further improve the quality of
the solution. This can effectively improve the efficiency of the iteration of solutions.

• In SA, the transformation of the MILP model can be achieved by first generating a
random delivery routing and then bringing it into the MTTDVRP-SD model. At this
point, the CPLEX optimizer can be used to find the optimal solution of the MILP
model, which is the optimal delivery quantity under random delivery routing. The
combination of the delivery routing and the delivery quantity constitutes the new
solution, and the iteration continues.
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• Experiments were carried out under an emergency supply delivery scenario. Then,
we derived a large number of random instances of three different sizes for testing the
proposed algorithm and compared it with three other algorithms. The experimental re-
sults show that our approach can efficiently solve the problem. Lastly, we additionally
investigated the advantages of the MTTDVRP-SD model.

The remainder of this paper is organized as follows. Section 2 provides the formal
description and a mathematical model of the problem. The heuristic algorithm is explained
in Section 3, followed by extensive descriptions of the experimental results in Section 4.
Finally, the conclusion and possible directions of future studies are discussed in Section 5.

2. Problem Definition and Formulation

In this section, we describe the MTTDVRP-SD in detail and present a mathematical
model of the problem.

2.1. Basic Definition

Let V = {1, 2, . . . , NV} denote the set of disaster camps (i.e., task nodes) and let
{0} denote the supply depot node, which is the starting or ending point of a trip. The
MTTDVRP-SD is defined over a complete directed graph G = (V

′
, E), with node set

V
′
= V ∪ {0} and arc set E = {(i, j) : i, j ∈ V, i 6= j}. Each node i ∈ V is associated with a

supply demand mi, an urgency for supply demand ei, and a two-dimensional coordinate
(xi, yi). Note that the supply demand of the node changes with the step-by-step delivery of
UAVs, and the urgency is additionally affected by time, which is described in detail later.
Additionally, each arc (i, j) ∈ E that can be traveled by UAVs is associated with a Euclidean
distance Dij.

Let G denote UAVs with a speed S, a rated load capacity L, a rated battery power W,
and self-weight G. Note that the energy consumption of the UAV’s battery depends on its
self-weight and the load that it carries, which will become smaller step by step once the
supplies have been delivered to the task nodes. Specifically, the energy consumption can
be viewed to vary linearly with loading and self-weight [31,32]. Additionally, during the
delivery task, the speed of the UAV is constant.

A trip is defined as a sequence of node visits that starts from the depot, progresses
along a sequence of task nodes, and returns to the depot. After selecting the appropriate
sub-route and assigning a delivery task, the UAV will load the corresponding supplies
in order and exchange the batteries at the depot. Then, it will go to visit the assigned
nodes and deliver the supplies one by one. For each trip, UAVs have constraints on the
rated weight and rated battery power. Therefore, multiple trips are necessary with the
limited UAVs available. Let R denote the set of possible trips for a UAV, and let the pair
(k, r), k ∈ U, r ∈ R denote the r-th trip of the k-th UAV.

2.2. Time-Dependent Task Information

In fact, many types of supplies are needed in a disaster relief situation, including food,
water, medicine, etc. However, in order to facilitate emergency response and effective
implementation of rescue, we do not over-calculate the need for various types of supplies,
nor do we conduct precise delivery. It is a more common practice to synthesize various
supplies into a single rescue package [33], i.e., to integrate them into a single supply
delivery operation. To simplify the problem, the supply demand of task nodes is unitized.
Considering that the maximum loading capacity of a UAV may be smaller than the supply
demand of a single node, we propose a splittable delivery method for demand, i.e., the
supply demand of a single node may be satisfied in multiple trips. Figure 1a shows that
the supply demand of a task node is satisfied with three deliveries.

In the aftermath of a large-scale natural disaster, the urgency of supply demands
can vary between task nodes due to differences in casualties, degree of house destruction,
and economic levels [34]. On the other hand, the urgency of the task node becomes
progressively greater over time, which may be due to secondary injuries caused by hunger,
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cold, and aggravation of conditions. As relief supplies are gradually replenished, the
urgency decreases again. Figure 1b shows the change in urgency when the supply demands
of a task node are met with three deliveries.

Illustration of the task 
information changes in the 
process with 3 deliveries. (a) 
Changes of the demand in the 
delivery process. (b) Changes of 
the urgency in the delivery 
process. 

after 1st 
delivery

after 2nd 
delivery

after 3rd
delivery

0 1t 2t 3t

after 1st 
delivery after 2nd 

delivery

after 3rd
delivery

waiting

waiting

0 1t 2t 3t

(a)

(b)

Time (s) 

Time (s) 

Su
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em

an
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U
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Figure 1. Illustration of the task information changes in the process with three deliveries. (a) Changes
in the demand in the delivery process. (b) Changes in the urgency in the delivery process.

The supply demand mi(t) of the task node i will not change until the supplies are
received, but the urgency ei(t) will increase linearly with time; at the moment of receiving
the supplies, such as the moment t1, t2, t3, the supply demand and urgency of the task
node will decrease accordingly, but the decrease in urgency is related to the amount of
supplies delivered qkr

i and the initial urgency ei(0). Note that, at the moment t3, the supply
demands of the task node i are all satisfied, the delivery task of the node is considered to be
completed, and the urgency becomes 0 directly. The formula is expressed in Equations (1)
and (2). In fact, the delivery and reception of supplies and the change in node information
are not done in the same instant, which is due to the time delay in the process of the delivery
of supplies and the distribution of supplies, but this is not considered in this paper.

mi(t+) =

{
mi(t−)− qkr

i , xkr
i = 1,

mi(t−), others.
(1)

ei(t+) =


0, mi(t+) = 0,

ei(t−)− ei(0)
mi(0)

× qkr
i , mi(t+) > 0 and xkr

i = 1,

ei(t0) + a× (t− t0), others.

(2)

where t0 denotes the moment when the last supply demand of the task node was met; t−

and t+ mathematically denote the left and right convergence of moment t, respectively.
The objective of the model is to find the minimal-cost solution that satisfies the task

nodes’ demand constraints, maximum loading constraints, and maximum battery power
constraints. Unlike the usual objective function of the VRP and its variant problems, which
considers minimizing the total travel distance or working time, the cost is defined as
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the damage duration of the task node, which is calculated with the urgency and rescue
waiting time.

2.3. Mathematical Formulation

In this section, we formulate the MTTDVRP-SD as an MIP model to optimize the
UAV delivery patterns (in terms of delivery routing and delivery quantity). The decision
variables are defined by i, j ∈ V

′
, k ∈ U, r ∈ R. To simplify the model formulation, the

binary decision variable xkr
ij is used to denote the delivery route, but a transformation

is required. If xkr
ij = 1, indicating that the trip (k, r) visits node j from i, then node j is

added to the delivery route of UAV k; otherwise, it is not added. The delivery quantity
corresponding to the delivery routing is denoted by discrete decision variables qkr

j .
The MIP model will discussed in detail below.

f = min{max
i∈V

∫ Tend
i

0
ei(t) dt} (3)

t ∈ N (4)

∑
k∈U

∑
r∈R

qkr
j = mj(0), ∀j ∈ V (5)

Nk
R ≥ 1, ∀k ∈ U (6)

0 ≤ lr
k(t) < Lk, ∀k ∈ U, r ∈ R, t (7)

lr
k(str

k) > 0, ∀k ∈ U, r ∈ R (8)

Tkr
j = xkr

ij × Tkr
i + xkr

ij × Dij/Sk, ∀i, j ∈ V
′
, k ∈ U, r ∈ R (9)

etr
k = str

k + ∑
i∈V′

∑
j∈V′

xkr
ij × Dij/Sk = Tkr

0 , ∀k ∈ U, r ∈ R, i 6= j (10)

str+1
k =

{
etr

k, ∀r ∈ R
0, ∀r /∈ R

, ∀k ∈ U, r + 1 ∈ R (11)

0 ≤ wr
k(t) ≤Wk, ∀k ∈ U, r ∈ R, t (12)

wr
k(t) =

∫ t

tr
k

δ× (lr
k(τ) + G)dτ, ∀k ∈ U, r ∈ R, t (13)

∑
i∈V′\{j}

xkr
ij = {0, 1}, ∀j ∈ V, k ∈ U, r ∈ R (14)

∑
j∈V′\{i}

xkr
ij = {0, 1}, ∀i ∈ V, k ∈ U, r ∈ R (15)

∑
j∈V

xkr
0j = 1, ∀k ∈ U, r ∈ R (16)

∑
i∈V

xkr
i0 = 1, ∀k ∈ U, r ∈ R (17)
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∑
k∈U

∑
r∈R

∑
i∈Vi\{j}

xkr
ij ≥ 1, ∀j ∈ V (18)

∑
k∈U

∑
r∈R

∑
j∈V′\{i}

xkr
ij ≥ 1, ∀i ∈ V (19)

0 < qkr
j ≤ Lk, ∀j ∈ V, k ∈ U, r ∈ R (20)

qkr
j ≤ mj, ∀j ∈ V, k ∈ U, r ∈ R (21)

xkr
ij ∈ {0, 1}, ∀i, j ∈ V, k ∈ U, r ∈ R (22)

Equation (3) is used to minimize the maximum duration damage among all task nodes,
which is calculated by the integral of the urgency over time. Equation (4) represents time as
a set of discrete sequences belonging to natural numbers. Equation (5) ensures that all task
nodes’ demands are met. Equation (6) indicates that all UAVs belong to at least one trip.

Equation (7) guarantees that the loading of the UAV does not exceed its limit at any
moment. Equation (8) indicates that the loading of the UAV at the start of any trip is strictly
greater than 0. Equation (9) represents the calculation of the arrival time for node j during
the r-th trip of the k-th UAV, which is a recursive formula. Equations (10) and (11) represent
the calculation of the end and start time of a trip, respectively.

Equation (12) ensures that the UAV can go back safely, i.e., the energy consumed at
any given moment does not exceed the limit. Equation (13) represents the calculation of the
energy consumption of the UAV. Under the condition of constant UAV speed, the power is
linearly related to the loading and self-weight, while the loading changes with the delivery
of supplies, so it is a segmented linear function. Energy consumption is the product of
power and time. More details can be found in the work of Liu et al. [21].

Equations (14) and (15) require that all nodes, including the depot, will be arrived
at and left at most once during a trip. Equations (16) and (17) ensure that all trips start
and end at the depot. Equations (18) and (19) guarantee that all task nodes will be arrived
at and left at most once during the whole rescue process. Equations (20)–(22) define the
ranges of the decision variables.

3. Approaches

This section proposes a solution algorithm based on SA. An initial solution is first
constructed by a developed auction algorithm that integrates single-task auctions and a
pre-authorization mechanism. Then, the SA algorithm combined with the CPLEX optimizer
is applied to improve the initial solution.

3.1. Solution Representation

The delivery route and delivery quantity are the fundamental building blocks of
the solution representation. In Section 2.3, the transformation from a binary decision
variable xkr

ij into a delivery route was described. Each UAV has multiple sub-trips, and the
quantity of supplies delivered to each node is determined. Each sub-trip of the UAV has a
schedule that is directly related to the objective function and can be computed recursively
by Equation (9) with the time complexity of O(|R|). The test regarding the feasibility of the
solution must include two aspects, namely, the schedule corresponding to each sub-trip
and the corresponding quantity of supplies to be delivered. An example of a solution to
the MTTDVRP-SR is depicted in Figure 2, including some brief descriptions.
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Structure of one initial solution. 
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Figure 2. Example of a solution with three UAVs and less than 11 nodes.

3.2. Auction for Constructing the Initial Solution
3.2.1. Designed Mechanism

In the auction process, there are mainly two kinds of roles, i.e., an announcer and
bidders. The work of the announcer is to publish tasks and assign them, and the bidders’
work is to bid on the tasks and accept them. Consequently, we will focus on the interactions
between the different roles to illustrate the auction mechanism.

Considering the problem of task assignment in the UAV swarm, the key point is to
allocate each task to the proper UAV at the right time. In this work, we use an auction
mechanism to determine the delivery routing and quantity for each UAV. As is the case
in auction activities, the first step is to analyze the task requirements and determine the
number and type of UAVs, and we carry out this work in the preparation stage. The
following stages are announcing, bidding, pre-authorization, and authorization.

1. Announcing.
The main work of this phase is for the announcer to delete the assigned tasks and
update the information about the unassigned tasks. Note that the task information
includes the price after constantly bidding for, in addition to the two-dimensional
coordinates, supply demand, and urgency of the task mentioned in the model. Finally,
they are published for all bidders.

2. Bidding.
In this stage, each bidder (i.e., UAV) calculates the bidding value based on its status
parameters (including the current position, speed, loading, remaining battery, com-
pletion time of the last task) and task information. Different loadings of UAVs lead
to different energy consumption levels, so UAVs may obtain different rewards for
the same task. In addition, the calculation should obey the common predefined rules.
After getting the bidding value, bidders send the values to the announcer for bidding.
The timing of a UAV’s request for auction is the completion of the currently assigned
task.

3. Pre-authorization.
After the announcer receives the bidder’s bid value, it selects the appropriate UAV
for contract pre-authorization according to the predefined selection strategy. Since
there are multiple UAVs bidding for the same task, the pre-authorization phase ends
with all UAVs getting a task that they are satisfied with. Then, the announcer sends
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the complete task information to the winning UAV and records the result of this
pre-assignment. The UAV will also be involved in the next auction after receiving a
pre-authorized task and can be re-selected for a task with a higher revenue, but there
can only be one pre-authorized task at a time.

4. Authorization.
The UAV is not considered authorized to perform the task until it receives authoriza-
tion for that task. In this stage, UAVs need to verify that they have been pre-authorized.
If a pre-authorization has been obtained, then it is directly transformed into an au-
thorization; otherwise, an auction is requested from the announcer. Note that the
UAV is only authorized for one task until the deadline for the completion of the
authorized task.

3.2.2. Bidding Value

In the auction mechanism mentioned before, the announcer selects the proper UAV
based on the bidding values. Consequently, the calculation of the bidding values is sig-
nificant for the efficiency. In the bidding process, whether a candidate UAV can satisfy
the energy constraint is the most important factor, and we describe this effect with a
step function.

φ(wr
k(t)− pw) =

{
1, wr

k(t)− pw ≥ 0,
0, others.

(23)

where pw is the estimated power consumption.
Another factor that should be taken into consideration is the duration damage of

tasks, and it should be as small as possible. In addition, the urgency decreases when the
supply requirements of the task node are delivered. The greater the delivery, the greater
the decrease in urgency and the greater the revenue. Therefore, we calculate the revenue
revenuekr

i of UAV uk for the task vi at r-th trip with the following equation.

revenuekr
i = φ(wr

k(t)− pw)× (
∫ t

0
ei(τ)dτ +

ei(0)
mi(0)

× qkr
i ) (24)

As a bidder, the UAV will choose the task i with the highest net revenue for bidding.
In addition to the value of the revenue, the bidding value bidkr

i for the task i also needs to
consider the price of the task itself with the following equation.

bidkr
i = revenuekr

i − max
j∈V\{i}

{revenuekr
j − pj}+ ε (25)

3.2.3. Selection Strategies

In the pre-authorization phase, the announcer receives the bid information from the
UAV and completes the assignment of tasks. In the auction process, the announcer will
pre-authorize different tasks for different UAVs. The key to this phase is the selection
strategy for task assignment. The announcer receives all UAVs’ bids and constructs a set
BID. Then, the announcer selects the bidder with the maximal bidding value for task i. If
bidkr

i is selected, it must meet the following constraint.

bidkr
i ≥ bidk

′
r
′

i , ∀bidkr
i , bidk

′
r
′

i ∈ BID (26)

In the auction process, what we need to pay attention to is that when the bidding
value is 0, the corresponding UAV will not be treated as a valid bidder, and it will not be
added to the BID set. When a UAV k is pre-authorized for task i, the price pi of task i is
updated to its bid value with following equation.

pi = bidkr
i (27)
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A case exists with more than two UAVs bidding for the same task, but the task can
only be pre-authorized for one UAV. At this moment, the UAV that is not pre-authorized
needs to go back to the bidding stage and re-enter the bidding based on the latest task
prices, while the pre-authorized UAV does not have to.

3.3. Simulated Annealing Integrated with CPLEX

We propose simulated annealing integrated with CPLEX (SA-CPLEX) to further
improve the quality of the initial solution. The outline of SA-CPLEX is presented in
Algorithm 1. The SA algorithm was first proposed to solve combinatorial optimization
problems by Kirkpatrick et al. [35], and it provides an effective way of solving the TSP and
VRP problems, which are difficult to deal with when using traditional methods [36]. The
SA algorithm is a stochastic search algorithm based on the Monte Carlo iterative solution
strategy, and its main idea is based on the similarity between the annealing process of solids
in physics and general combinatorial optimization problems. Stochasticity is reflected in
accepting a worse solution with a certain probability instead of accepting only the current
optimal solution. With random factors introduced into the search process, it can avoid being
prematurely trapped in a local minimum, and the global optimal solution can possibly
be obtained.

Algorithm 1: Proposed Algorithm.

Input : (V
′
, E), U, R; T0, T

′
, β, MaxInnerIter;

Output : SOL∗, f ∗.

1 Constructing Initial Solution SOL0, including SOL_Route0 and SOL_Quantity0;
2 Initial: inneriter ← 0, and SOL∗, SOL

′ ← SOL0;
3 Calculate f ∗, f

′
from SOL0;

4 temp← T0;
5 while temp > T

′
do

6 Search SOL_Route in the neighborhood of SOL_Route
′
;

7 Calculate SOL_Quantity from SOL_Route by CPLEX;
8 while SOL_Quantity is no solution do
9 if inneriter == MaxInnerIter then

10 SOL_Route← SOL_Route∗;
11 SOL_Quantity← SOL_Quantity∗;
12 break;

13 inneriter ← inneriter + 1;
14 Calculate SOL_Quantity from SOL_Route by CPLEX;

15 SOL← SOL_Route, SOL_Quantity;
16 Calculate f from SOL;
17 delta_ f = f − f

′
;

18 if delta_ f < 0 then
19 SOL

′ ← SOL;
20 f

′ ← f ;
21 if f < f ∗ then
22 SOL∗ ← SOL;
23 f ∗ ← f ;

24 else if rand < exp(delta_ f /temp) then
25 SOL

′ ← SOL;
26 f

′ ← f ;
27 temp← temp× β;

Four parameters—T0, T
′
, β, and MaxInnerIter—are defined for the SA algorithm. T0,

T
′
, and β(0 < β < 1) are the typical parameters used in SA for, respectively, the initial
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temperature, the final temperature, and the cooling factor. MaxInnerIter represents a
threshold of the number of non-solutions at a particular temperature. The general structure
of SA comes from Kirkpatrick et al. [35].

First, the initial solution SOL0 is constructed by an improved auction algorithm. We
initialize inneriter, SOL∗, SOL

′
, f ∗, f

′
, temp as shown in lines 2∼4, and all of them will be

updated in the following calculation process. When the current temperature temp is greater
than the final temperature T, the search process will continue. As mentioned previously,
the solution SOL is composed of the delivery route SOL_Route and the delivery quantity
SOL_Quantity, but only the former generates a new neighborhood solution according to
different search operators (as described in Section 3.3.1). SOL_Quantity is based on the
determination to convert the model into an MILP, and the optimal delivery quantity is
found by the CPLEX optimizer (as described in Section 3.3.2).

Due to the specificity of the model, including the multiple trips and separable demands,
the solution space is huge, which leads to the generation of many infeasible neighborhood
solutions and the consumption of an unnecessarily large amount of computing power, i.e.,
after the new SOL_Route is determined, no feasible SOL_Quantity can be found, so internal
iterations such as those in lines 7∼14 are necessary. However, when the number of internal
iterations reaches the threshold of MaxInnerIter, we reset the neighborhood solution to the
current optimal solution and reduce the temperature to avoid the deadlock phenomenon.

When the new neighborhood solution SOL is generated, we compute its objective
function value f and cause it to differ from the initial value f

′
of the current temperature,

which is denoted as delta_ f (line 17). If the objective function value is improved (delta_ f is
less than 0), SOL

′
is replaced by SOL. If the current optimal objective function value f ∗ is

improved ( f < f ∗), SOL∗ and f ∗ will be replaced by SOL and f , respectively (lines 18∼23).
If SOL is worse than SOL

′
, a random number rand (0 < rand < 1) is generated and

compared with exp(delta_ f /temp) (line 24). This operation introduces a stochastic factor to
the search process, which can effectively prevent it from being trapped in a local optimum.
If rand is less than exp(delta_ f /temp), we will accept SOL and update SOL

′
, f
′

according
to lines 25∼26. At the end of the search round, we need to decrease the temperature and
continue iterating.

3.3.1. Random Search of Delivery Routing

The proposed algorithm uses a random neighborhood structure that features seven
types of moving operators, including Swap-Single, Move, Insert, Delete, Swap-All, 2-Swap-
Single, and 2-Swap-All. Figure 3 illustrates how we implement all moves in the solution
representation to generate a new neighborhood delivery routing. In Figure 3, black dots
indicate the depot, light blue indicates the task nodes, and red and blue indicate the task
nodes that are about to perform the moving operators.

The first operator is focused on the swap of two routing nodes on the same UAV and
randomly selects only one UAV. However, for Swap-All, all UAVs will perform Swap-Single,
2-Swap-Single focuses on swapping four different routing nodes on the same UAV, and
2-Swap-All means that all UAVs will perform 2-Swap-Single. Move is done by selecting
one position randomly and moving it into the position before another randomly selected
position, but the node being moved cannot be a depot. The following two operators are
Insert and Delete. Insert is used by selecting a random node and converting it into a random
position. Delete is similar to it, but the deleted node cannot be a depot or a node that has
only been visited once in the current solution.

The search intensity of these seven operators gradually increases, and all of them are
used randomly and repeatedly until no further improvement is obtained. Implementing
these moves will change the solution structure. It is not only limited to the route sequence,
but also the times at which nodes are visited (as explicitly done by Insert and Delete). When
the delivery route is determined, the time for the UAV to visit each node is also determined.
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Figure 3. Illustration of the creation of a new delivery routing sequence using seven operators.
(a) Swap-Single. (b) Move. (c) Insert. (d) Delete. (e) Swap-All. (f) 2-Swap-Single. (g) 2-Swap-All.
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3.3.2. Exact Search of Delivery Quantity

In Section 2.3, there are two types of decision variables for the MTTDVRP-SD. If both
decision variables are considered together, the solution search process can be very difficult.
In Section 3.3.1, we first generate a new SOL_Route with seven moving operators. When
SOL_Route is determined, the value of the decision variable xkr

ij can be determined based

on the representation of the solution shown in Figure 2. Then, by bringing xkr
ij into the

MTTDVRP-SD, a simplification of the MILP model is achieved and can be solved directly
by the CPLEX optimizer. At this time, the optimal delivery quantity under this delivery
route can be found, and the combination of the delivery route and delivery quantity forms
a new neighborhood solution, which then participates in the next iteration round.

The degraded model is composed of Equations (3), (5), (7), (8), (12), (13), (20), and (21).
However, the objective function (Equation (3)) needs to be rewritten, as shown in the
following.

f = min{max
j∈V

∑
nj
n=1 (ej(Tn

j ) + ej(Tn−1
j ))× (Tn

j − Tn−1
j )/2} (28)

where nj denotes the times at which node j was visited; Tn
j denotes the time at which node

j was visited for the n-th time, and T0
j = 0, j ∈ V. According to Equation (2), ej(Tn

j ) can be
calculated as follows.

ej(Tn
j ) = ej(Tn−1

j ) + α× (Tn
j − Tn−1

j )−
ej(0)
mj(0)

× qn
j (29)

where qn
j denotes the delivery quantity of node j accepted for the n-th time, and it is

different from the definition of qkr
j . However, they can be transformed into each other.

When SOL_Route is determined, we can calculate how many times each node is visited, the
time of the the visits, and the number of qn

j . Then, we sort the multiple visit times of node j,
and we can establish the relationship between (k.r) and n. Based on this relationship, the
transformation between qn

j and qkr
j can be achieved.

Until now, this simplified model has still not become a standard MILP model. We need
to introduce a new decision variable C to convert the Minimax of the objective function
into a minimum value problem. Then, we reformulate the objective function of Equation (3)
as shown in Equation (30) and add NV + 1 constraints, as in Equation (31).

f = min c (30)


∑n1

n=1 (e1(Tn
1 ) + e1(Tn−1

1 ))× (Tn
1 − Tn−1

1 )/2 ≤ c
...

∑
nNV
n=1 (eNV (T

n
NV

) + eNV (T
n−1
NV

))× (Tn
NV
− Tn−1

NV
)/2 ≤ c

c ∈ R

(31)

Using the above method, the model is successfully degraded to a standard MILP
model, which can be solved exactly by the CPLEX optimizer. This can quickly find the
optimal SOL_Quantity under a new SOL_Route or demonstrate that there is no feasible
solution while favorably reducing the computational resources of the search process.

4. Experiments and Discussion

The proposed algorithm was coded in C++, and the MILP model was solved with IBM
ILOG CPLEX Optimization Studio 22.1.0.0. All of the experiments were conducted using
Visual Studio 2022 platform, the CPU was an Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz
3.00GHz, and the OS was Windows 7.
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4.1. Test Instances for the MTTDVRP-SD

To illustrate how the MTTDVRP-SD behaves in general, we averaged the results
of some randomly generated instances of each scenario. The scenarios were conducted
on three different scales, which are displayed in Table 1. Each instance consisted of a
rectangular area of 4000× 4000 m. We generated 10 random instances for each scale of the
scenario. In each instance, the disaster camps were uniformly distributed throughout the
area and were given a uniform random demand of 6∼10 units; the initial urgency of the
disaster camps was a random value in the range of 0.1∼0.4, and the parameter of urgency
changed over time α = 0.0002; the depot was randomly located at the boundary location
of the area. We ran the A-SA-CPLEX algorithm 30 times per instance and calculated the
average, standard deviation, and average runtime for these 30 runs. The same was true for
the implementation of the comparison algorithm and the comparison model.

Table 1. Parameters of instances.

Scale Number of Task Nodes (NV ) Number of UAVs (NU )

Small 30 3
Medium 50 5

Large 100 10

The parameters of the UAVs were derived from some public sources and scaled
accordingly to fit the case scenario. The maximum capacity of each UAV was in the
range of 14∼17 units, which included the payload and self-weight, with the self-weight
G = 2 units. The average speed of each UAV during the task was constant, between
15∼20; the maximum battery capacity was a random value between 6000∼7000. In this
section, unless mentioned otherwise, when running the SA part, the initial temperature
was Y = 500, the final temperature was Y

′
= 0.1, the cooling factor was ∆ = 0.999, and the

number of rounds was Λ = 10,000.

4.2. Results of the A-SA-CPLEX Algorithm

In this section, we use the instance s_1 as an example to illustrate the solution process
of the A-SA-CPLEX algorithm and to show the optimal solution. Figure 4 shows the
convergence trend of the A-SA-CPLEX algorithm. The objective function values in the
figure are the solutions after each iteration of the algorithm, instead of recording only
the optimal solution for the current iteration. As can be seen, the algorithm experiences
an intense oscillation in the early stages, which is because the SA algorithm has a higher
probability of accepting poorer solutions at the beginning of the iteration, which helps to
jump out of the local optimal solution. After about 5000 iterations, the algorithm reaches a
plateau and obtains a current iterative optimal solution with an objective function value
below 400.

Figure 5 gives information about the optimal delivery routing and delivery quantity
found by the A-SA-CPLEX algorithm, and the arrival time of the task node is implicitly
represented by the delivery routing. In Figure 5, the three lines together consist of the
solution, and they represent the execution schemes of UAVs u1, u2, and u3, respectively.
The red circles indicate depots, the blue circles indicate task nodes, and the numbers in
the circles are the serial numbers of the nodes. The numbers below the red circles indicate
the quantities of supplies loaded from the depot for this trip, and the numbers inside the
brackets indicate the maximum loading capacity of that UAV. The numbers below the blue
circles indicate the quantity of supplies delivered to that task node. Under this optimal
dispatching strategy, the maximum duration damage is 359.71 among all task nodes. From
the solutions, each UAV made multiple trips, with UAV u1 making six trips, u2 making
four trips, and u3 making five trips. On the other hand, the supply demands of the existent
task nodes were distributed and delivered; for example, task nodes v10, v12, v13, v17, v18,
and v24 were split into two deliveries.
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Figure 4. Convergence trend of the A-SA-CPLEX algorithm in the instance s_1.
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Figure 5. Solution of the instance s_1.

4.3. Comparative Analysis of the Algorithms

To explore the performance of the algorithm, ten instances for each different scale were
randomly generated with the method described above and used to conduct the experiment.
For each instance, the results of the proposed algorithm were used for a comparison
with the results of other algorithms. The compared algorithms included the R-SA-CPLEX
algorithm, A-SA algorithm, and A-GA-CPLEX algorithm. The R-SA-CPLEX algorithm
is an improvement of the random initial feasible solution using the proposed SA-CPLEX
method. The A-SA algorithm optimizes the initial solution constructed by the proposed
auction method using only SA. The A-GA-CPLEX algorithm uses the GA framework for
solving; however, the initial population is composed of the initial solution constructed by
the proposed auction method and some random feasible solutions.

Table 2 presents all of the experimental results obtained by the four algorithms for
30 instances in three scales. Each algorithm was run 30 times, and the average results are
displayed. The first column of the table contains the three scales of the instance. The second
column contains the names of all instances. Column 3∼5, 6∼8, 9∼11, and 12∼14 show
the statistical results, which include the average and standard deviation of the objective
function value, as well as the average runtimes of the four algorithms. The last three
columns show the relative reduction in the average value of the objective function for each
of the two compared algorithms with respect to the proposed algorithm. The subsequent
tables have similar meanings.

Before analyzing the results of the four algorithms further, we performed a statistical
analysis of the performance of the A-SA-CPLEX algorithm and the comparison algorithms.
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Although presenting the results of multiple optimizations of an algorithm as an average
and standard deviation is a valuable way to proceed, statistical analysis is important for the
investigation of significant differences in performance between algorithms and to overcome
randomness [37]. Therefore, in this paper, the Wilcoxon rank-sum test was used to perform
nonparametric statistical tests to test the significance of the results for all 30 instances of the
three scales mentioned above.

The p-value is a form of output from the Wilcoxon rank-sum test. If the p-value of two
random datasets after the Wilcoxon rank-sum test is less than 0.01, the two datasets can be
considered statistically significant at the 99% confidence level, i.e., significantly different;
conversely, the two datasets are not accepted as significantly different at the 99% confidence
level. The results of the Wilcoxon rank-sum test are shown in Table 3. In all instances, the
p-values of the results of the A-SA-CPLEX and R-SA-CPLEX algorithms were less than 0.01,
while the p-values with the A-SA algorithm were greater than 0.01. For the A-GA-CPLEX
algorithm, there were two large-scale instances with p-values greater than 0.01, while those
of all other instances were less than 0.01. Therefore, it can be concluded that at a 99%
confidence level, it can be considered that A-SA-CPLEX is significantly different from the
R-SA-CPLEX algorithm, while it is not significantly different from the A-SA algorithm.
For most instances, the A-GA-CPLEX can be considered significantly different from the
R-SA-CPLEX algorithm at the 99% confidence level. In the following, we further analyze
the performance of the different algorithms.

For small-scale instances, the proposed algorithm in this paper shows a decrease
of 27.11% to 39.39% in the objective function value compared to the solution of the con-
ventional R-SA-CPLEX algorithm. For the other two scale instances, this decrease is also
significant. In the medium-sized instances, this decrease ranges from 28.30% to 44.25%,
while in the large scale, it ranges from 14.41% to 35.63%. Since the value of the objective func-
tion decreases by around 30% for the solutions at the three scales, it can be demonstrated
that the proposed algorithm has a great advantage over the conventional R-SA-CPLEX
algorithm in terms of the quality of the solutions. The probable reason is that, for the
MTTDVRP-SD model, which includes a two-layer optimization of delivery routing and
delivery quantity, the solution space is large, and the form of the solution has a great
influence on the solution search.

The performance improvement of the proposed algorithm is also significant compared
to that of the A-GA-CPLEX algorithm. In small-scale instances, the objective function value
of the A-SA-CPLEX algorithm decreases by 21.42%∼31.54% compared to the A-GA-CPLEX
algorithm. Similarly, in the medium-scale instances, there is a decrease of 28.46%∼41.34%.
However, in the large-scale instances, there are two instances (l_5 and l_10) where both
algorithms have the same performance. This is because both algorithms cannot continue
optimizing the initial solution constructed by the auction algorithm. Further, in comparison
with the R-SA-CPLEX algorithm, the computational results of the A-GA-CPLEX algorithm
are shown to be superior in 22 instances. This is because with the design of the A-GA-CPLEX
algorithm, the initial population contains an initial solution constructed by the auction
algorithm. However, for the R-SA-CPLEX algorithm, the initial solution is constructed
randomly. This indicates that the initial solution is important in the MTTDVRP-SD.

On the other hand, we can see that the quality of the solution of the proposed algo-
rithm is basically not improved compared to that of the A-SA algorithm. This is because
we transformed the problem model into an MILP model when we determined the neigh-
borhood solution of the delivery route using the SA method. In terms of the quality of the
solution, it is about the same at this point to use the SA method or the CPLEX optimizer to
determine the delivery quantity; the main difference may be the computing time.
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Table 2. Results of comparing the four algorithms under three scale instances.

Scale Name

R-SA-Cplex A-GA-CPLEX A-SA A-SA-Cplex Comparison

Avg. f Std. f Time
(s) Avg. f Std. f Time

(s) Avg. f Std. f Time
(s) Avg. f Std. f Time

(s)

(R-SA-CPLEX -
A-SA-CPLEX)
/R-SA-CPLEX

(A-GA-CPLEX -
A-SA-CPLEX)
/A-GA-CPLEX

(A-SA-
A-SA-CPLEX)

/A-SA

Small
Scale

s_1 584.17 157.32 48.93 531.94 46.24 101.68 388.15 35.82 206.97 379.94 33.54 62.89 33.56% 28.57% 2.12%
s_2 515.50 44.37 36.58 497.54 51.00 100.67 375.74 31.55 205.90 389.44 36.56 52.14 27.11% 21.73% −3.65%
s_3 565.84 287.07 47.71 483.10 48.53 108.80 363.92 36.93 231.88 379.61 42.26 56.47 35.68% 21.42% −4.31%
s_4 496.90 228.20 57.05 415.17 42.73 107.29 301.18 35.19 234.67 308.69 33.85 59.36 39.39% 25.65% −2.49%
s_5 661.49 271.12 48.22 618.07 75.64 105.85 407.49 30.34 238.68 423.13 31.31 63.12 38.40% 31.54% −3.84%
s_6 458.67 36.66 37.42 439.72 50.45 103.62 323.29 26.67 224.58 327.07 24.55 57.45 29.52% 25.62% −1.17%
s_7 545.72 160.79 48.44 506.67 98.68 170.28 370.83 38.15 244.68 380.34 32.91 72.79 32.05% 24.93% −2.56%
s_8 548.25 123.49 48.48 524.49 49.81 92.98 378.68 26.11 229.12 377.18 28.39 63.35 30.93% 28.09% 0.39%
s_9 515.34 53.43 36.94 474.37 50.10 102.28 363.76 28.63 242.74 367.75 32.46 58.44 29.41% 22.48% −1.10%
s_10 522.21 139.29 49.48 520.00 71.31 109.73 379.37 26.21 231.80 359.30 32.59 61.17 27.35% 30.90% 5.29%

Medium
Scale

m_1 717.40 43.87 51.65 754.15 46.96 116.90 487.82 39.84 521.60 494.73 42.15 70.99 32.00% 34.40% −1.42%
m_2 806.94 225.66 80.20 783.41 48.35 117.28 511.23 55.41 547.05 503.44 42.38 76.18 36.65% 35.74% 1.52%
m_3 695.63 67.77 48.20 774.51 63.40 170.49 449.99 33.35 565.60 454.33 44.68 78.15 35.31% 41.34% −0.97%
m_4 726.29 211.56 78.18 794.52 69.43 108.52 479.91 33.95 581.31 470.72 35.24 76.01 33.92% 40.75% 1.92%
m_5 722.52 101.66 56.88 693.08 33.62 108.81 487.76 36.44 552.68 486.28 50.02 70.91 32.49% 29.84% 0.30%
m_6 879.41 381.35 94.43 707.23 39.97 124.69 490.30 44.08 582.47 505.97 38.13 72.44 44.25% 28.46% −3.20%
m_7 827.99 186.05 64.02 840.53 58.18 108.14 530.51 51.71 568.87 523.73 44.76 79.34 35.93% 37.69% 1.28%
m_8 648.55 145.98 58.41 655.82 37.80 129.69 464.98 55.22 592.54 447.71 48.42 70.84 28.30% 31.73% 3.71%
m_9 851.94 217.45 62.87 871.43 50.81 116.90 551.53 44.46 581.77 558.33 55.95 73.75 35.26% 35.93% −1.23%

m_10 829.19 334.25 100.29 711.84 52.42 118.64 475.71 43.00 551.32 482.05 46.48 89.90 42.63% 32.28% −1.33%

Large
Scale

l_1 919.96 68.54 75.21 829.61 50.17 697.23 605.15 34.49 2294.73 616.36 38.67 141.19 34.22% 25.70% −1.85%
l_2 989.16 90.38 74.69 971.47 42.34 938.39 664.30 57.07 2346.96 676.99 49.94 158.01 32.84% 30.31% −1.91%
l_3 1248.19 87.70 75.62 1171.94 13.78 1002.05 809.52 56.16 1415.81 799.10 65.71 172.20 35.14% 31.81% 1.29%
l_4 1015.97 64.15 74.88 941.38 47.89 718.53 653.98 44.88 1397.94 653.81 37.81 145.75 35.63% 30.55% 0.03%
l_5 934.31 66.13 75.23 727.50 0.00 1042.44 727.50 0.00 1799.83 727.50 0.00 628.22 22.13% 0.00% 0.00%
l_6 949.17 70.86 75.20 816.56 41.36 694.05 625.93 45.23 2260.12 630.77 53.80 141.48 34.06% 22.75% −0.77%
l_7 1038.95 69.43 75.06 1067.85 51.26 837.51 703.96 60.47 2383.37 717.09 60.83 152.97 32.24% 32.85% −1.87%
l_8 1139.70 88.37 76.69 1271.90 9.83 1010.65 802.30 58.45 1414.42 789.39 51.37 167.56 29.60% 37.94% 1.61%
l_9 1051.74 77.10 76.27 938.61 39.95 705.22 699.09 55.40 2336.35 713.99 48.66 142.03 33.53% 23.93% −2.13%

l_10 952.91 46.35 75.68 815.60 0.00 949.62 815.60 0.00 2746.52 815.60 0.00 526.58 14.41% 0.00% 0.00%

Note: Avg. is an abbreviation for average and Std. is an abbreviation for standard deviation.
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Table 3. Results from the Wilcoxon test.

Scale Name

p-Value

R-SA-CPLEX
vs.

A-SA-CPLEX

A-GA-CPLEX
vs.

A-SA-CPLEX

A-SA
vs.

A-SA-CPLEX

Small
Scale

s_1 <0.01 <0.01 0.27
s_2 <0.01 <0.01 0.14
s_3 <0.01 <0.01 0.72
s_4 <0.01 <0.01 1.00
s_5 <0.01 <0.01 0.00
s_6 <0.01 <0.01 0.72
s_7 <0.01 <0.01 0.14
s_8 <0.01 <0.01 0.72
s_9 <0.01 <0.01 1.00
s_10 <0.01 <0.01 0.07

Medium
Scale

m_1 <0.01 <0.01 1.00
m_2 <0.01 <0.01 0.47
m_3 <0.01 <0.01 0.72
m_4 <0.01 <0.01 0.47
m_5 <0.01 <0.01 0.72
m_6 <0.01 <0.01 0.47
m_7 <0.01 <0.01 0.14
m_8 <0.01 <0.01 0.27
m_9 <0.01 <0.01 0.47

m_10 <0.01 <0.01 1.00

Large
Scale

l_1 <0.01 <0.01 0.27
l_2 <0.01 <0.01 0.14
l_3 <0.01 <0.01 0.47
l_4 <0.01 <0.01 0.72
l_5 <0.01 1.00 1.00
l_6 <0.01 <0.01 1.00
l_7 <0.01 <0.01 0.47
l_8 <0.01 <0.01 0.72
l_9 <0.01 <0.01 0.14

l_10 <0.01 1.00 1.00

Analyzing the computation time of the four algorithms in different scale instances, we
can see that the computation time of the R-SA-CPLEX algorithm is less than that of the
proposed algorithm. However, in the small- and medium-scale instances, this computing
time advantage is only about 15 s. In the large-scale instances, this advantage is about
three times faster, close to 2 min. To some extent, it shows that the disadvantage of the
computational speed of the proposed algorithm compared to the R-SA-CPLEX algorithm
becomes more and more obvious as the problem size increases, but it is still within an
acceptable range. For the A-GA-CPLEX algorithm, the runtime is longer compared to
that of the A-SA-CPLEX algorithm. In both the small- and medium-scale instances, this
runtime disadvantage is less pronounced, at less than 1 min. However, at a large scale, this
disadvantage is more than 10 min. Unfortunately, the disadvantage of the computational
speed of the A-SA algorithm becomes very obvious. As the scale of the problem increases,
the computing time of the A-SA algorithm increases exponentially. In the large-scale
instances, the computation time of the A-SA algorithm is about nine times greater than
that of the A-SA-CPLEX algorithm, and the average time taken is about 34 min. This is
unacceptable for emergency rescue problems.
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Furthermore, by analyzing the standard deviation of the objective function for each
instance, we can clearly conclude that the A-SA-CPLEX and A-SA algorithms are more
stable than the R-SA-CPLEX algorithm. The stability of the solution is also very important
for life-related optimization problems, such as an emergency rescue.

4.4. Comparative Analysis of the Models

In a previous paper, we learned that the main innovations of the MTTDVRP-SD model
are the multiple trips of UAV, the time dependence of task information, and split delivery.
In the following, we will illustrate the practicality and superiority of the MTTDVRP-SD
model in terms of theoretical analysis or experimental validation. The superiority of using
multiple trips is obvious. First, the cost of manufacturing UAVs is expensive in comparison.
Under a fixed cost, the problem may not find a solution if a UAV is not reused [31]. Second,
in the emergency rescue environment, rescue teams often have a higher capacity for raising
life supplies than UAVs. This makes it difficult to find enough UAVs to enable a single
departure, meaning that the sum of all task demands is less than the single-load capacity of
all UAVs. Regarding the time dependence of the task information, this is a mathematical
description of an earthquake disaster area and it is necessary. On the other hand, regarding
the necessity of split delivery, we intend to conduct an experimental verification. The
30 instances of different scales from the previous subsection were still chosen and solved
with the proposed A-SA-CPLEX algorithm. The experiment was repeated 30 times for each
instance, and the average, standard deviation, and average runtime were calculated. The
difference was that the comparison model did not allow split delivery, and the comparison
model can be noted as MTTDVRP.

Table 4 shows the benefits of allowing split delivery. We can see that in all 30 random
instances, allowing split delivery produces a solution that is less damaging to the task
nodes, with at least a 20% reduction in this damage. The standard deviations of the
objective functions of the two models were also analyzed, and it was found that the
standard deviation of the MTTDVRP-SD model was relatively smaller and more stable.
However, the runtime of the algorithm under the MTTDVRP model was longer, although
the difference in solution time between the two models is not obvious from the results in
Table 4.

The model comparison results for the three different scale instances were analyzed
separately and represented in the form of box plots [38], as shown in Figure 6. We can see
that as the instance went from a small and a medium to a large scale, the median results
of the two model comparisons decreased from 52.67% to 48.22%, and then to 34.11%. To
a certain extent, this indicates that the superiority of the MTTDVRP-SD model over the
MTTDVRP gradually decreases as the problem’s scale increases. However, in large-scale
instances, there is still an advantage of about 34%. The reason for this phenomenon may be
that as the problem size increases, the number of UAVs and tasks increases, but the area
of the region remains the same, which leads to a greater spatial density of tasks and, later,
partially offsets the advantage of split delivery a bit.
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Table 4. Results of comparing the two models under three scale instances.

Scale Name

MTTDVRP MTTDVRP-SD Comparison

Avg. f Std. f Runtime
(s) Avg. f Std. f Runtime

(s)

(MTTDVRP-
MTTDVRP-SD)

/MTTDVRP

Small
Scale

s_1 796.58 199.13 43.90 379.94 33.54 62.89 52.30%
s_2 778.40 98.70 40.88 389.44 36.56 52.14 49.97%
s_3 780.39 128.11 39.93 379.61 42.26 56.47 51.36%
s_4 683.31 112.03 41.06 308.69 33.85 59.36 54.82%
s_5 988.15 151.05 44.11 423.13 31.31 63.12 57.18%
s_6 667.37 126.28 39.91 327.07 24.55 57.45 50.99%
s_7 922.82 0.00 37.63 380.34 32.91 72.79 58.79%
s_8 803.23 136.57 42.21 377.18 28.39 63.35 53.04%
s_9 704.70 138.34 41.23 367.75 32.46 58.44 47.81%
s_10 767.07 100.14 41.63 359.30 32.59 61.17 53.16%

Medium
Scale

m_1 932.62 83.57 56.53 494.73 42.15 70.99 46.95%
m_2 1031.15 149.39 52.02 503.44 42.38 76.18 51.18%
m_3 818.79 69.40 48.11 454.33 44.68 78.15 44.51%
m_4 993.61 122.41 47.04 470.72 35.24 76.01 52.63%
m_5 826.90 92.17 47.26 486.28 50.02 70.91 41.19%
m_6 902.68 143.82 46.46 505.97 38.13 72.44 43.95%
m_7 1117.83 112.30 47.40 523.73 44.76 79.34 53.15%
m_8 794.84 106.87 49.55 447.71 48.42 70.84 43.67%
m_9 1105.22 135.88 45.93 558.33 55.95 73.75 49.48%

m_10 972.37 135.99 46.65 482.05 46.48 89.90 50.43%

Large
Scale

l_1 1015.89 104.89 96.20 616.36 38.67 141.19 39.33%
l_2 1028.96 95.56 99.79 676.99 49.94 158.01 34.21%
l_3 1210.82 128.89 100.10 799.10 65.71 172.20 34.00%
l_4 1003.74 96.57 101.56 653.81 37.81 145.75 34.86%
l_5 963.91 56.80 99.06 727.50 0.00 628.22 24.53%
l_6 990.26 112.83 91.14 630.77 53.80 141.48 36.30%
l_7 1028.96 100.01 97.89 717.09 60.83 152.97 30.31%
l_8 1177.57 86.40 102.51 789.39 51.37 167.56 32.96%
l_9 1103.27 109.39 96.21 713.99 48.66 142.03 35.28%

l_10 1026.62 121.50 95.62 815.60 0.00 526.58 20.55%
Note: Avg. is an abbreviation for average and Std. is an abbreviation for standard deviation.
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Figure 6. A box plot showing the model comparison results for the three scale instances.

5. Conclusions

In this paper, we consider a variant model of the VRP (i.e., MTTDVRP-SD) that is
more suitable for post-disaster emergency delivery scenarios. Based on the VRP, new
conditions, such as multiple trips of a UAV, task information changing over time, and
splittable task demands, are considered. It is also necessary to satisfy the UAV loading and
maximum power constraints. We propose a mathematical description of the MTTDVRP-
SD based on undirected graphs and decompose the optimization process into two layers
of optimization—delivery routing and delivery quantity—but both of them are related.
Based on the SA framework, we developed an efficient A-SA-CPLEX algorithm to further
optimize the initial solution generated by the improved intelligent auction algorithm. We
first determined the random delivery routing neighborhood based on the SA algorithm,
and then mathematically transformed the original model into an MILP problem that can
be solved quickly by the CPLEX optimizer, thus greatly improving the computational
efficiency. Finally, numerical experiments were conducted. Instance s_1 was used as an
example to illustrate the solution process of the A-SA-CPLEX algorithm and to show the
optimal solution. The effectiveness and efficiency of the proposed algorithm were verified
by comparing four algorithms in 30 examples of three scales: small, medium, and large. The
results of the Wilcoxon rank-sum test showed that the proposed algorithm was significantly
better than the R-SA-CPLEX algorithm and the A-GA-CPLEX algorithm, and that it was
comparable to the A-SA algorithm at the 99% confidence level. On the other hand, the
computational efficiency of the proposed algorithm was better compared to that of the
R-GA-CPLEX algorithm and was slightly weaker compared to that of the R-SA-CPLEX
algorithm, but still within an acceptable range. However, the computational efficiency
of the A-SA algorithm was significantly lower than that of the proposed algorithm and
decreased exponentially as the problem’s scale increased. We also explored the advantages
of the MTTDVRP-SD model, theoretically analyzed the advantages of multiple trips and
time dependence, experimentally analyzed the advantages of split delivery, and attained
some valuable conclusions.

There are more powerful algorithms that can be developed to effectively solve
the MTTDVRP-SD. Naturally, for each particular problem, we need more realistic modeling
for the details of the problem in order to generate higher application value. In the future,
we will consider conducting research on such problems in dynamic scenarios while taking
more practical aspects, such as hardware, into account.
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Notations
Some of the parameters involved in the model and their meanings are as follows.
Indices
i, j Index of task nodes’ serial numbers, i, j ∈ V
k Index of UAVs’ serial numbers, k ∈ U
r Index of UAV departures, r ∈ R
Sets
U Set of UAVs
V Set of task nodes
V
′

Set of nodes, a supply depot node is added compared to V
R Set of UAV trips
Parameters
NU Number of all UAVs
NV Number of all task nodes
Nk

R
The maximum number of trips of the UAV k

Dij Euclidean distance between task nodes i and j
(xi, yi) The two-dimensional coordinates of the task node i
(x0, y0) The two-dimensional coordinates of the depot 0
α Parameters of urgency over time
Wk The maximum safety energy of the UAV k
Lk Upper limit of the loading capacity of the UAV k
G Self-weight of the UAV k
δ Parameters of UAV’s energy consumption with time and weight
Sk Speed of the UAV k
Variables
t Discrete time series
Tkr

i The moment when node i is visited in the r-th trip of UAV k
Tend

i The moment when the supply demands of node i are fully satisfied
mi(t) The supply demand of the task node i at moment t
ei(t) The urgency of the task node i at moment t
str

k Start time of the r-th trip of the UAV k
etr

k Finish time of the r-th trip of the UAV k
dk

i Euclidean distance from the UAV k to the task node i
wr

k(t) The remaining energy of the r-th trip of the UAV k at moment t
lr
k(t) The loading of the r-th trip of the UAV k at moment t
(xk(t), yk(t)) Two-dimensional coordinates of the UAV k at t moments

xkr
ij

Binary decision variable, if the UAV k makes its r-th trip from node i to node j,
xkr

ij =1; otherwise, xkr
ij = 0

qkr
j

Decision variables, the quantity of supply delivered by the UAV k on its r-th trip
to task node i
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