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Abstract: Many formulas of improper integrals are shown every day and need to be solved in different
areas of science and engineering. Some of them can be solved, and others require approximate
solutions or computer software. The main purpose of this research is to present new fundamental
theorems of improper integrals that generate new formulas and tables of integrals. We present six
main theorems with associated remarks that can be viewed as generalizations of Cauchy’s results and
LS. Gradshteyn integral tables. Applications to difficult problems are presented that cannot be solved
with the usual techniques of residue or contour theorems. The solutions of these applications can
be obtained directly, depending on the proposed theorems with an appropriate choice of functions
and parameters.
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1. Introduction

In recent decades, many improper integrals have emerged in various fields of science,
physics, and engineering [1-5], and these integrals are very important when dealing with
mathematical applications. Therefore, many mathematicians try to discover new theo-
rems and techniques to calculate them. The importance of these integrals arose because
of their application in applied mathematical physics, electrical engineering, etc. [6-11].
Some of these integrations can be solved directly, and others require long and hard calcu-
lations. Some of these integrals cannot be solved manually and need computer software
such as Mathematica and Maple to be solved. In addition, sometimes numerical meth-
ods can be used to solve some improper integrals that cannot be solved using previous
methods [12-18].

The evaluation of improper integrals is a process that does not depend on any specific
rules or techniques that can be applied directly. Many methods and theorems have been
introduced and implemented by mathematicians and researchers to present a closed ex-
pression for indefinite integrals, such as the technique of double integrals, series methods,
residual theorem, calculus under the integral sign, and other methods that are used to
exactly or approximately solve improper complex integrals (see [19-23]).

In recent years, many researchers have investigated new theorems to compute im-
proper integrals. The first was the residue theorem, which was introduced by Cauchy
in 1826, and it is considered as one of the most powerful tools in computing improper
and contour integrals. Many other researchers have studied improper integrals such as
Ramanujan who presented Ramanujan’s master theorem [24-26], which gives expressions
for the Mellin transform of any continuous analytic function in terms of its Taylor expan-
sion. The study of the application of such integrals has continued and appeared in solving
integral equations, integral transforms, fractional calculus, and differential equations as
well as other applications that include the procedure of computing integrals (see [27-30]).
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The proposed results in this work are applicable to solving and generating some
families of improper integrals and integral transforms. The main goal of this work is
to simplify the procedure of computing improper integrals that might take a long time
and effort to solve or that cannot be solved manually. The outcomes of this study can
be generalized and stated in tables to compute some difficult integrals directly without
the need to find contours or factorize, etc. We simply choose the suitable functions and
generate a large number of integrals.

In this research, we introduce new theorems about improper integrals with proof.
Each theorem can generate new formulas of improper integrals that cannot be handled
by conventional methods or that require time and effort to obtain results. The proposed
theorems present the solutions of improper integrals directly in a simple finite sum that
depends on the target problem. The motivation of this work is to generate new problems
involving improper integrals and their solutions that can be used in various physical
and engineering applications. The theorems obtained can be implemented to produce
integration tables, which can be used to help researchers calculate difficult problems
that may arise during their research or to study new approximation methods for solving
improper integrals. They may check the accuracy of their answers using these tables.

This article is organized as follows. We present some basic definitions and theorems
essential to our work in Section 2. Six main theorems are presented in Section 3 with some
related results. Some remarks and applications are presented in Section 4. Finally, the
conclusion of our research is presented in Section 5.

2. Preliminaries

To understand our new theorems, we introduce some basic definitions and theorems
that are needed in our work.

Definition 1. [8] Let f be an analytic function in an open set (2, and D is a disc centered at
z(; whose closure is contained in (), then f has a power series expansion at z.

e

f(z) =) an(z—20)" 1)

n=0

Definition 2. [9] Let f be a real analytic function that is infinitely differentiable, such that
the Taylor series at any point xg in the domain is

o £(n)
T = 5 e @
n=0 :

that converges to f(x) in a neighborhood of x( pointwise.

Definition 3. [8] The Cauchy principal value of a finite integral of a function f about a
point ¢, with a < ¢ < b, is given by

PV/bf(x)dx: lim C/Ef(x)dx—i- /bf(x)dx . 3)

e—0t
cte

Lemma 1. De Moivre’s factorization formula [11], which can be considered a more general
formula expressible in a modern form than Cotes—Newton factorization, is obtained by

n—1
x®" —2cos(p)x" +1= H(x22cos<2knn+(p)x+1), 4)
k=0

wheren € N.
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Lemma 2. [11,12] The partial fractions of WM, where m and n are positive

integers, m —1 < 2n, ¢ > 0, and x > 0 are of the form

nsin(¢) nsin(¢)

snm (“ﬂ)@) _sin(n) (252) )
. (5)

R

x2" — 2 cos(¢)x™ 41 —2xcos(2$7;+")) +1

Putting ¢ = Z in Lemma 2, we obtain the following result.

Corollary 1. Let m and n be positive integers, where m — 1 < 2n, then we obtain

T2 = x% —2x COS(LC . ) +1 .

Lemma 3. Let m and n be positive integers, where m — 1 < 2n and x > 0. Then, the partial

fractions of " has the form

k(m—1)m T
n—1cos( ———— ) — xcos(km?
—— + ( ) (ko) . (7)

xm—1 1 1
I—x n\1-x2 /o 2xcos< )—i—l

Proof of Lemma 3. Let x2" = 1 = ¢%K7_ Then, using de Moivre’s theorem, we obtain

x—eiknn—a—l—ib—cos(k:)—l—zsm<kn) fork=0,1,2,...,(n—1).

(x +1)(x + 1) are factors of 1 = x?", and the other factors are given as products of

conjugate factors. Therefore, we obtain

—_

n—

n—1
[[(x=(a+ib))(x — (a—ib)) H(x — 2ax + a? +b2>

k=1 k=1

M _1=(x*-1 ﬁ(x — 2ax +a® +b2)
m_1=(x*-1) 1:11 x —2xcos<k%)+1),

1—x%" = (1 — xz) ﬁ(xz —2x cos(k%) + 1). (8)

k=1

We use Equation (8) to find the partial fractions as follows

xm—1 n=l1 D As + Bgx
1— x2n _Sgl—xz—i_ (x2 —2xcos(sZ) +1) ©)
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Let w = w(s) = sZ in Equation (9). Then, we obtain

ym-1 nzlp A + Bsx

— = . 10
1—x2n s; (1—x2) + (x2 —2xcos(w) + 1) (10

We use the Euler approach in [2] to find D, As, and Bs to obtain

D l,BS _ sin(mw—ﬂ)l and A, — sm((m—l)w—%)‘
n n n
Substituting the values of D, As, and Bs in (10), we obtain
L1 1 1 n—1 cos(@) — xcos(smZ%)

= — 11
1—x2t  n 1—x2+s_; —2x cos(X) +1 (11

The proof is completed. [J

3. Fundamental Theorems

In this section, we introduce six new theorems for solving improper integrals. These
theorems can be used to generate new integrals and solve difficult applications. These theo-
ries are considered as generalizations of the master theorems found in [31]. The difficulty of
generalizing these results lies in the partial fractions mentioned in
Lemmas 1-3, in addition to the idea of merging the theorems used in the previous re-
search with these lemmas and finding the integrals in Appendix A.

To achieve our goal, we need to present some results concerning analytic functions.
For more details, see [7-9].

Let f(z) be an analytic function around «, then, according to Taylor’s series where
« , B, and 0 denote positive or negative real quantities, we obtain

f(lX + '869x> — i f(k]if“) IBkerx' (12)

Using Euler formulas

we can gain

%Uw+ﬂﬂﬂ+fw+ﬁfww>=%§f LB (i o)
Z f @) gk cos (kfx) (13)
*f< )+f( )Bcos(6x) + L B2 cos (20x) + . ..

Similarly,

W,
- % ZO O (@) ,Bk< iOkx _ —i9kx)

= f'(«)Bsin(0x) + f ﬁZ sin(20x) + ... = E f<k,i!(“) BF sin(kfx).
k=1

(14)
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In the following arguments, we present new theorems to solve improper integrals
that can be used in solving various applications. It is worth mentioning here that these
theorems can be considered as generalizations of Cauchy’s results [3].

Theorem 1. Let f(z) be an analytic function around a, where & € R. Then, we obtain the
following result

Ooxmfl (f(a+ﬁei9x)+f(lx+ﬁ€7igx)) _ (_1)r71 a,,] r—2n
Of (1+22m)" e ((“) w g
n 1 .
% (3 sin(mew)(y+¢) + 5 cos(mw)(p—¢)) )|
s=1 u=1
where § > 0, misodd, n,m € N, 0 < m < 2n, r € R, w = w(s) = (ZSz_nl)”,
P — l[)(w) _ f(lX + /3679 21 sin (w)+i6 /1 cos (w)), and
¢ = 4’(‘*’) — f(tX + ,5679 2 sin (w)—i6 %/u cos (w))
Proof of Theorem 1. To obtain our result, we need the following fact.
Consider .
. xm—1 (f(“ 4 ﬁeiGX) +f(“ 4 ‘Be—iex)) p
1= / X2+ *
0
Differentiating j with respect to u, (r — 1) times, we obtain the following
T oy RO B e
our—1 " xZn + M)
After simple computations and substituting # = 1 in Equation (15), we obtain
(_1)7—1 ar—lj _ 0 ym—1 (f(a+ﬁei6x)+f(uc+ﬁe_mx))
C(r) ouw-1|,1 <0f (utx2m) dx
u=1
- 0 ym—1 (f(a+ﬁei9x)+f(uc+ﬁe*i9x)) _
= Of Az dx = 1.
Now,
00 ym—1 f a+,3ei9x +f tx+,3(37i9x
= Fr et o an )
’ , , (16)
_ (_1)7—1 a1 <.°f° xm=1 (f(vc—&-ﬁelg")—l—f(vc—&-ﬁe*m")) dx>
- T(r) ow-l X2 u
0 u=1
Letting %\/ﬂ =1y — dx = %/u dy in Equation (16), we obtain
G i (15 y (1 (3 per ™) + (a4 pe v V) d 17
 T(r) ou! / v +1 Y 17
u=1

Now, since f is an analytic around &, we obtain

f(vc + Bet® ZW) + f(tx + Be ity “) 2 Z fO(@)p* cos(key /i), (18)
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Substituting Equation (18) into Equation (17), we obtain

m—2n

_ o F0(a)pk ;
—1) 1 ot oo (u) 2 ym_1<22k_of I(d = cos (koly zﬁ))
L(r) our—1 0/ v +1 ay

u=1

L

(19)

Therefore, by changing the order of the summation and the improper integral and
using Fubini’s theorem, Equation (19) becomes

B (_1)1’71 ai’*l m—2n =) f(k) (a)’Bk /o-o ymil(COS(kf)y 2n u))
I= I(r) our—1 2 (u) 2 lg) k! (2" +1) ay (20)
o 0 u=1
Now, using Equation (1) on Appendix A, we obtain
_ YTt (e g [ ()
=T st (a7 k; TR I @
where
n . S—1)7T
e = 2 o ko 21 sin (2 znl) ) Sin((%) + k0 2/ COS( (25;}3)71)). 22)
s=1
To simplify the calculations, let w = w(s) = (25;1) " in Equation (22).

To write Equation (21) in terms of the original function, we must rewrite Equation (22)
in the exponential form as follows

ek Rfisin (@) in ((mw) + k6 ¥/ cos(w))

% n(mw) (efkﬂ 21 sin (w)+ik0 2/ cos (w) 4 o ko 2/ sin (w)—ik® %/u cos (w)) (23)

4 zl os(mw) (e—k() 2/ usin (w)+ik6 2/u cos (w) _ e ko 24/ sin (w) —ik® 21 cos (w)) )

Therefore, substituting Equation (23) into Equation (22), Equation (21) becomes

-1 r-1 ar_l m Zn 7'[

1= F()r) 1 ( Z fAwst Z(z sin(mw)(A + B) + 5; cos(mw) (A — B))) , (24)

s=1 u=1

where
A = ko 2/u sin (w)+ikf 2/u cos (w), and B = ¢ k0 2/ usin (w)—ik® 2/u cos (w) (25)
Now, using the fact in Equation (12), Equation (25) becomes
(-t ot me2n 7T

L= 7 awt |07 L (b sin(mw) (p(@) + ¢(w)) + 4 cos(me) (9() = p(@)) ||

s=1 u=1
where w = w(s) = (25 1 Y = Pp(w) = f(a+[3@*92W51n(w)+i92%c05(w)> , and

¢ = 4)( ) f(lX + IBe_e ZWSHI (w)—i6 2/ cos (w))
This completes the proof. [

Theorem 2. Let f(z) be an analytic function around «a, where & € R. Then, we obtain the
following result
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_ 0 m—1 ( (lx_,'_ﬁelﬂx) (vc+1567i9x))
I= Of i (1) dx

(26)
1)t g1 m_an o _ L mw) mmw
— G (05 (57) £ () (g4 9 21(0) + R (g ) ) .
where miseven, n € N, O < m < 2n,0 > 0, r € R, w = w(s) = (2s;n1)”,
¥ — l/J(OJ) — f(a_._ﬁefﬂz’\l/ﬂs'm(w)JriGZ"ucos(w))’ and

¢ = 4)(w) f(lx_i_ﬁef@z(l/ﬂsin(w)fie 2{‘/ﬂcos(w)>‘

The proof of Theorem 2 can be obtained by similar arguments to Theorem 1 and using
Fact (2) in Appendix A.

Putting m = 1 in the left-hand side of Theorem 2, with similar arguments to the proof
of Theorem 1 and using Fact (3) in Appendix A, we can obtain the following result.

Corollary 2. Let f(z) be an analytic function around a, where a € R. Then, we obtain the
following result

i0x

)—f(arpe ™)
( x211 )
_

2t (5007 £ (et p) - b+ 9)

dx

_ j?f oc+ﬁe
0 (27)

7
u=1

wheren € N,0 > 0,7 € R,w = w(s) = 25 l L =1(s) = f(oc—i—ﬁe(ie %COS(“’)*"Z"”SI'“(“’))),
and ¢ = 4)(5) — f(lx —i—,Be(*ie 2/ cos (w)—0 2\/ﬁsm( )))

Theorem 3. Let f(z) be an analytic function around «, where &« € R. Then, we obtain the
following result

ooxm—l (f(“+ﬁgi9x)+f(“+ﬂe_i9x>)d

pr —x2n\" X
T - (28)
- G (5 5 (3= 0)+ 5 (sinm) (p-+.0) + hcostona) (9= 9)) ) )|

where misodd, n € N0 <m <2n,0 >0,r e R, w =w(s) =L, :f(“+ﬁeiglw>’
v = f(ﬂé+ﬁ€—i9 2%), Y = ll)(w) = f(a+ﬁe—92%sin(w)+i9 ZWCOS(w)) and
¢ = (P(CU) = f((x + lBe—e 2/u sin (w)—if 2/u cos (w)>.

Proof of Theorem 3. Let

71(f(“‘f’ﬁeiex)%’f(a‘i’ﬁfimx))d

(1—x2m)" X

IzPV?x
’ (29)

= I(r) ou1 u—x2n

B (71)r71 g1 (PV j? xm—1 (f((x+/3619x)+f(tx+,58719x)) dx>
0

u=1

Let %\/ﬂ = y in Equation (29), then dx = %/u dy. Therefore, Equation (29) becomes

B (—1)1 -1 (PV/OO ()" 2"y (f(oc + et ZW) —|—f<uc + Beify X u)) dy)

I'(r) ou-1! 1—y

u=1
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Now, since f is an analytic function around «, and using the fact in Equation (13) in

Equation (29), we obtain

) cos (kfy X/u ))
ay || . @0

1—y2n
u=1

(_1)7’—1 ar—l e (u)mz_"2n (22

I= I'(r) ou-1 0/

Therefore, by changing the order of the summation and the improper integral using

Fubini’s theorem, we obtain
_(ytat n2n & fO(@)p jw1@wwv»
I = T aw— 2 (u) = k;) k PV 1=y dy . (31)
Using Fact (4) in Appendix A, we obtain
(-1t o w70 & f0) () p*
- I'(r) ou-! 2 ()= 2n Z T ! (32)
u=1
where
(33)

) Y 2 () k04 ()

s=1
in Equation (33), and to rewrite the

To simplify the calculations, let w = w(s) =
answer in a closed form of the original function, Equation (33) should be rewritten in the

exponential form as

ek Rfusin (@) in ((rw) + k6 ¥/ cos(w))
_ % sin(mw) (e—ke Rfusin (w)+ikd X/ cos (w) | p—k6 R/usin (w)—ik6 /1 cos (“'))
o—Kk0 A/usin (w) —ik6 2/ cos (w)> . 9

+ cos(zmw) (e—ke 24 sin (w)+ikO 21 cos (w) _
i

Substituting Equation (34) into Equation (33) with some computations, Equation (32) becomes
(35)

7

511’1 k9 2 )Jr Z (sm mw) (A+B) cos(mw) (A B)))
u=1

(-1)7‘71 0" 1 m Zn 7T f
I =

[(r) our—1 Z
e—ko 24 sin (w)+-ikO 2¥/ﬂcos(w), B — B(w) — o k0 2/ u sin (w)—ikO 2Y/u cos (w),

where A = A(w) =
Using the fact in Equation (12), we obtain

4

zwdmwﬂw—¢»))

u=1

=1 a1 e n=
1y a (u)znﬂ(l(ﬂ_ﬁH zj(;sin(mw)(tpw)

I = ‘
r(f’) our—1 n \ 2 R
whee w = w(s) = o = f(erpet), 00 = flatpetVE)
4 = 1,0(60) = f(o( + ﬁe‘g 2/ sin (w)+i6 2/ cos (w)) and
¢=¢(w) = fa+pe? 2/usin (w)—i6 2/ cos (w)>.

This completes the proof. [
Theorem 4. Let f(z) be an analytic function around «, where & € R. Then, we obtain the

following result
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X

ooxm—l f tX-‘rlBEiGX _f “_’_‘Befi(?x
= py s e

4

u=1

= (}18,’)4 a2 ( N ((17 +0—2f()) + Z;ll (cos(mew) (¥ + ¢ — 2f(a)) + S0 (y — ) ) )

2n(u) 2

where m is even, n € N, 0 < m < 2n , 6 > 0 and r € R,
w = ws) = o o= flatpt), 0 = Flatpe V), p = ()
_ f(lX +‘36—9 2/u'sin (w)+i0 2/u cos (w ) and ¢ = Pp(w) = f(oc+ﬁe‘9 2/u sin (w)—i6 ZWcos(w)).
The proof of Theorem 4 can be obtained by similar arguments to Theorem 3 and using
Fact (5) in Appendix A.
Putting m = 0 in the left-hand side of Theorem 4, with similar arguments to the proof
of Theorem 3 and using Fact (6) in Appendix A, we can obtain the following result.

Corollary 3. Let f(z) be an analytic function around «, where & € R. Then we obtain the
following result

ix(1—x21)"

[— PVTf(a+,sef9X)—f(a+ﬁe*f9X)dx
S (37)

7
u=1

:(_rl())aa(( (48— 2f(a)) - (f(w+ﬁ)f(a))+§1:flll(tp+¢—2f(oc)))>

wheren € N, 0 > 0,r € R, w = w(s) = 2, = f(zx—l—ﬁeiezw),l? :f(oc—k/%e*"ezW),

P — IP(CU) _ f(lX—i-,BE*e 2{’/ﬂsin(w)+i92wcos(w))’ and
¢ = 4’(“’) :f(“_i_ﬁef@z{l/ﬂsin( )—i6 2/u cos (w ))

Theorem 5. Let f(z) be an analytic function around «, where & € R. Then, we obtain the
following result

f xm=1 (f<“+‘56[€x)+f(a+ﬁg—[€x))d

x2—2 cos(¢@)x"+1 X
—00 o (38)
_ nsir?((p) Sgg(cos p—mw) (lP-F(P) sin (p mw) (l[J 4)))
where 0 > 0, |¢| < 71, ¢ #0,0 < m < 2n,misodd, n € N, w = w(s) = 7257?(/’,

P =1¢(w) = f(,x + 56(1‘ 9cosw—95in(w))) and ¢ = ¢(w) = f([x + ﬁe(—z‘ 0 cos w—0 sin (w)))‘

Proof of Theorem 5. Let

TR (f (o e + f (e ™))
= / —2cos(@)x"+1 ax.

—00

Now, since f is an analytic function around «, we use the fact in Equation (13), and by
interchanging the order of the summation and the improper integral, we obtain

& fA@pt T x™(cos(kox))
1=2), k! [o x2" —2cos(@)x™ +1
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Now, by using Equation (7) in Appendix A, we obtain

— iy B LGE etk (5 cos (m (2512

s=0

(39)
+ 0k cos (25”+(P) (p) .

To simplify the calculations, let w = w(s) = 25”“’ in Equation (39).

To write the answer in a closed form of the orlgmal function, the internal sum in
Equation (39) should be rewritten in the exponential form

e ks (@) cos (mew + Ok cos w — @) = 4 cos(p — mw) £ sin(¢p — mw). (40)
where A — A((U) — k(i 0 cos w—0sin (w)) T ek(—iGcosw—Gsin(w)), and

B = B(w) — 2l (ek(i fcosw—0Osin(w)) _ ek(—i 0 cos w—0sin (w))
1 .
Now, substituting Equation (40) into Equation (39), we obtain

k n—

k
I= Zf( ) Z 2cos((p mw)gsm(gu mw). (41)

n sin( kb =

Now, using the fact in Equation (12), Equation (41) becomes

27.[ n—1

I = nSin(q)) S;Q(cos Q—mw) (lp+¢) sin (p mw) (lP ¢))

n

¢ =¢(w) = f(lX + Bel—ifcosw—0sin (“’))). Hence, the proof is completed.

where w = w(s) = ke p = Yw) = f<a+[3e(i9cosw*9sm(w))), and

Theorem 6. Let f(z) be an analytic function around «, where & € R. Then, we obtain the
following result

o xmfl (f(a+ﬁ€i9x)ff(tx+ﬂﬁfi9x))
_f i(x2"—2 cos(¢@)x"+1) dx
n=l/ cos mw) 42
- nsirrf((p) sg()( (P (l/J 4)) “2)
—sin(¢ — mw) (Y + ¢ — 2f(w))),
2s7t+¢

where § >0, || <7, ¢ #0,0 <m < 2n,miseven,n € N, w = w(s) =
P = l/"(w) = f(lk + Ige(i 9cosw—9sin(w))), and ¢ = 47(60) = f(lx _|_‘Be(—i9cosw—95m( )))

The proof of Theorem 6 can be obtained by similar arguments to Theorem 5 and using
the fact (8) in Appendix A.

Putting m = 0 in the left-hand side of Theorem 6, with similar arguments to the proof
of Theorem 5 and using the fact (9) in Appendix A, we obtain the following result.

n 7

Corollary 4. Let f(z) be an analytic function around &, where « € R. Then, we obtain the
following result

T f(atpe®™) —f (atpe )
f ix(x2"—2 cos(¢)x"+1) dx
n—1 (43)

= g I (sin(@)(Fla+ B) = f(@) + 52 (9~ 9) — 52y + ¢~ 2(®)).
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where 6 > 0, |[p| < 7w ¢ # Oand n € N, w = w(s) = 2571#,
= l[)(w) — f(tX + 'Be(i 6 cos w—0sin (w)) ) and ¢ = (P ( x+p 16coswfﬁsin(w))).

4. Applications and Examples

In this section, we present remarks, applications, and comparisons of the proposed
theorems. We also show that simple cases of our master theorems are generalizations of
some of Cauchy’s results from his memoirs [4,5].

4.1. Remarks on Theorems

In this section, we introduce some remarks on improper integrals and comparisons
with Cauchy’s results. These remarks are illustrated in the following Table 1.

4.2. Generating Improper Integrals

In this section, we present the technique of generating an infinite number of integrals
using the theorems by only choosing the function f(z) and finding the real or imaginary
part. It is worth mentioning that many of these integrals with particular cases appear
in [32-35] when solving some applications referred to in finding Green’s function, integral
representations of the Mittag—Leffler function on the positive real axis, wave motion in
elastic solids, and implementing Fourier cosine and Fourier sine transforms.

To demonstrate the idea, we show some general examples that are applied to Theorems
(1) and (2) as follows.

1. Setting f(z) =z% v € R
e  Using Theorem (1) and setting « = 0, = 1, we obtain

f(eigx) —|—f(e*i9x) = 0% 4 ¢=109% — 2 cos(6 D).
Therefore,

x"1(2cos(f v x))
(1+x21)"

0
= (_rl()r)i aa;rj ((M) o T Szl (sin(mw) (e*"” Hfusin (@) cos (60 X/u cos(w)))

+ cos(mw) (e_ez’ Hfusin (w) sin(6v X/u cos(w))) ))

7

u=1

where > 0, misodd, n,m e N, 0 <m <2n, r € R.

e  Setting v = 1, the obtained integral is a Fourier cosine transform [33] of the function

f(t) = (1t+"'tzln>, where § > 0,misodd, n,m € N, 0 <m <2n, r € R.

e  This can be used as an integral representation of the Mittag—Leffler function on the
positive real axis (see [32]).
e  Using Theorem (2) and setting &« = 0, f = 1, we obtain

1. (f(ei9x> - f(e’iex)> = l.(eie’”‘ + e’ievx) = 2sin(6 vx).

i i
Therefore,

™M+ (2sin 9v~c)) d

1+xz” X

A |
= (1"()1’) aauH (( )
+ sin(mw) (e*(’v A/usin (“’) sm(é)v X/u cos(w))) )

% i (Cos(mw) (6_9” Wusin (w) cos(0v %, ”COS(w))>

u=1"

where 6 > 0, miseven, nm e N, 0 <m < 2n, r € R.
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Table 1. Remarks on improper integrals, where 8 > 0.

. Theorem/ ©
Conditions Corollary g(x) [g(x)dx Remarks
0
_ _ _ F(e0% ) f (0% o This is identical to Cauchy’s theorem obtained in [4]

1 «=0,p=1andrmn=1 Theorem 1 ) eA™) )ng ) nf (e ) (P62, formula 8) and in [13] (3.037 Theorem 1).

o L Cauchy made a mistake in this result (see [4]) (P.62,
2 a=0,=landr,n=1m=2 Theorem 2 (™) =fF(e=)) n(f(e’g) - £(0)) formula 8). He corrected his result in his next memoir

i(1+x2)

(see [5,6]).

o » Cauchy also made a mistake in this result (see [4] (P.62,
3 a=0,7rn=1 Corollary 1 w 7(f(B) — f(Be™?)) formula 10)). This result appears in [13] (3.037

ix(1+x2) Theorem 4).

ox iox o (f(oc + lBe(iecosq)stin((p)))
4 r=1n=1 Theorem 5 fotpe™) 4 (atpe ™) sin(g) lp| <7, ¢ #0

x2—2cos(@)x+1 +f<0¢ + ﬁe(—i BC(vszp—Bsin(qw))))

o . — (i6 cos p—0'sin )

; ant Tewms SUBSERGRS)fngyepoa) s o -9) W/
i(x?—2cos(¢p)x+ <P(4’):f lX"Fﬁe —if cos p—B'sin ¢

. ) . — (i 6 cos p—Bsin )

6 n=1 Theorem 6 F(atpe®™) —f (atpe) Sirzlﬁp) (Sm(‘P)(f(“ +B) = f(a)) + Cosz(iq)) (y—¢) ¥ f<1x +pe )

ix(x2—2cos(p)x+1)

— 52 (p+ ¢ —2f(a)))

o= f(lx _‘_‘Be(—iﬂcosq)—(?sinqo))
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e  Setting v = 1, the obtained integral is a Fourier sine transform [33,34] of the function
f(t) = OZrL;Y where 0 > 0, miseven,n,m €N, 0 <m <2n, r € R.

e  This can be used as an integral representation of the Mittag—Leffler function on the
positive real axis (see [32]).

2. Setting f(z) = ¢€*

e  Using Theorem (1), we obtain
f(a + ,Beiex) + f(zx + ,Be_iex) = oA | putpe™ _ pputpeos (6x) cos(Bsin(0x))
Therefore,

xm=1 (23”‘+ﬁC°S (0%) cos (B sin(6x) )

Of (14x2m)" dx

—1 r—1 o1 r—2n n 1 .. —0 2%Sin (w)+i6 Zf\l/gcos (w) ) Z’Wsin(w)—m ZWCOS (@)
= ( r()r‘) 37T ((u) 2n % ( El 3 Sln(mcu) €LX+/3€ + e“+ﬁe
s=

) (eDH-ﬁee 20/ sin (w)+i6 2/ cos (w) _ el)¢+[3€79 20/ sin (w)—if 2%cos(m)> )

n
+ ¥ %sin(ma)
s=1 u=1
where 0 > 0, misodd, n,m € N,0 < m < 2n,r € R.

e  Using Theorem (2), we obtain

%(f(tx 4 Igeiex) —f(uc 4 ,Be’ie")) _ %(eaﬂseiex _ elirﬁe*l'Bx)
= 2e% P08 (0%) 5in (B sin(Ax))

Thus,
T 221 (+Peos (0%) sin(Bsin (6x) ) )
Of (1+x21)"

= (_rl()rr)i1 aa,:;] ((“)rﬁn 0 < i <% cos(mw) rotpe® s )0 icos () | oy pont Wi ()8R cos () _ 0

dx

s=1

e“+ﬁe—9 21/ sin (w)+i0 2/ cos (w) _ elx+ﬁ379 20/ sin (w)—i6 2%/ cos (w)) >

n
+ X ésin(mw)(
s=1 u=1
where 6 > 0, miseven,n,me N, 0 <m <2n, re R.
o Settinga=0,=1n=1r=160=1, m=2,weobtain
o0
/ 2xe%s (%) sin(sin(x))
X241

dx=rm (e%—l).
0

where this example was discussed in [6], and the author solved this example using the
residue theorem and elucidated the analytical aspects of this example, knowing that Cauchy
had put this question and made a mistake in his first attempt to solve it. However, by using
the theorems, this question is solved using very simple steps, as mentioned above.

3. Setting f(z) = sinhz
e  Using Theorem (1), we obtain

f o+ Be™) + f(a + e~ %) = sinh (a + pe'®*) + sinh (a 4 pe~ %)
= 2cos(Bsin(fx))sinh(a + B cos(6x)).
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Thus,

00 5 ym—1 cos(Bsin(0x))sinh(a+p cos(0x))
f (x2"+l)r dx

)E (sin(;nw) (Smh (a + et 2/ sin (w)+i0 2 cos (w)) ) ) )

7

u=1

where 8 > 0,misodd, n,m e N, 0 <m < 2n, r € R.

e  Using Theorem (2), we obtain

H(f(a+ Be®*) — f(a+ e~ %)) = 1(sinh(a + Be®*) — sinh(a + Be~i0))
= 2sin(Bsin(0x)) cosh(a + B cos(6x)).

Thus,

00 5 -1 sin(Bsin(0x)) cosh(a+pB cos(6x)) dx

0 (14a2m)"
= 2 (00 5 (£ (2 o i) )

+ sé % (sinh (zx + ﬁe_e HWisin () =16 R cos (w)) ))

7
u=1

where 0 >0, miseven,n,me N, 0 <m <2n, r € R.
4. Setting f(z) = cos(e*)

e  Using Theorem 1, we obtain

fa+ Be®™) + f(a+ Be~%) = cos (euurﬁez‘ex) + cos (ewlgeﬂ-ex)
= 2cos (gtx+ﬁ cos (62) cos (B sin(Gx))) cosh (sin(ﬁ sin(fx))ed A eos (ex)) .

Thus,

R 21 cos (e theos (09) cos(B sin(fx))) cosh (sin( sin(fx) )e* A o3 (93‘))
(14x2n)"

0
= ) ot ((u) S = ( i ‘sm(?f“’) cos (e("‘+/3€9 PWiasin (w) +i0 2%”5(‘*’))) ))

dx

s=
i i cos(mw) (COS (etxﬂie" 25 sin (w)—i6 2/t cos (w)) ) )
2i

5.  Setting f(z) = In(1 +z)

e  Using Theorem 1, we obtain

u=1

F(1+a+ Bet®™) + f(1 + a + pei0x)
=1In(1+a+ Be®™) +In(1+ a + e %)
= 1“((”‘ +1)2+ B2+ 2(a+ 1)B Cos(()x)>.

Thus,
o0 ym—1 ln((uc+1)2+/32+2(a+1)/3cos(Gx))
of (2 +1)" ax
= (o e (0 (24 (m (1 o 0sn e ) )
n i cos(zr;zw) (ln(l +a4t lBe—Q 2/u sin (w) —i6 2/ cos (w))))
s=1 u=1
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e Settinga =0, p =1, we obtain

f(ei"x) +f(e*"9x) = ln(l + e“”‘) + ln(l + e*i"") ~2In

O0x
2 ur
cos< > )‘

Thus,
:Zx'”l(iglicf;(?) L
— Gt aa;r ()= (Si (S (in (14 e=¢ Wisin(@io icos (@) ) ) ) )
f (ln(l + o0 A/usin (w)—if X/ cos (@))) .
L u=1

4.3. Solving Improper Integrals

In this section, we introduce examples of some complicated integrals that cannot be
easily solved using familiar methods or that may take effort and time to be solved.

We show that using the new results in this article, the solution can be directly deter-
mined; it is worth noting that Mathematica and Maple could not solve similar examples.

Example 1. Evaluate the following integral

¥’ tan nx
pv/
146

Solution. Using Theorem 1, leta« = 0, p = 1, r = 3, m = 1, n = 3, and setting
f(z) =1In(1 +z).

Thus, we obtain

f(eif)x) +f(efi9x) _ 11‘1(1 + ei@x) +1n(1 _|_e*i9X) = ]n(z os(@x) +2)= 211‘1‘2COS<67x> p
P 0x2 ln|2cos(6x)|)

10 =Py 2 (ineos($)) gy — 7 3 ((sin( 2525 ) (g +9)),

s=1
where
g =In(1+ (efesm(zi””)ﬂecos ),
_ e ((Zs—l)n) n)
4) 11‘1(1—1— (6 0 sin 6 i6 cos ( )2

= 7(-2In(1+e )+21n(1+e
+21n(1+e—z+zlf9))

Taking the derivative for I(0) with respect to 6, we obtain

b
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Therefore,

Ty tan(7x)
0
-5- 1\/79

iv/30

&

i

)

N\»—l

—_ T 26 (
— 6 1+e9+

2(7—+"[ "2 '\fe
+ Tie™ 2+21f9 )
=27
_ V3 sm( +Cos tanh %
6 cos(f9)+cosh( )
. 7r(ﬁsin(fn)+cos(f7r)tanh(7r))
o 6(cos(\/§n)+cosh(n)) ’

N
N\m
N\'ﬂ

+e

0=2m

Example 2. Evaluate the following integral

x sin(0x) i
(14 x2%)(1+ 2c¢ cos(6x) +¢2)

wheren € N,0 >0, and ¢ > 1.
z) = 1+17,we obtain

Solution. Using Theorem 2, taking « = 0, = 1, and letting f(z)

%(f(ei9x> _f([iex)) - 1(1 —i—lceiex 1 —0—clei9") "1 +;221521?<(:z52x9)

Therefore,

—2cx sin(fx) d
(T2 (1+2¢ cos(fx)c2) ¥

= 5 & (bleos2) (v +9—2( k) ) + H(sin)) (9~ 9),

where )
l/) = ll](CU) = 1t cee —0 2/ sin (w)+iy 2 cos (w) 7
_ _ 1
4) - (p(a]) - 14-ce—? 21/ sin (w)—i6 2%/ cos (w)
w = CU(S) —_ (2871)7‘(
2n

. x sin(6x)
: i[ (14x27)(1+42c cos(0x)+c? dx

= 7 ¥ (hlcos@w) (¥ +¢—2( k) ) + H(sin(2w)) (¥ — )

s=1

—

where .
lp = IP(C(J) = 1-ce o0 21/ sin (w)+i0y 2/ cos (w) *

_ o 1
(P - (l)((d) - 1+66792'\’/ﬁsin(a})—i92” ucos (w)’
w — a)(s) _ (2s-L)m
2n

5. Conclusions
The main purpose of this work is to generate new formulas of improper integrals and

implement them in solving problems. In this article, we introduced new master theorems
of improper integrals. Tables were established to present and generate new formulas of
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improper integrals. Comparisons with previous results were made and introduced in tables.
Finally, various applications on difficult problems were presented and solved using the
theorems.

In the future, we will use these new results to solve ordinary differential equations
and integral equations.
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Appendix A

Table Al. Formulas of improper integrals.

Conditions
(j:xm;lz'zci(h) ix x é o~ fsin (E717) Sin((@kzﬂ) + 9cos( (Zszr,l)n)) 6 >0, m beodd, n € N,and 0 < m < 2n
O}Ox”;zs;r_;_(fx) dx 5Z kgl e—fsin( (Zk{y,l)") COS(((Zk”)ZEZ"H)?T) + 0cos<<2k ks >) misodd,0 >0, n € Nyand -1 <m <2n—1
0 -

PVT 2"~1 cos(fx) dx

T
%(sin(e)-i- Y e’es‘“(%)sin«k’”") +9cos 1—711 )

0 >0 mbeodd,n € Nyand0 < m < 2n

5 1—x2n =
XM n—1 . -
PVf 151:2:7%)[1 %;(Cos(e)+k§13_951n(%)COS((kn(erl )+9COS(77[))) mbeodd,® >0,and -1 <m <2n—1

% f ) dx

n—1 -
= (1 —cos(y)+ L 1—e¥ sin(57) cos ycos
k=1

)

y>0

cf 1M1 cos(6x)dx
o x21 =2 cos(@)x"+1

7))
: os(*5)) o)

n—1 L 25T
b —Osin (=) 257t +¢
wsin(g) Z e Q cos(m +

0>0,|p|<m ¢#0, m<2n+1, neN, and mis odd

cf X" sin(0x)dx
o x21 =2 cos(@)x"+1

wsin(p) ”i e~0sin(* )(sin(gof (m+1)(2m#> - (GCOS<2M#)>>)

6>0,|p|<m ¢#0, m<2n+1, misodd,andn € N

[=9)

[ a1 sin(xy)

e XZ"—Zcos((p)x”+1) dx

nsin(p) Z sin(p) —e™V Sm(hiﬂ)sm(q) ycos(zmﬂﬂ))

y>0
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