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Abstract: Heat and mass transfer study of hybrid nanomaterial Casson fluid with time-dependent
flow over a vertical Riga sheet was deliberated under the stagnation region. In the presence of the
Riga sheet in fluid flow models, this formulation was utilized to introduce Lorentz forces into the
system. We considered the three models of hybrid nanomaterial fluid flow: namely, Yamada Ota,
Tiwari Das, and Xue models. Two different nanoparticles, namely, SWCNT and MWCNT under base
fluid (water) were studied. Under the flow suppositions, a mathematical model was settled using
boundary layer approximations in terms of PDEs (partial differential equations). The system of PDEs
(partial differential equations) was reduced into ODEs (ordinary differential equations) after applying
suitable transformations. The reduced system, in terms of ODEs (ordinary differential equations), was
solved by a numerical scheme, namely, the bvp4c method. The inspiration of the physical parameters
is presented through graphs and tables. The curves of the velocity function deteriorated due to higher
values of M. The Hartmann number is a ratio of electric force to viscous force. The electric forces
increased due to higher values of the modified Hartmann number, ultimately declining the velocity
function. The skin friction was reduced due to an incremental in v, while the Nusselt number raised
with higher values of v. Physically, the Eckert number increased, which improved kinetic energy
and, as a result, skin friction declined. The heat transfer rate increased as kinetic energy increased,
and the Eckert number increased. The skin friction reduced due to physical enhancement of β1, the
shear thinning was enhanced which reduced the skin friction.

Keywords: hybrid Casson nanofluid; thermal slip; radiation effect; viscous dissipation; vertical Riga sheet

MSC: 58D30; 65C20; 30E25

1. Introduction

The research of non-Newtonian liquids has received much interest because of the
wide range of uses they have in engineering and industry, particularly in the extraction
of crude oil from petroleum products, the development of syrup medications, and the
creation of plastic materials. Hamid et al. [1] investigated the impacts of Casson nanofluid
on a stretching surface. Hamid et al. [1] discussed the results of their stability analysis and
dual solutions. Jamshed et al. [2] emphasized the influences of Casson nanofluid flow on
stretching sheets under solar radiation. Recently, a few authors developed results about
Casson fluid for diverse flow considerations, see Refs. [3–7].

The energy crisis is one of the most significant problems in the real world. Several
investigators discussed several techniques to develop energy at less cost. In the past
years, because common fluids such as water, ethylene glycol, and engine oil contain
weaker heat transfer rates due to low thermal conductivity and because metals have
higher thermal conductivity than conventional fluids, nanosized metals are added to
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the ordinary fluids which enhanced the heat transfer rate due to the enhancement in
thermal conductivity. For real-life problems, nanofluid is used in different procedures,
namely, nano-technological and industrial processes such as nuclear reactors, cooling of
electronic devices, vehicle cooling, vehicle thermal management, heat exchangers, and so
on. Furthermore, magnetic nanofluids are effective in cancer therapy, wound treatment,
artery blockage removal, magnetic resonance imaging, and a variety of other applications.
Maleki et al. [8] debated the heat and mass transfer of nanofluid flow at the porous surface.
Maleki et al. [9] highlighted the impacts of pseudoplastic nanofluid under heat generation
and viscous dissipation on the permeable stretching sheet. Alazwari et al. [10] deliberated
the inspiration of the non-Newtonian fluid flow of nanofluid on stretching sheets. Sajid
et al. [11] highlighted the impacts of micropolar fluid flow on heated surfaces having
chemical effects. Abu-Hamdeh et al. [12] studied the impact of thermal slip on the power
law of nanofluid flow over a stretching surface. Aouinet et al. [13] analyzed the impacts of
the turbulent boundary layer for nanofluid on a stretching plate. Recently, a few authors
developed the results of nanofluid on an exponential stretching (see refs. [14–17]).

There is much interesting work on the comprehensive description of the nanofluid
which is called hybrid nanofluid. A hybrid nanofluid is a mixture of two nanosized particles
and base fluid water. In the early years, the experiments studied the effects of hybrid
nanofluid. The researchers considered the two nanoparticles, namely, aluminum oxide and
copper, with a water-based fluid and perceived the heat transfer rate. Another mixture of
hybrid nanofluid is prepared by using the two nanoparticles single wall carbon nanotube
and aluminum oxide with different base fluids, water and ethylene glycol. Hybrid nanofluid
having the base fluid as ethylene glycol achieved much better heat transfer as compared to
the hybrid nanofluid with the base fluid as water. Devi et al. [18] highlighted the effects of
the hybrid nanofluid on a porous surface numerically. Heat and mass transfer of a hybrid
nanofluid over a circular cylinder was discussed by Nadeem et al. [19]. They considered the
MHD effects under the stagnation region. A few authors worked on the hybrid nanofluid
for different flow assumptions and various physical aspects, see refs. [20–24].

The interest in magnetic hydrodynamics with hybrid nanofluid by developed by the
authors due to several engineering applications and because they can be used to control
the rate of heat transfer by using an external magnetic field. The Riga plate is an innovative
magnetic device designed out of a cluster of changeless magnets and alternating electrodes
arranged over a flat surface. In fluid flow models, this formulation is used to introduce
Lorentz forces into the system. In many setups, especially in submarines, the setup is highly
effective and advantageous for preventing boundary layer separations in fluid flow, which
helps to reduce skin friction. Abbas et al. [23] discussed the impacts of micropolar fluid
flow over the Riga surface. Recently, a few authors developed ideas about the Riga sheet
under different fluid model considerations, see refs. [24–27].

We considered the incompressible time-dependent flow of Casson hybrid nanoma-
terial fluid flow over a vertical Riga sheet under the stagnation region. The influence of
viscous dissipation, solid nanoparticle concentration, and nonlinear radiation implemented
on the vertical Riga sheet was investigated. We considered the three models of hybrid nano-
material fluid flow: namely, Yamada and Ota [28], Xue [29], and Tiwari and Das [30]. Two
different nanoparticles, namely, SWCNT and MWCNT, under base fluid (water) were stud-
ied. Under the above suppositions, a mathematical model was constructed in differential
equations (partial differential equations) utilizing BLA (boundary layer approximations).
Under the flow suppositions, a mathematical model was settled using boundary layer
approximations in terms of PDEs. The system of PDEs was reduced to ODEs after applying
suitable transformations. The reduced system in terms of ODEs was solved by a numerical
scheme, namely, the bvp4c method. The stagnation point flow of unsteady Casson hybrid
nanofluid with nonlinear radiation over vertical Riga stretching sheet was not discussed
using the three models of hybrid nanofluids: namely, Yamada and Ota [28], Xue [29], and
Tiwari and Das [30] under the thermal slip. The impacts of involving physical parameters
on the velocity profile, temperature profile, skin friction, and Nusselt number are presented



Mathematics 2022, 10, 3573 3 of 17

through graphs and tables. These results are newly and usefully discussed in the industrial
and engineering fields.

2. Materials and Methods

The mathematical model of the time-dependent incompressible flow of Casson hybrid
nanofluid ((SWCNT −MWCNT)/Water) on a vertical Riga stretching sheet, which is seen
in Figure 1, was deliberated in this study. The stagnation point flow was considered in
this analysis. In fluid flow models, this formulation was used to introduce Lorentz forces
into the system. These Lorentz forces were produced by arranging magnets in a span-wise
pattern with alternating electrodes parallel to the wall surface and fading exponentially as
the distance from the plate rises. The stagnation point region (a > 0) was considered to
analyze the influence of Casson hybrid nanofluid. Thermal slip condition was implemented
on the vertical sheet. The transportation of mass and heat was explored in the aspects
of viscous dissipation and nonlinear radiation impacts, respectively. Some mathematical
expressions of the thermodynamics system are provided below.

Figure 1. Flow pattern of Casson hybrid nanofluid over vertical Riga sheet.

Thermo-physical properties of hybrid nanofluid:
Effective properties of hybrid nanofluid are defined as below:
Density of hybrid nanofluid
The effective properties of SWCNT/water nanofluid and (SWCNT-MWCNT)/water

hybrid nanofluid are defined as below:

ρn f = φpρp +
(
1− φp

)
ρb f . (1)

Equation (1) is the introduced density of the nanofluid. The density of the hybrid
nanofluid is defined as

ρhn f = φSWCNTρSWCNT + φMWCNTρMWCNT + (1− φ)ρb f . (2)

φ is the total volume concentration of two different solid nanoparticle concentrations
dispersed in hybrid nanofluid which is calculated as

φ = φSWCNT + φMWCNT . (3)

The specific heat capacity of the nanofluid is defined as

Cn f =
φpρpCp +

(
1− φp

)
ρb f Cb f

ρn f
. (4)
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The heat capacity of the hybrid nanofluid is defined as

Chn f =
φSWCNTρSWCNTCSWCNT + φMWCNTρMWCNTCMWCNT + (1− φ)ρb f Cb f

ρhn f
. (5)

The thermal expansion of the nanofluid is defined as

βn f =
φpρpβp +

(
1− φp

)
ρb f βb f

ρn f
. (6)

The thermal expansion of the hybrid nanofluid is defined as

βhn f =
φSWCNTρSWCNT βSWCNT + φMWCNTρMWCNT βMWCNT + (1− φ)ρb f βb f

ρhn f
. (7)

The nanofluid models were proposed by Yamada and Ota [28] and Xue [29]. Tiwari
and Das [30] proposed a hybrid nanofluid model. The Yamada and Ota [28] and Xue [29]
models of nanofluid were extended by Abbas et al. [31] and Abbas et al. [32]. They
considered the two solid nanoparticles in this analysis. The models of the hybrid nanofluid
were introduced. The model of the hybrid nanofluid thermal conductivity was provided
by Takabi and Salehi [33]. The expression of the Yamada-Ota model of hybrid nanofluid is
presented below:

khn f

kb f
=



1 +
kb f

φSWCNT kSWCNT+φMWCNT kMWCNT
φSWCNT+φMWCNT

L
R (φSWCNT + φMWCNT)

0.2

+

(
1− kb f

φSWCNT kSWCNT+φMWCNT kMWCNT
φSWCNT+φMWCNT

)
(φSWCNT + φMWCNT)

L
R (φSWCNT + φMWCNT)

0.2

+2(φSWCNT + φMWCNT)

(
φSWCNT kSWCNT+φMWCNT kMWCNT

φSWCNT+φMWCNT
φSWCNT kSWCNT+φMWCNT kMWCNT

φSWCNT+φMWCNT
−kb f

)
ln

(
φSWCNT kSWCNT+φMWCNT kMWCNT

φSWCNT+φMWCNT
+kb f

2
φSWCNT kSWCNT+φMWCNT kMWCNT

φSWCNT+φMWCNT

)

{
1− (φSWCNT + φMWCNT) + 2(φSWCNT + φMWCNT)

(
kb f

φSWCNT kSWCNT+φMWCNT kMWCNT
φSWCNT+φMWCNT

−kb f

)
ln

(
φSWCNT kSWCNT+φMWCNT kMWCNT

φSWCNT+φMWCNT
+kb f

2kb f

)} ., (8)

The expression of the Xue model of hybrid nanofluid are presented below:

khn f

kb f
=

1− (φSWCNT + φMWCNT) + 2(φSWCNT + φMWCNT)

(
φSWCNT kSWCNT+φMWCNT kMWCNT

φSWCNT+φMWCNT
φSWCNT kSWCNT+φMWCNT kMWCNT

φSWCNT+φMWCNT
−kb f

)
ln

(
φSWCNT kSWCNT+φMWCNT kMWCNT

φSWCNT+φMWCNT
+kb f

2kb f

)

1− (φSWCNT + φMWCNT) + 2(φSWCNT + φMWCNT)

(
kb f

φSWCNT kSWCNT+φMWCNT kMWCNT
φSWCNT+φMWCNT

−kb f

)
ln

(
φSWCNT kSWCNT+φMWCNT kMWCNT

φSWCNT+φMWCNT
+kb f

2kb f

) . (9)

The expression of the Tiwari–Das model of the hybrid nanofluid is presented below
(see ref. Takabi and Salehi [33]):

khn f

kb f
=

{
φSWCNT kSWCNT+φMWCNT kMWCNT

φSWCNT+φMWCNT
+ 2kb f + 2(φSWCNT kSWCNT + φMWCNT kMWCNT)− 2(φSWCNT + φMWCNT)kb f

}
{

φSWCNT kSWCNT+φMWCNT kMWCNT
φSWCNT+φMWCNT

+ 2kb f − (φSWCNT kSWCNT + φMWCNT kMWCNT) + (φSWCNT + φMWCNT)kb f

} . (10)

Table 1 shows the thermophysical propertoies of base fluid and solid nanoparticles. Ta-
bles 2 and 3 revealed the thermophysical characteristics of nanofluid and hybrid nanofluid
for the three models of hybrid nanofluid: Yamada and Ota [28], Xue [29], and Tiwari
and Das [30]. Tw is the wall temperature and T∞ is the ambient temperature. The free
stream velocity is u∞ = ax√

1−αt
. The u and v are the velocity mechanisms along −x and −y

directions, respectively. The fluid velocity and fluid temperature are u and T, respectively.
The mathematical model is presented below.



Mathematics 2022, 10, 3573 5 of 17

Table 1. The physical properties of the solid nanoparticles and the base fluid.

Thermophysical Properties MWCNT SWCNT H2O

ρ
(

Jkg−1K−1
)

1600 2600 997.1

k∗
(

kgm−3
)

3000 6600 0.613

cp

(
Wm−1K−1

)
796 425 4179

β/K−1 1.6× 10−6 1.5× 10−5 21× 10−5

Table 2. Physical properties of hybrid nanofluid.

φ φSWCNT φMWCNT ρhnf (Cp)hnf
khnf (Yamada-Ota

Model) khnf (Xue Model) khnf (Tiwari-Das
Model)

0.10 0.0038 0.0962 1061.19 3653.363 2.788343 2.711645 0.8172003
0.33 0.0125 0.3175 1194.612 2709.356 9.846296 9.510268 1.482817
0.75 0.0285 0.7215 1477.775 1348.05 59.00918 56.84039 6.117090
1.00 0.0380 0.9620 1638.000 773.6222 7311.015 7037.057 3136.800

Table 3. Physical properties of nanofluid.

φ ρnf (Cp)nf
knf (Yamada-Ota

Model) knf (Xue Model) knf (Tiwari-Das
Model)

0.10 1157.39 3335.689 2.991149 2.914448 0.8172701
0.33 1526.057 2068.376 11.15951 10.80944 1.5184
0.75 2199.275 850.494 64.6763 62.49929 6.123857
1.00 2600.0 425.0 15169.65 14649.5 6600.0

∂u
∂x

+
∂v
∂y

= 0, (11)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
∂u∞

∂t
+ u∞

∂u∞

∂x
+ νhn f

(
1 +

1
β1

)
∂2u
∂y2 +

M0 σ2

8 πρhn f
e−

π
a y + βhn f g(T − T∞), (12)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= αhn f
∂T
∂y2 −

1
(ρc)hn f

∂qr

∂y
+

νhn f(
ρc f

)
hn f

(
1 +

1
β1

)(
∂u
∂y

)2
, (13)

with respect to the boundary conditions being

v = 0, u = 0, T = Tw + λ2
khn f
k f

∂T
∂y , as y→ 0,

u = ue, T = T∞, as y→ ∞.

}
(14)

We introduced the suitable transformations as follows:

η =
√

a
v f (1−αt)y , u = ax

1−αt F′(η),

v = −
√

a ν f
1−αt F(η) , θ(η) = T−T∞

Tw−T∞
, qr = − 16 σ T3

3
∂T
∂y .

. (15)

Applying the following transformation, the above equations are reduced as follows:

(
1

A1
+

1
β1

)(
1

B1

)
F′′′ (η) + 1 +

Me−τ η

B1
+ F(η) F′′ (η)−

(
F′(η)

)2 − γ1

B1

( η

2
F′′ (η) + F′(η)− 1

)
+ 1 + B2δθ(η) = 0, (16)
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(
1
C1

) khn f

kb f

(
1
Pr

)(
1 +

4
3

Rd

)
θ′′ (η) + θ′(η) F(η) +

γ1

2C1
η θ′(η) +

v

C1

(
1

A1
+

1
β1

)
(F′′(η))2. (17)

With boundary conditions as follows:

F(0) = 0, F′(0) = 0 =∈, F′(∞) = 1, θ(0) = 1 + λ
khn f

kb f
θ′(0), θ(∞) = 0. (18)

where

A1 = ((1− φ1)(1− φ2))
2.5, B1 = (1− φ1)(1− φ2) + φ1

(
ρs1
ρ f

)
+ φ2

(
ρs2
ρ f

)
, C1

=

(
(1− φ1)(1− φ2) + φ1

(
(ρcp)s1
(ρcp) f

)
+ φ2

(
(ρcp)s2
(ρcp) f

))
, B2 =

βhn f
βb f

.

From an engineering perspective, the physical quantities such as skin friction and
Nusselt number are the most significant. These quantities are defined as:

C f x =
τx

ρhn f ue2 , Nux =
xqx

k f (Tw − T∞)
. (19)

where τx and qx are presented as

qw = −khn f

(
1 +

4
3

Rd

)(
∂T
∂y

)∣∣∣∣
y=0

, τx =

(
µhn f +

1
β1

)(
∂u
∂y

)∣∣∣∣
y=0

. (20)

In the dimensionless form

Nux(Rex)
− 1

2 = −
khn f

kb f

(
1 +

4
3

Rd

)
θ′′ (η), C f x(Rex)

1
2 =

(
1

A1
+

1
β1

)(
1
B1

)
F′′ (0). (21)

The local Reynolds number is Rex. The unsteadiness parameter is
(
γ1 = α

a
)
, ra-

diation parameter is (Rd = 16 σ T∞
3

3k∞k∗ ), Prandtl number is
(

Pr =
υ f
α f

)
, Casson fluid pa-

rameter is
(

β1 = µB
√

2πc
py

)
, Eckert number is

(
v = Uw

2

cp(Tw−T∞)

)
, buoyancy parameter is(

δ = Grx
Rex2 =

gLBTB βb f
a2

)
, modified Hartmann number is

(
M = πM0 J0

8ρb f Uw
2

)
, and the magnetic

dimensionless term is
(
τ = π

a Rex
−1),

3. Numerical Procedure

The nonlinear ordinary differential equations were reduced into first-order differential
equations which were solved through the bvp4c method by using Matlab packages. The
description of the bvp4c methods is presented in Figure 2. The error of tolerance was 10−6.
The procedure is given below:

F(η) = s(1); F′(η) = s(2); F′′ (η) = s(3); F′′′ (η) = ss1; (22)

ss1 = −
((

1
A1

+
1
β1

)
1

B1

)−1(
1 +

Me−τ x

B1
+ y(1)y(3)− y(2)y(2)− γ1

B1

( x
2

y(3) + y(2)− 1
)
+ B2δy(4)

)
; (23)

θ(η) = s(4); θ′(η) = s(5); θ′′ (η) = ss2; (24)
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ss2 = −
(

1
C1

)−1
Pr

kb f

khn f

(
1 +

4
3

Rd

)−1 (
s(5)s(1) +

γ1

2
xs(5) +

v

(C1)

(
1

A1
+

1
β1

)
s(3)s(3)

)
. (25)

With boundary conditions being

s0(1); s0(2); sin f (2)− 1; s0(4)− 1− λ
khn f

kb f
s0(5); sin f (4); (26)

The numerical results converged when the boundary residuals (R1(u1, u2), R2(u1, u2))
were less than the tolerance error, i.e., 10−6. When the numerical values became repeating,
unless it ran into the compulsory convergence basis. The boundary residuals are as follows:

R1(u1 u2) = |y2(∞)− ŷ2(∞)|,

R2(u1 u2) = |y4(∞)− ŷ4(∞)|.

Hence, ŷ2(∞) and ŷ4(∞) were computed boundary values.

Figure 2. Disruption flow chat of numerical bv4c scheme.

4. Results and Discussion

The developed mathematical model of unsteady Casson hybrid nanofluid flow over
a vertical Riga sheet was solved through numerical technique. The physical parameters
being: Casson fluid parameter (β1), modified Hartmann number (M), dimensionless
parameter (τ), unsteadiness parameter (γ1), buoyancy force (δ), radiation parameter (Rd),
solid nanoparticle concentration (φ2), Eckert number (v), and thermal slip (λ) effects are
presented through graphs and table. Figures 3–7 indicate the impacts of the Casson fluid
parameter (β1), solid nanoparticle concentration (φ2), buoyancy force (δ), dimensionless
parameter (τ), and modified Hartmann number (δ) on the velocity function. The influence
of β1 on the velocity function is presented in Figure 3. The curves of the velocity function
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increased due to the incremental rise of β1 because the viscosity of the fluid declined
which boosted the fluid velocity at the surface of the vertical Riga sheet. The elasticity
of the parameter was due to the relationship between relaxation and delay time. As the
Casson parameter increased, the flow profile increased, indicating that the thickness of
the lower confinement surface stopped at zero. In fact, the higher the Casson value, the
higher the primary velocity for the Newton case. The impacts of φ2 on the velocity function
are revealed in Figure 4. The velocity function declined due to the incremental rise of φ2
because the quantity of solid nanoparticles increased which increased the viscosity of the
fluid which ultimately declines the fluid velocity. The higher values of φ2, which mean
increased resistance to the fluid motion, resulted in improved effective viscosity of the
hybrid nanoparticles with base fluid which decreased the velocity of the fluid. Figure 5
indicates the impressions of M on the velocity function. The curves of the velocity function
increased due to the higher values of M. The Hartmann number is a ratio of electric force
to viscous force. The electric forces increased due to sophisticated values of M ultimately
increasing the velocity function. The impacts of the buoyancy parameter (δ) on the velocity
profile are presented in Figure 6. The curves of the velocity profile increased due to the
augmentation of the buoyancy parameter (δ). It was noted that δ > 0, δ < 0, and δ = 0
correspond to heated Riga sheet (assisting flow), cooled Riga sheet (opposing flow), and
forced convection flow, respectively. We considered the heated Riga sheet (assisting flow)
δ > 0 in the present analysis. The fluid velocity increased due to the incremental rise in the
buoyancy parameter (δ) because assisting flow raises the velocity of fluid. The variation
of the unsteadiness parameter and velocity profile is presented in Figure 7. The velocity
profile deteriorated due to the incremental rise of the unsteadiness parameter. In both
profiles, this effect was accompanied by a decrease in the thickness of the momentum
boundary layer, indicating that the unsteadiness parameter lowered the flowrate as a result
of the stretching sheet.

Figures 8–13 indicate the impacts of the Casson fluid parameter (β1), the solid nanopar-
ticle concentration (φ2), thermal slip (λ), the unsteadiness parameter (γ1), the radiation
parameter (Rd), and the Eckert number (v) on the temperature function. The variation of
β1 and fluid temperature function is presented in Figure 8. The curves of fluid temperature
function deteriorated due to higher values of β1. Physically, the intention was that any
rise in β1 indicated a decline in the yield stress and, therefore, the thickness of the thermal
boundary layer decreased. Figure 9 reveals the influence of φ2 on the fluid temperature
function. The curves of the fluid temperature function curves revealed an increasing
trend due to the incremental rise of φ2. The values of solid nanoparticle concentration
(φ2) increased which enhanced the curves of temperature function (θ(η)). Physically, the
thermal conductivity of the fluid was enhanced which enhanced the heat transfer rate.
The variation of λ and fluid temperature function is presented in Figure 10. The curves
of fluid temperature function deteriorated due to higher values of λ. Physically, the aug-
mentation in thermal slip decreased the surface drag leading to a decay in the invention
of heat quantity which deteriorated the temperature distribution. Figure 11 reveals the
influence of γ1 on the fluid temperature function. The curves of fluid temperature function
curves revealed a decline due to the incremental rise of γ1. We considered the heated Riga
sheet (assisting flow). In this case, the steadiness parameter enhanced which decreased
temperature of the surface. Figure 12 depicts the influence of Rd on fluid temperature
function. The curves of fluid temperature increased due to the increasing values of Rd, but
the behavior of the curves revealed the opposite at the point of infliction. As the values
of the radiation parameter increased, the temperature of the fluid increased. As is known
globally, the radiation increased, which enhanced the temperature of the surface. Figure 13
depicts the impacts of v on the fluid temperature function. The curves of the temperature
function increased due to the greater values of v. The link between the kinetic energy in
the flow and the enthalpy was expressed by the Eckert number. It was found that a rising
Eckert number resulted in a rising temperature profile.
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The influence of the Eckert number (v), the solid nanoparticle concentration (φ2),
the Casson fluid parameter (β1), the modified Hartmann number (M), the dimension-
less parameter (τ), radiation parameter (Rd), and thermal slip (λ) on the skin friction

(C f x(Rex)
1
2 ) and Nusselt number (Nux(Rex)

− 1
2 ) is depicted in Table 4. The influence of

v on the C f x(Rex)
1
2 and Nux(Rex)

− 1
2 is presented in Table 4. The skin friction reduced

due to the incremental rise in v while the Nusselt number rose with higher values of v.

The Nux(Rex)
− 1

2 improved due to incremental increases in the Eckert number (v). The
Eckert number implied that more thermal energy was added to the fluid so that heat was
conducted from the plate into the fluid, i.e., causing an increase in heat transfer at the

wall. The influence of φ2 on C f x(Rex)
1
2 and Nux(Rex)

− 1
2 is presented in Table 4. The skin

friction increased due to the higher values of φ2. The heat transfer rate reduced due to the

incremental rise in the values of φ2. The influence of β1 on the C f x(Rex)
1
2 and Nux(Rex)

− 1
2

is presented in Table 4. The skin friction reduced due to the physical enhancement of
β1; the shear thinning enhanced which reduced the skin friction. The Nusselt number
declined due to the enhancement of β1 because shear thinning enhanced which raised the

heat transfer rate. Table 4 exposes the impressions of δ on the C f x(Rex)
1
2 and Nux(Rex)

− 1
2 .

It can be seen that both the C f x(Rex)
1
2 and Nux(Rex)

− 1
2 reduced due to the incremental

increase in the δ. The variation of C f x(Rex)
1
2 and Nux(Rex)

− 1
2 with τ is presented in Table 4.

The C f x(Rex)
1
2 enhanced but Nux(Rex)

− 1
2 decreased due to the higher values of τ. The

variation of C f x(Rex)
1
2 and Nux(Rex)

− 1
2 with Rd is presented in Table 4. The C f x(Rex)

1
2

remained the same but Nux(Rex)
− 1

2 enhanced due to the higher values of Rd because
thermal slip enhanced as well as the heat transfer increasing. As the radiation increased,
which increased the heat transfer rate, ultimately, the temperature gradient increased. The

variation of C f x(Rex)
1
2 and Nux(Rex)

− 1
2 with λ is presented in Table 4. The C f x(Rex)

1
2 re-

mained the same but Nux(Rex)
− 1

2 enhanced due to the greater values of λ because thermal
slip enhanced as well as the heat transfer increasing. Table 5 shows the comparative results
of Wang [34] and Bachok et al. [35] with the present results. The present results were found
to be similar with Wang’s [34] and Bachok et al.’s [35] results. As the values of ∈ increased
and the skin friction declined. When ∈= 0 means that the fluid and solid boundaries move
at the same velocity, there is no friction at the fluid–solid interface.

Figure 3. Influence of β1 on F′(η).
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Figure 4. Influence of φ2 on F′(η).

Figure 5. Influence of M on F′(η).
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Figure 6. Influence of δ on F′(η).

Figure 7. Influence of γ1 on F′(η).
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Figure 8. Influence of β1 on θ(η) when λ = 0.0.

Figure 9. Influence of φ2 on θ(η) when λ = 0.0.
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Figure 10. Influence of λ on θ(η).

Figure 11. Influence of γ1 on θ(η).
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Table 4. Numerical analysis of skin friction and Nusselt number for different values of parameters.

Physical Parameters Yamada Ota Model Xue Model Tiwari Das Model

v φ2 β1 M τ Rd λ Cfx(Rex)
1
2 Nux(Rex)

− 1
2 Cfx(Rex)

1
2 Nux(Rex)

− 1
2 Cfx(Rex)

1
2 Nux(Rex)

− 1
2

0.1 0.04 0.3 0.4 0.5 0.3 0.2 2.5583 0.0188 2.5583 0.0188 2.5583 0.3323
0.2 - - - - - - 2.5307 0.0195 2.5307 0.0195 2.5307 0.3586
0.3 - - - - - - 2.5039 0.0201 2.5039 0.0201 2.5039 0.3843
0.4 - - - - - - 2.4778 0.0208 2.4778 0.0208 2.4778 0.4094
0.1 0.02 - - - - - 2.2483 0.0428 2.2559 0.0295 2.2483 0.3890
- 0.04 - - - - - 2.4000 0.0269 2.4075 0.0210 2.4000 0.3594
- 0.06 - - - - - 2.5583 0.0188 2.5653 0.0159 2.5583 0.3323
- 0.08 - - - - - 2.7237 0.0140 2.7300 0.0125 2.7237 0.3073
- 0.04 0.1 - - - - 3.9474 0.0349 3.9069 0.0135 3.9474 0.2681
- - 0.3 - - - - 2.4843 0.0414 2.4075 0.0210 2.4843 0.3670
- - 0.5 - - - - 2.0950 0.0438 2.0165 0.0237 2.0950 0.4045
- - 0.7 - - - - 1.9057 0.0451 1.8283 0.0250 1.9057 0.4251
- - 0.3 0.2 - - - 3.7956 0.0265 2.5902 0.0287 2.5902 0.2625
- - - 0.4 - - - 3.4900 0.0082 2.4075 0.0210 2.4075 −0.046
- - - 0.6 - - - 3.1814 −0.012 2.2231 0.0126 2.2231 −0.383
- - - 0.8 - - - 2.8697 −0.035 2.0370 0.0033 2.0370 −0.753
- - - 0.4 0.1 - - 3.7358 0.0541 3.7458 0.0272 3.7458 0.0541
- - - - 0.3 - - 3.7458 0.0261 3.8344 0.0279 3.8344 0.0652
- - - - 0.5 - - 3.8344 0.0267 3.8902 0.0283 3.8902 0.0717
- - - - 0.7 - - 3.8902 0.0271 3.9276 0.0286 3.9276 0.0758
- - - - 0.5 0.0 - 3.9276 0.0144 3.9276 0.0254 3.9276 0.0488
- - - - - 0.3 - 3.9276 0.0244 3.9276 0.0346 3.9276 0.1280
- - - - - 0.6 - 3.9276 0.0331 3.9276 0.0430 3.9276 0.2025
- - - - - 0.9 - 3.9276 0.0411 3.9276 0.0509 3.9276 0.2731
- - - - - 0.3 0.0 3.9276 0.0648 3.9276 0.0680 3.9276 0.0680
- - - - - - 0.2 3.9276 0.0486 3.9276 0.0509 3.9276 0.0509
- - - - - - 0.4 3.9276 0.0324 3.9276 0.0338 3.9276 0.0338
- - - - - - 0.6 3.9276 0.0162 3.9276 0.0167 3.9276 0.0167

Table 5. Comparative results of Wang [34] and Bachok et al. [35] with existent outcomes when the
rest of the physical parameters are zero.

∈. Wang [34] Bachok et al. [35] Present Results

0.0 1.232588 1.232588 1.229874
0.5 0.71330 0.713295 0.711874
1.0 0.0 0.0 0.0

5. Conclusions

The incompressible time-dependent flow of Casson hybrid nanomaterial fluid flow
over a vertical Riga sheet under the stagnation region was considered. The three models of
hybrid nanomaterial fluid flow: namely, Yamada–Ota, Tiwari–Das, and Xue models were
discussed. Two different nanoparticles, namely, SWCNT and MWCNT under base fluid
(water) were studied. The dimensionless system ODEs were solved by numerical scheme.
The main achievements were as follows:

• The velocity function revealed a decline due to the incremental rise of φ2 because
the quantity of solid nanoparticle increased which increased the viscosity of the fluid
which, ultimately, decreases the fluid velocity.

• The curves of velocity function declined due to the higher values of M. The Hartmann
number is the ratio of electric force to viscous force. The electric forces increased due
to the higher values of the modified Hartmann number, which, ultimately, decreased
the velocity function.
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• The skin friction reduced due to the enhancement of β1; physically, the shear thinning
enhanced which reduced the skin friction. The Nusselt number decreased due to the
enhancement of β1 because the shear thinning enhanced which raised the heat transfer rate.

• The C f x(Rex)
1
2 remained the same but Nux(Rex)

− 1
2 enhanced due to the higher values

of Rd because the thermal slip enhanced as well as the heat transfer increasing. As the
radiation increased, which, ultimately, increased the heat transfer rate, the temperature
gradient increased because of the greater radiative structures characteristic of higher
Nusselt numbers.
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