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Abstract: We examine a few mathematical characteristics of Rogers–Ramanujan type identities as a
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1. Introduction

The Rogers–Ramanujan identities (RRI) are the two most well-known q-series identities
that have impacted studies in many branches of mathematics and science, and are given as

∞

∑
n=0

qn2

(q; q)n
=

∞

∏
n=0

(1− q5n−1)−1(1− q5n−4)−1, (1)

∞

∑
n=0

qn2+n

(q; q)n
=

∞

∏
n=0

(1− q5n−2)−1(1− q5n−3)−1. (2)

where
(a; q)n = (1− a)(1− aq)(1− aq2) · · · (1− aqn−1), ∀ n ≥ 1,

(a; q)∞ = lim
n→∞

(a; q)n, |q| < 1.

These identities were first discovered by Rogers [1] but were appreciated only after Ra-
manujan rediscovered these sometime before 1913. Despite being over a century old, the
Rogers–Ramanujan identities are still the focus of ongoing research. RRI played a major
role in algebraic characters [2], partition theory [3], and statistical mechanics [4]. Some of
the useful texts on the history of these identities are found in Refs. [3,5–7]. These identities
are of the form ‘Sum=Product’; therefore, they are sometimes called sum-product identities.
MacMahon [8] provided the partition–theoretic interpretations of the RRI given by (1) and
(2) as:

Theorem 1. The number of partitions of n into parts with minimal difference 2 equals the number
of partitions of n into parts which are congruent to ±1 (mod 5).

Theorem 2. The number of partitions of n with minimal part 2 and minimal difference 2 equals
the number of partitions of n into parts which are congruent to ±2 (mod 5).

Recently, P. Afsharijoo [9] added a new companion to the Rogers–Ramanujan identities.
This new companion counts partitions with different types of constraints on even and odd
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parts. Bailey [10] systematically explored the Rogers–Ramanujan type identities (RRTIs).
Additionally, a list of 130 identities of the Rogers–Ramanujan type identities was provided
by Slater [11]. Furthermore, Chu and Zhang [12] found many RRTIs using certain transfor-
mations. The hard hexagon model in statistical mechanics, a specific instance of a solvable
family of hard-square-type models, naturally incorporated many Rogers–Ramanujan type
identities. Baxter [13] explained that a number of Rogers–Ramanujan type identities occur
in the determination of sub-lattice densities and order parameters. Kedem et al. [14] be-
lieved that the Rogers–Ramanujan identities represent the partition function of a physical
system with quasiparticles that adhered to specific exclusion statistics. The relationship
between RRI and fractional statistics is developed by these exclusion statistics, which are
related to fractional statistics. Furthermore, the combinatorial interpretations of many
RRTIs were studied using different combinatorial tools, and are available in Refs. [15–18].
Recently, we have found the combinatorial interpretations of many RRTIs, some of which
are listed in Tables 1–3, using signed partitions (for signed partitions, readers are referred
to Ref. [19]). Additionally, many mathematicians were interested in finding the arithmetic
properties of some restricted partition functions [20,21].

The purpose of this paper is to explore the congruences for RRTI, as given in Section 3,
Tables 1–3. We have arranged 17 Rogers–Ramanujan type identities into three groups:
Group 1 contains 10 RRTIs, which are listed in Table 1; Group 2 contains 3 identities, which
are listed in Table 2; and Group 3 contains 4 identities, which are listed in Table 3.

2. Preliminaries

We require the following definitions and lemmas to prove the main results in the next
section. For |ab| < 1, Ramanujan’s general theta function f (a, b) is defined as

f (a, b) =
∞

∑
m=−∞

a
m(m+1)

2 b
m(m−1)

2 . (3)

Using Jacobi’s triple-product identity [22] (entry 19, p. 35), (3) becomes

f (a, b) = (−a; ab)∞(−a; ab)∞(ab; ab)∞. (4)

The special cases of f (a, b) are

ϕ(q) = f (q; q) = 1 + 2
∞

∑
m=1

qm2
= (−q; q2)2

∞(q2; q2)∞ =
f 5
2

f 2
1 f 2

4
, (5)

ψ(q) = f (q; q3) =
∞

∑
m=1

q
m(m+1)

2 =
(q2; q2)∞

(q; q2)∞
=

f 2
2

f1
. (6)

In some of the proofs, we also employ Jacobi’s identity from Ref. [23] as Equation (1.7.1):

f 3
1 =

∞

∑
n=0

(−1)n(2n + 1)qn(n+1)/2. (7)

Lemma 1. We have

1
f 2
1
=

f 5
8

f 5
2 f 2

16
+ 2q

f 2
4 f 2

16

f 5
2 f8

, (8)
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f 2
1 =

f2 f 5
8

f 2
4 f 2

16
− 2q

f2 f 2
16

f8
, (9)

1
f 4
1
=

f 14
4

f 14
2 f 4

8
+ 4q

f 2
4 f 4

8

f 10
2

, (10)

f 4
1 =

f 10
4

f 2
2 f 4

8
− 4q

f 2
2 f 4

8
f 2
4

, (11)

1
f1 f3

=
f 2
8 f 5

12
f 2
2 f4 f 4

6 f 2
24

+ q
f 5
4 f 2

24

f 4
2 f 2

6 f 2
8 f12

, (12)

f 3
1

f3
=

f 3
4

f12
− 3q

f 2
2 f 3

12
f4 f 2

6
, (13)

f3

f 3
1
=

f 6
4 f 3

6

f 9
2 f 2

12
+ 3q

f 2
4 f6 f 2

12
f 7
2

, (14)

f 3
3

f1
=

f 3
4 f 2

6

f 2
2 f12

+ q
f 3
12
f4

, (15)

f 2
3

f 2
1
=

f 4
4 f6 f 2

12
f 5
2 f8 f24

+ 2q
f4 f 2

6 f8 f24

f 4
2 f12

, (16)

f3

f1
=

f4 f6 f16 f 2
24

f 2
2 f8 f12 f48

+ q
f6 f 2

8 f48

f 2
2 f16 f24

. (17)

Proof. Using the two-dissection of ϕ(q) and ϕ(q2) from (Ref. [23], Equation (1.9.4) and
(1.10.1)), we obtain (8) and (10). On replacing q by −q in (5), we obtain (9) and (11).
Furthermore, (12), (13), (15), (16), and (17) are Equations (30.12.3), (22.1.13), (22.1.14),
(30.10.4), and (30.10.3), respectively, in Ref. [23]. Next, (14) follows from (13) by using q
instead of −q.

Lemma 2. We have

f4

f1
=

f12 f 4
18

f 3
3 f 2

36
+ q

f 2
6 f 3

9 f36

f 4
3 f 2

18
+ 2q2 f6 f18 f36

f 3
3

, (18)

f 2
1

f2
=

f 2
9

f18
− 2q

f3 f 2
18

f6 f9
, (19)

f2

f 2
1
=

f 4
6 f 6

9

f 8
3 f 3

18
+ 2q

f 3
6 f 3

9
f 7
3

+ 4q2 f 2
6 f 3

18

f 6
3

, (20)

f 3
1 = f3c(q3)− 3q f 3

9 . (21)

where

c(q) =
∞

∑
m,n=−∞

qm2+mn+n2
.

Proof. The first identity follows from Equations (33.2.1) and (33.2.5) in Ref. [23]. The second
identity is equivalent to the three-dissection of ϕ(−q) (see Ref. [23] Equation (14.3.2)). We
obtained (20) by replacing q with ωq and ω2q and multiplying the two results, where ω is
the primitive cube root of unity.

The three-dissection of ψ(q) follows as:

Lemma 3. We have

ψ(q) =
f 2
2

f1
=

f6 f 2
9

f3 f18
+ q

f 2
18
f9

. (22)



Mathematics 2022, 10, 3582 4 of 23

Proof. Identity (22) is Equation (14.3.3) of Ref. [23].

Lemma 4. In Ref. [24], for any prime p ≥ 5,

f1 =

(p−1)
2

∑
k=−(p−1)

2
k 6=(±p−1)/6

(−1)kq
3k2+k

2 f (−q
(3p2+(6k+1)p)

2 ,−q
(3p2−(6k+1)p)

2 )

+ (−1)
(±p−1)

6 q
(p2−1)

24 fp2 , (23)

where
±p− 1

6
=

{
(p−1)

6 if p ≡ 1 (mod 6),
(−p−1)

6 if p ≡ −1 (mod 6).
(24)

If −p−1
2 ≤ k ≤ p−1

2 and k 6= ±p−1
2 , then 3k2+k

2 6≡ p2−1
24 (mod p).

3. Main Results

In Tables 1–3, the sum sides of RRTIs are the generators for the partitions written in
the second column, and the product sides of the RRTIs are written in the third column.

Group 1

We now present 10 RRTIs in this group from Ref. [12] with identity nos. 8, 9, 10, 33, 45, 70,
98, 104, 111, and 112, as shown below.

Table 1. Rogers–Ramanujan type identities.

Function Sum Side = Product Side

A1(q) ∑∞
m=0

(−q;q)m+1q
m(m+1)

2

(q;q)m
= (−q;q)∞

(q;q)∞
[q4, q2, q2; q4]∞

A2(q) ∑∞
m=0

(−1;q)2mqm

(q;q)2m
= (−q;q)∞

(q;q)∞
[q4,−q2,−q2; q4]∞

A3(q) ∑∞
m=0

(−q;q)2mqm

(q;q)2m+1
= (−q;q)∞

(q;q)∞
[q4,−q4,−q4; q4]∞

A4(q) ∑∞
m=0

(q;q2)2
mq2m2

(q2;q2)2m
= [q6,q3,q3;q6]∞

(q2;q2)∞

A5(q) ∑∞
m=0

(−1;q2)mqm(m+1)

(q;q)2m
= (−q2;q2)∞

(q2;q2)∞
[q6,−q3,−q3; q6]∞

A6(q) ∑∞
m=0

(−1;q2)mq
m(m+1)

2

(q;q)m(q;q2)m
= (−q;q)∞

(q;q)∞
[q8, q4, q4; q8]∞

A7(q) ∑∞
m=0

(−1;q)mq
m(m+1)

2

(q;q2)m(q;q)m
= (−q;q)∞

(q;q)∞
[q10, q5, q5; q10]∞

A8(q) ∑∞
m=0

(−q;q2)mqm(m+1)

(q;q2)2m+1(q2;q2)m
= [q12,q4,q8;q12]∞

(q;q)∞

A9(q) ∑∞
m=0

(−q;q2)mqm

(q;q)2m+1
= (−q;q)∞

(q;q)∞
[q12, q3, q9; q12]∞

A10(q) ∑∞
m=0

(−1;q2)mqm

(q;q)2m
= (−q;q)∞

(q;q)∞
[q12, q6, q6; q12]∞

Throughout the remainder of this paper, we use

fk = (qk; qk)∞,

for positive integer k.
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From the binomial theorem, we have

f 2k

1 ≡ f 2k−1

2 (mod 2k). (25)

Before stating the main results, we define

Ai(q) =
∞

∑
m=0

ai(m)qm.

Theorem 3. For m ≥ 0, we have

a1(4m + 2) ≡ 0 (mod 2), (26)

a1(4m + 3) ≡ 0 (mod 4), (27)

a1(8m + 5) ≡ 0 (mod 8), (28)

a1(8m + 6) ≡ 0 (mod 4), (29)

a1(8m + 7) ≡ 0 (mod 16), (30)

a1(16m + t) ≡ 0 (mod 4), for t ∈ {10, 12} (31)

a1(32m + 20) ≡ 0 (mod 4), (32)

a1(48m + 34) ≡ 0 (mod 4). (33)

Theorem 4. For m ≥ 0, we have

a2(4m + 3) ≡ 0 (mod 4), (34)

a2(8m + t) ≡ 0 (mod 4), for t ∈ {3, 6} (35)

a2(8m + 7) ≡ 0 (mod 8), (36)

a2(16m + 10) ≡ 0 (mod 4). (37)

Theorem 5. For m ≥ 0, we have

a3(3m + 2) ≡ 0 (mod 2), (38)

a3(4m + 2) ≡ 0 (mod 4), (39)

a3(4m + 3) ≡ 0 (mod 8), (40)

a3(12m + t) ≡ 0 (mod 4), for t ∈ {2, 3, 6, 11}. (41)

Theorem 6. For m ≥ 0, we have

a4(2m + 1) ≡ 0 (mod 2), (42)

a4(32m + t) ≡ 0 (mod 4), for t ∈ {6, 30} (43)

a4(64m + 50) ≡ 0 (mod 4). (44)

Theorem 7. For m ≥ 0, we have

a5(6m + 2) ≡ 0 (mod 2), (45)

a5(6m + 4) ≡ 0 (mod 4), (46)

a5(18m + 12) ≡ 0 (mod 4), (47)

a5(54m + 42) ≡ 0 (mod 4), (48)

a5(162m + 114) ≡ 0 (mod 4). (49)
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Theorem 8. For m ≥ 0, we have

a6(3m + 1) ≡ 0 (mod 2), (50)

a6(3m + 2) ≡ 0 (mod 4), (51)

a6(4m + 3) ≡ 0 (mod 8), (52)

a6(8m + t) ≡ 0 (mod 4), for t ∈ {4, 5} (53)

a6(8m + t) ≡ 0 (mod 16), for t ∈ {6, 7} (54)

a6(12m + 3) ≡ 0 (mod 8), (55)

a6(16m + 8) ≡ 0 (mod 4), (56)

a6(24m + 6) ≡ 0 (mod 8), (57)

a6(80m + t) ≡ 0 (mod 4), for t ∈ {18, 64}. (58)

Theorem 9. For m ≥ 0, we have

a7(6m + 4) ≡ a7(24m + 16) (mod 4), (59)

a7(9m + t) ≡ 0 (mod 4), for t ∈ {3, 6} (60)

a7(15m + t) ≡ 0 (mod 4), for t ∈ {2, 8, 11, 14} (61)

a7(12m + t) ≡ 0 (mod 4), for t ∈ {7, 10} (62)

a7(24m + 13) ≡ 0 (mod 4), (63)

a7(48m + 28) ≡ 0 (mod 4). (64)

Theorem 10. For prime p ≥ 5

a8

(
3p2m + 3pi +

p2 − 1
8

)
≡ 0 (mod 2), (65)

where i = 1, 2, · · · , (p− 1).

Theorem 11. For m ≥ 0, we have

a8(9m + 1) ≡ a8(m) (mod 4), (66)

a8(9m + 4) ≡ 0 (mod 4), (67)

a8(9m + 7) ≡ 0 (mod 4). (68)

Theorem 12. For m ≥ 0, we have

a9(3m + 1) ≡ 0 (mod 2), (69)

a9(3m + 2) ≡ 0 (mod 4), (70)

a9(18m + 9) ≡ 0 (mod 3), (71)

a9(18m + 15) ≡ 0 (mod 3). (72)

Theorem 13. For m ≥ 0, we have

a10(4m + 3) ≡ 0 (mod 4), (73)

a10(8m + t) ≡ 0 (mod 4), for t ∈ {2, 5}, (74)

a10(16m + t) ≡ 0 (mod 4), for t ∈ {9, 12, 14}, (75)

a10(32m + 20) ≡ 0 (mod 4), (76)

a10(48m + t) ≡ 0 (mod 4), for t ∈ {22, 38}. (77)
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Group 2

In this group, we have the following RRTIs with identity nos. 1, 36, and 37 in Ref. [12].
These RRTIs have the same congruences.

Table 2. Rogers–Ramanujan type identities.

Function Sum Side = Product Side

A11(q) ∑∞
m=0

(−1;q)mqm2

(q;q2)2m
= [q3,−q,−q2;q3]∞

(q;q)∞

A12(q) ∑∞
m=0

(−1;q)2mqm

(q2;q2)m
= (−q;q)∞

(q;q)∞
[q6, q3, q3; q6]∞

A13(q) ∑∞
m=0

(−1;q)mqm2

(q;q2)m(q;q)m
= (−q;q)∞

(q;q)∞
[q6, q3, q3; q6]∞

Theorem 14. For m ≥ 0 and i = 11, 12, and 13, we have

ai(3m + 1) ≡ 0 (mod 2), (78)

ai(3m + 2) ≡ 0 (mod 4), (79)

ai(4m + 2) ≡ 0 (mod 4), (80)

ai(4m + 3) ≡ 0 (mod 6), (81)

ai(6m + 5) ≡ 0 (mod 16), (82)

ai(8m + 4) ≡ 0 (mod 2), (83)

ai(8m + 5) ≡ 0 (mod 4), (84)

ai(8m + t) ≡ 0 (mod 12), for t ∈ {6, 7} (85)

ai(24m + 14) ≡ 0 (mod 8), (86)

ai(24m + 20) ≡ 0 (mod 16), (87)

ai(32m + 24) ≡ 0 (mod 8), (88)

ai(40m + t) ≡ 0 (mod 4), for t ∈ {17, 33} (89)

ai(40m + t) ≡ 0 (mod 12), for t ∈ {11, 19} (90)

ai(64m + 40) ≡ 0 (mod 8). (91)

Group 3

In this group, we use the following RRTIs from Ref. [12] with identity nos. 3, 39, 46, and
103. The identities A14(q), A15(q) and A16(q), A17(q) have the same congruences.

Table 3. Rogers–Ramanujan type identities.

Function Sum Side = Product Side

A14(q) ∑∞
m=0

(−q;q)mqm(m+1)

(q;q)m(q;q2)m+1
= [q3,−q3,−q3;q3]∞

(q;q)∞

A15(q) ∑∞
m=0

(−q;q)2mqm

(q2;q2)m
= (−q;q)∞

(q;q)∞
[q6, q, q5; q6]∞

A16(q) ∑∞
m=0

(−q2;q2)mqm(m+1)

(q;q)2m+1
= (−q2;q2)∞

(q2;q2)∞
[q6,−q,−q5; q6]∞

A17(q) ∑∞
m=0

(−q2;q2)mqm(m+1)

(q;q)2m+1
= [q6,−q,−q5;q6]∞

(q;q)∞
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Theorem 15. For m ≥ 0 and i = 14, 15, we have

ai(4m + 2) ≡ 0 (mod 2), (92)

ai(4m + 3) ≡ 0 (mod 4), (93)

ai(16m + 13) ≡ 0 (mod 4), (94)

ai(16m + t) ≡ 0 (mod 8), for t ∈ {11, 15}. (95)

Theorem 16. For m ≥ 0 and i = 16, 17, we have

ai(4m + 1) ≡ ai(m) (mod 4), (96)

ai(8m + 4) ≡ 0 (mod 4), (97)

ai(8m + 6) ≡ 0 (mod 8), (98)

ai(16m + t) ≡ 0 (mod 8), for t ∈ {11, 15}. (99)

4. Proofs of Main Results

Proof of Theorem 3. Consider

∞

∑
m=0

a1(m)qm =
(−q; q)∞

(q; q)∞
[q4, q2, q2; q4]∞ =

f 3
2

f4

1
f 2
1

∞

∑
m=0

a1(m)qm =
f 3
2

f4

(
f 5
8

f 5
2 f 2

16
+ 2q

f 2
4 f 2

16

f 5
2 f8

)
.

Extracting even and odd terms, we obtain

∞

∑
m=0

a1(2m)qm =
f 5
4

f2 f 2
8

1
f 2
1

, (100)

∞

∑
m=0

a1(2m + 1)qm =
2 f2 f 2

8
f4

1
f 2
1

. (101)

Substituting (8) in (100), on extracting even and odd terms, we obtain

∞

∑
m=0

a1(4m)qm =
f 5
2 f 3

4
f 6
1 f 2

8
, (102)

∞

∑
m=0

a1(4m + 2)qm =
2 f 7

2 f 2
8

f 6
1 f 3

4
. (103)

From (103), we also reach (26)

∞

∑
m=0

a1(4m + 2)qm ≡ 2
f 4
2 f 2

8

f 3
4

(mod 4),

and we extract even terms to reach (29). On bringing out the odd terms, from the above
equation and using (25), we have

∞

∑
m=0

a1(8m + 2)qm ≡ 2
f 4
1 f 2

4
f 3
2
≡ 2

f 2
4

f2
(mod 4).
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Extracting odd terms from the above equation to obtain (31) for t = 10 and on extracting
even terms, we obtain

∞

∑
m=0

a1(16m + 2)qm ≡ 2
f 2
2

f1
(mod 4).

Using (22) in the above equation and extracting the terms involving q3m+2, we divide by q2

and replace q3 by q to obtain (33).

On substituting (8) in (101), extracting even and odd terms, we obtain

∞

∑
m=0

a1(4m + 1)qm = 2
f 9
4

f2 f 2
8

1
f 4
1

, (104)

∞

∑
m=0

a1(4m + 3)qm = 4 f 3
4 f2 f 2

8
1
f 4
1

. (105)

From (105), we readily reach (27). Putting (10) in (104) and (105), then extracting odd terms
from both equations, we obtain (28) and (30), respectively. Consider (102),

∞

∑
m=0

a1(4m)qm =
f 5
2 f 3

4
f 6
1 f 2

8
≡

f 3
2 f 3

4
f 2
8

1
f 2
1

(mod 4).

Applying (8) in the above relation, extracting odd terms, we have

∞

∑
m=0

a1(8m + 4)qm ≡ 2
f 5
2 f 2

8

f 3
4

1
f 2
1

(mod 4),

and again putting (8) then extracting odd terms gives (31) for t = 12, and extracting even
terms gives

∞

∑
m=0

a1(16m + 4)qm ≡ 2
f 7
4

f 3
2 f 2

8
(mod 4).

Extracting the odd terms from the above equation, we reach (32).

Proof of Theorem 4.

∞

∑
m=0

a2(m)qm =
(−q; q)∞

(q; q)∞
[q4,−q2,−q2; q4]∞ =

f 5
4

f 2
8 f2

1
f 2
1

.

Using (8) in above equation, by extracting even and odd terms, we have

∞

∑
m=0

a2(2m)qm =
f 5
2 f 3

4
f 6
1 f 2

8
, (106)

∞

∑
m=0

a2(2m + 1)qm = 2
f 7
2 f 2

8

f 6
1 f 3

4
. (107)

Putting (8) in (106) and extracting odd terms, we obtain

∞

∑
m=0

a2(4m + 2)qm ≡ 6
f 7
4

f 2
8

(mod 4).

Again, extracting odd terms from the above equation to obtain (35), and then extracting
even terms, we obtain

∞

∑
m=0

a2(8m + 2)qm ≡
6 f 7

2
f 2
4

(mod 4).
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On extracting odd terms, we obtain (37).

If we consider (107) and then substitute (8), we have

∞

∑
m=0

a2(2m + 1)qm = 2
f 7
2 f 2

8

f 3
4

(
f 5
8

f 5
2 f 2

16
+ 2q

f 2
4 f 2

16

f 5
2 f8

)3

Then, by extracting odd terms to obtain (34), and on taking modulo 8, we have

∞

∑
m=0

a2(4m + 3)qm ≡ 4
f 11
4

f 8
1 f2 f 2

8
≡ 4

f 11
4

f 5
2 f 2

4
(mod 8).

By extracting odd terms from above we obtain (36).

Proof of Theorem 5. Consider

∞

∑
m=0

a3(m)qm =
(−q; q)∞

(q; q)∞
[q4,−q4,−q4; q4]∞ =

f2 f 2
8

f4

1
f 2
1

. (108)

Substituting the value from (8), we obtain

∞

∑
m=0

a3(m)qm =
f2 f 2

8
f4

(
f 5
8

f 5
2 f 2

16
+ 2q

f 2
4 f 2

16

f 5
2 f8

)
.

Extracting even and odd terms, we obtain

∞

∑
m=0

a3(2m)qm =
f 7
4

f2 f 2
8

1
f 4
1

, (109)

∞

∑
m=0

a3(2m + 1)qm = 2 f4 f2 f 2
8

1
f 4
1

. (110)

Using (10) in both (109) and (110), we then extract the odd terms from both of them to
obtain (39) and (40), respectively. Again, from (108),

∞

∑
m=0

a3(m)qm =
f2

f 2
1

f 2
8

f4
.

Using (20) and (22), we have

∞

∑
m=0

a3(m)qm =

(
f 4
6 f 6

9

f 8
3 f 3

18
+ 2q

f 3
6 f 3

9
f 7
3

+ 4q2 f 2
6 f 3

18

f 6
3

)(
f24 f 2

36
f12 f72

+ q4 f 2
72

f36

)
(111)

Then, we extract the terms involving q3m and replace with q3 by q to obtain

∞

∑
m=0

a3(3m)qm ≡
f 2
3 f8 f 2

12
f4 f6 f24

(mod 4). (112)

Next, extract the terms involving q3m+2 from (111), dividing both sides by q2 and replacing
q3 by q to obtain

∞

∑
m=0

a3(3m + 2)qm = 4
f 2
2 f 3

6 f8 f 2
12

f 6
1 f4 f24

+ 2q
f 3
2 f 3

3 f 2
24

f 7
1 f12

. (113)
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From the above equation, we readily reach (38). Now, using (9) in (112), we have

∞

∑
m=0

a3(3m)qm ≡
f8 f 2

12
f4 f6 f24

(
f6 f 5

24
f 2
12 f 2

48
− 2q3 f6 f 2

48
f24

)
(mod 4).

On extracting even and odd terms, we obtain

∞

∑
m=0

a3(6m)qm ≡
f4 f 4

12
f2 f 2

24
(mod 4), (114)

∞

∑
m=0

a3(6m + 3)qm ≡ 2q
f4 f 2

6 f 2
24

f2 f 2
12

(mod 4). (115)

We extract the odd and even terms from (114) and (115), respectively, to obtain (41) for
t = 3, 6. From (113), we have

∞

∑
m=0

a3(3m + 2)qm ≡ 2q
f 2
24

f12

f 3
3

f1
(mod 4).

Using (15), then extracting the even and odd terms, we obtain

∞

∑
m=0

a3(6m + 2)qm ≡ 2q
f 2
12 f 3

6
f2 f6

(mod 4), (116)

∞

∑
m=0

a3(6m + 5)qm ≡ 2
f 2
2 f 2

12
f6

(mod 4). (117)

We extract even and odd terms from (116) and (117), respectively, to obtain (41) for
t = 2, 11.

Proof of Theorem 6.

∞

∑
m=0

a4(m)qm =
[q6, q3, q3; q6]∞

(q2; q2)∞
= f 2

3
1

f2 f6
.

Substituting (9) in the above equation to obtain

∞

∑
m=0

a4(m)qm =
1

f2 f6

(
f6 f 5

24
f 2
12 f 2

48
− 2q3 f6 f 2

48
f24

)
,

then extracting even terms, we obtain (118) and on extracting odd terms we obtain (42).

∞

∑
m=0

a4(2m)qm =
f 5
12

f 2
24

1
f1 f3

. (118)

Using (12) in (118), and on extracting odd terms and taking modulo 4, we have

∞

∑
m=0

a4(4m + 2)qm ≡
f 4
6 f 3

2
f 2
4

1
f 2
3

(mod 4).

Using (8), and again on extracting even and odd terms, we obtain

∞

∑
m=0

a4(8m + 2)qm ≡
f 5
12

f 2
2 f 2

24

f 3
1

f3
(mod 4), (119)

∞

∑
m=0

a4(8m + 6)qm ≡ 2q
f 2
6 f 2

24
f 2
2 f12

f 3
1

f3
(mod 4). (120)
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Substituting (13) in (119), extracting even terms, we obtain

∞

∑
m=0

a4(16m + 2)qm ≡
f 4
6 f 3

2
f 2
12

1
f 2
1

(mod 4).

Using (8) and extracting odd terms we have

∞

∑
m=0

a4(32m + 18)qm ≡ 2
f2 f 2

8
f4

(mod 4).

We extract odd terms to obtain (44). Consider (120), and by using (13) upon bringing out
the even and odd terms, we obtain

∞

∑
m=0

a4(16m + 6)qm ≡ 2q
f 2
12 f 2

6
f2

(mod 4), (121)

∞

∑
m=0

a4(16m + 14)qm ≡ 2
f 2
12 f 2

2
f6

(mod 4). (122)

We extract the even and odd terms from (121) and (122), respectively, to obtain (43) for
t = 6, 30.

Proof of Theorem 7.

∞

∑
m=0

a5(m)qm =
(−q2; q2)∞

(q2; q2)∞
[q6,−q3,−q3; q6]∞ =

f4 f 5
6

f 2
2 f 2

12

1
f 2
3

.

Using (8) in the above equation,

∞

∑
m=0

a5(m)qm =
f4 f 5

6
f 2
2 f 2

12

(
f 5
24

f 5
6 f 2

48
+ 2q3 f 2

12 f 2
48

f 5
6 f24

)

Extracting even terms then using (20), we extract the terms involving the q3m, q3m+1, and
q3m+2 terms, and we obtain (123), (45), and (46), respectively.

∞

∑
m=0

a5(6m)qm ≡
f 4
2 f 6

3

f 5
1 f 3

6
. (123)

Taking modulo 4,
∞

∑
m=0

a5(6m)qm ≡
f 3
1 f 6

3

f 3
6

(mod 4).

Using (21), we have

∞

∑
m=0

a5(6m)qm ≡
f 6
3

f 3
6
( f3a(q3)− 3q f 3

9 ) (mod 4).

Extracting the term involving q3m+2 and q3m+1, we have (47) and

∞

∑
m=0

a5(18m + 6)qm ≡
f 3
3 f 2

1
f2

(mod 4).

Using (22) in the above equation, extracting the terms involving q3m+1 and q3m, we ob-
tain (48) and

∞

∑
m=0

a5(54m + 6)qm ≡
f 2
3 f 3

1
f6

(mod 4).



Mathematics 2022, 10, 3582 13 of 23

Using (21) and extracting the terms involving q3m+2, we obtain (49).

Proof of Theorem 8.
∞

∑
m=0

a6(m)qm =
f2 f 2

4
f8

1
f 2
1

. (124)

Using (8) and extracting even and odd terms, we have

∞

∑
m=0

a6(2m)qm =
f 2
2 f 4

4
f 2
8

1
f 4
1

, (125)

∞

∑
m=0

a6(2m + 1)qm =
f 4
2 f 2

8
f 2
4

1
f 4
1

. (126)

Substituting the value from (8) in (125), on extracting the even and odd terms, we have

∞

∑
m=0

a6(4m)qm =
f 18
2

f 6
4 f 12

1
, (127)

∞

∑
m=0

a6(4m + 2)qm = 4
f 6
2 f 2

4
f 8
1

. (128)

Taking modulo 4 in (127),

∞

∑
m=0

a6(4m)qm ≡
f 12
2
f 6
4

(mod 4).

Extracting the odd terms gives (53) (for t = 4), and on extracting even terms gives

∞

∑
m=0

a6(8m)qm ≡ f 3
2 (mod 4).

Extracting the odd terms gives (56), and on extracting even terms gives

∞

∑
m=0

a6(16m)qm ≡ f 3
1 (mod 4).

By using Jacobi’s triple-product identity, we have

∞

∑
m=0

a6(16m)qm ≡
∞

∑
n=0

(−1)m(2m + 1)qm(m+1)/2 (mod 4).

Since m(m + 1)/2 6≡ 2, 4 (mod 5), we obtain (58). Consider (128) and taking modulo 16,

∞

∑
m=0

a6(4m + 2)qm ≡ 4 f 2
2 f 2

4 (mod 4).

Extracting odd terms from the above equation gives (54). Consider (126) and using (10), by
extracting even and odd terms, we obtain

∞

∑
m=0

a6(4m + 1)qm = 2
f 12
2

f 4
2 f 2

4

1
f 2
1

, (129)

∞

∑
m=0

a6(4m + 3)qm = 8
f 4
4

f 6
1

. (130)
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Consider (129) and using (8), extracting odd terms gives (53) (for t = 5). Similarly, taking
modulo 16 in (130), we obtain

∞

∑
m=0

a6(4m + 3)qm ≡ 8
f 4
4

f 3
2

(mod 16).

Extracting odd terms gives (54) (for t = 16). Consider (124) and using (19) and (20)

∞

∑
m=0

a6(m)qm =

(
f 2
36

f72
− 2q4 f12 f 2

72
f24 f36

)(
f 4
6 f 6

9

f 8
3 f 3

18
+ 2q

f 3
6 f 3

9
f 7
3

+ 4q2 f 2
6 f 3

18

f 6
3

)
.

Extracting the terms involving q3m, q3m+1, and q3m+2 gives (131), (50), and (51), respectively.

∞

∑
m=0

a6(3m)qm ≡
f 2
12 f 4

6

f24 f 3
6

1
f 2
3

(mod 8). (131)

Using (8) and extracting even and odd terms, we have

∞

∑
m=0

a6(6m)qm ≡
f 2
6 f 4

12
f 2
24

1
f 4
3

(mod 4), (132)

∞

∑
m=0

a6(6m + 3)qm ≡ 2q
f 4
6 f 2

24
f 2
12

.
1
f 4
3

(mod 8). (133)

Using (10) in (132) and extracting odd terms, we have

∞

∑
m=0

a6(12m + 6)qm ≡ 4q f 2
6 f 2

12 (mod 8).

On extracting even terms we arrive at (57). Consider (133) and using (10), which, on
extracting even terms, gives (55).

Proof of Theorem 9.
∞

∑
m=0

a7(m)qm =
f2

f 2
1

f 2
5

f10
.

Using (19) and (20), we have

∞

∑
m=0

a7(m)qm =

(
f 4
6 f 6

9

f 8
3 f 3

18
+ 2q

f 3
6 f 3

9
f 7
3

+ 4q2 f 2
6 f 3

18

f 6
3

)(
f 2
45

f90
− 2q5 f15 f 2

90
f30 f45

)
.

By extracting the terms involving q3m, q3m+1, and q3m+2 and taking modulo 4, we have

∞

∑
m=0

a7(3m)qm ≡
f 6
3 f 2

15

f 3
6 f30

(mod 4), (134)

∞

∑
m=0

a7(3m + 1)qm ≡ 2 f6
f3

f1
(mod 4), (135)

∞

∑
m=0

a7(3m + 2)qm ≡ 2q
f5 f 2

30
f7 f45

(mod 4). (136)
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Extracting the terms involving q3m+1, q3m+2 and dividing by q, q2, respectively, by replacing
q3 by q, we obtain (60). Consider (135) and using (17), on extracting even and odd terms,
we obtain

∞

∑
m=0

a7(6m + 1)qm ≡ 2
f8 f 2

12
f4 f24

(mod 4), (137)

∞

∑
m=0

a7(6m + 4)qm ≡ 2
f 2
4 f6 f24

f2 f8 f12
(mod 4). (138)

Consider (137), on extracting even and odd terms, we obtain (139) and (62) (for t = 7),
respectively.

∞

∑
m=0

a7(12m + 1)qm ≡ 2
f4 f 2

6
f2 f12

(mod 4). (139)

Extracting odd terms from the above equation gives (63). From (138), extracting even and
odd terms gives (140) and (62) (for t = 10), respectively.

∞

∑
m=0

a7(12m + 4)qm ≡ 2
f 2
2 f12

f4 f6

f3

f1
(mod 4). (140)

Using (17), extracting even and odd terms, we have

∞

∑
m=0

a7(24m + 4)qm ≡ 2
f8 f12

f4 f24
(mod 4), (141)

∞

∑
m=0

a7(24m + 16)qm ≡ 2
f 2
4 f6 f24

f2 f8 f12
(mod 4). (142)

From (136) and (142), we have a7(6m + 4) ≡ a7(24m + 16)(mod 4). Extracting odd terms
from (141), we arrive at (64). Consider (136), and by extracting the terms involving q5m,
q5m+2, q5m+3, and q5m+4, we obtain (61).

Proof of Theorems 10 and 11.

∞

∑
m=0

a8(m)qm =
[q12, q4, q8; q12]∞

(q; q)∞
=

f4

f1
.

Using (18), by extracting the terms involving q3m and q3m+1, we have

∞

∑
m=0

a8(3m)qm =
f4 f 4

6

f 3
1 f 2

12
, (143)

∞

∑
m=0

a8(3m + 1)qm =
f 2
2 f 3

3 f12

f 4
1 f 2

6
. (144)

Taking modulo 2 in (143),

∞

∑
m=0

a8(3m)qm ≡ f2

f1
≡ f1 (mod 2).
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From Lemma 4, we have

∞

∑
m=0

a8(3m)qm ≡
(p−1)

2

∑
k=−(p−1)

2
k 6=(±p−1)/6

(−1)kq
3k2+k

2 f (−q
(3p2+(6k+1)p)

2 ,−q
(3p2−(6k+1)p)

2 )

+ (−1)
(±p−1)

6 q
(p2−1)

24 fp2 (mod 2).

By extracting the terms involving qpm+(p2−1)/24, dividing by q(p2−1)/24, and replacing qpm

by qm, we obtain

∞

∑
m=0

a8

(
3pm +

p2 − 1
8

)
qm ≡ (−1)(±p−1)/6 fp (mod 2).

Extracting the terms involving qpm+i for i = 1, 2, · · · , (p− 1),

∞

∑
m=0

a8

(
3p2m + 3pi +

p2 − 1
8

)
qm ≡ 0 (mod 2).

which proves (65). Taking modulo 4 in (144), we have

∞

∑
m=0

a8(3m + 1)qm ≡
f 2
2 f 3

3 f12

f 2
2 f 2

6
(mod 4).

Extracting the terms involving q3m, q3m+1, and q3m+2 from above, we obtain (145), (67),
and (68), respectively.

∞

∑
m=0

a8(9m + 1)qm ≡
f 3
1 f4

f 2
2
≡ f4

f1
(mod 4) (145)

From above, it is easy to conclude (66).

Proof of Theorem 12.

∞

∑
m=0

a9(m)qm =
(−q; q)∞

(q; q)∞
[q12, q3, q9; q12]∞ =

f2 f3 f12

f 2
1 f6

.

Using (20), extracting the terms involving q3m, q3m+1, and q3m+2, we obtain (146), (69),
and (70), respectively.

∞

∑
m=0

a9(3m)qm =
f 3
2 f 6

3 f4

f 7
1 f 3

6
. (146)

Taking modulo 3, we have

∞

∑
m=0

a9(3m)qm ≡
f 3
3

f 2
6

f4

f1
(mod 3).

Using (18), we obtain

∞

∑
m=0

a9(3m)qm ≡
f 3
3

f 2
6

(
f12 f 4

18

f 3
3 f 2

36
+ q

f 2
6 f 3

9 f36

f 4
3 f 2

18
+ 2q2 f6 f18 f36

f 3
3

)
(mod 3). (147)



Mathematics 2022, 10, 3582 17 of 23

Extracting the terms involving q3m and replacing q3 by q, we have

∞

∑
m=0

a9(9m)qm ≡
f4 f 4

6
f 2
2 f 2

12
(mod 3).

On extracting odd terms, we obtain (71). Extracting the terms involving q3m+1, dividing by
q, and replacing q3 by q from (147), we have

∞

∑
m=0

a9(9m + 6)qm ≡ 2
f6 f12

f2
(mod 3).

On extracting odd terms, we reach (72).

Proof of Theorem 13.

∞

∑
m=0

a10(m)qm =
(−q; q)∞

(q; q)∞
[q12, q6, q6; q12]∞ =

f2 f 2
6

f 2
1 f12

.

Using (8), extracting the even and odd terms and taking modulo 4, we have

∞

∑
m=0

a10(2m)qm ≡
f 5
4

f 2
2 f6 f 2

8
· f 2

3 (mod 4), (148)

∞

∑
m=0

a10(2m + 1)qm ≡ 2 f8 (mod 4). (149)

Using (9) in (148), we obtain

∞

∑
m=0

a10(2m)qm ≡
f 5
4

f 2
2 f6 f 2

8

(
f6 f 5

24
f 2
12 f48

− 2q3 f6 f 2
48

f24

)
(mod 4).

Extracting even and odd terms, we have

∞

∑
m=0

a10(4m)qm ≡
f 5
2 f 5

12
f 2
4 f 2

6 f 2
24

1
f 2
1

(mod 4), (150)

∞

∑
m=0

a10(4m + 2)qm ≡ 2q
f 4
2 f 2

24
f 2
4 f12

(mod 4). (151)

Substituting (8) in (150) and extracting odd terms, we have

∞

∑
m=0

a10(8m + 4)qm ≡ 2
f 4
6 f 2

8
f4 f 2

12
(mod 4).

On extracting odd and even terms, we reach (75) (for t = 12) and

∞

∑
m=0

a10(16m + 4)qm ≡ 2
f 2
4

f2
(mod 4),

respectively. Extracting odd terms from the above equation, we obtain (76). Consider (149)
by extracting odd and even terms to obtain (73) and

∞

∑
m=0

a10(4m + 1)qm ≡ 2 f4 (mod 4),
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respectively. Extracting odd and even terms from the above equation, we have (74) (for
t = 5) and

∞

∑
m=0

a10(8m + 1)qm ≡ 2 f2 (mod 4),

respectively. On extracting odd terms from the above equation, we arrive at (75) (for t = 9).
Consider (151), and by extracting odd and even terms, we have (74) and

∞

∑
m=0

a10(8m + 6)qm ≡ 2
f 2
12
f6

(mod 4),

respectively. Extracting odd and even terms from the above equation, we obtain (75) (for
t = 14) and

∞

∑
m=0

a10(16m + 6)qm ≡ 2
f 2
6

f3
(mod 4),

respectively. We extract the terms involving q3m+1, q3m+2 from the above equation to
obtain (77).

Proof of Theorem 14. For i = 11, 12, 13, we consider

∞

∑
m=0

ai(m)qm =
f2 f 2

3
f6 f 2

1
. (152)

Using (16) in the above equation, and extracting even and odd terms, we have

∞

∑
m=0

ai(2m)qm =
f 4
2 f 2

6
f4 f12

1
f 4
1

, (153)

∞

∑
m=0

ai(2m + 1)qm = 2
f2 f4 f12

f6

f3

f 3
1

. (154)

Using (10) in (153), again extracting the even and odd terms, we obtain

∞

∑
m=0

ai(4m)qm ≡
f 8
2

f 4
4

(mod 2), (155)

∞

∑
m=0

ai(4m + 2)qm ≡ 4
f2 f 4

4
f6

(mod 12). (156)

From (156), we obtain (80). Now, on extracting odd terms from (155) and (156), we reach (83)
and (85) (for t = 6), respectively. From (153), we have

∞

∑
m=0

ai(4m)qm ≡
f 9
2

f6 f 4
4

f 2
3

f 2
1

(mod 8).

Using (16), extracting even and odd terms, we have

∞

∑
m=0

ai(8m)qm ≡
f 2
6

f4 f12
f 4
1 (mod 8), (157)

∞

∑
m=0

ai(8m + 4)qm ≡ 2
f4 f12

f2 f6
. f1 f3 (mod 8). (158)
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Substituting the values from (10) in (157) and extracting even terms and odd terms,
we obtain

∞

∑
m=0

ai(16m)qm ≡
f 2
3 f 10

2
f2 f6 f 4

4

1
f 2
1

(mod 8), (159)

∞

∑
m=0

ai(16m + 8)qm ≡ 4
f 4
4

f 2
2

(mod 8). (160)

On extracting odd terms from (160), we obtain (88), and extracting even terms gives us

∞

∑
m=0

ai(32m + 8)qm ≡ 4 f 3
2 (mod 8).

Extracting odd terms gives us (91). Now consider (154), and by using (14) and extracting
even and odd terms, we have

∞

∑
m=0

ai(4m + 1)qm ≡ 2 f 3
2 (mod 4), (161)

∞

∑
m=0

ai(4m + 3)qm ≡ 6 f 3
6 (mod 12). (162)

Additionally, we obtain (81). From (161), extracting the odd terms gives us (84), while ex-
tracting even terms gives

∞

∑
m=0

ai(8m + 1)qm ≡ 2 f 3
1 (mod 4).

According to Jacobi’s triple product

∞

∑
m=0

ai(8m + 1)qm ≡ 2
∞

∑
m=0

(−1)m(2m + 1)qm(m+1)/2 (mod 4).

As m(m + 1)/2 6≡ 2, 4 (mod 5), we obtain (90). Consider (162) and extracting the odd
terms to obtain (85) (for t = 7), and by extracting even terms and using Jacobi’s triple
product, we ultimately reach (89).

Consider (152), using (20), and extracting the terms involving q3m, q3m+1, and q3m+2,
we obtain

∞

∑
m=0

ai(3m)qm ≡
f 4
3

f 2
6

(mod 3), (163)

∞

∑
m=0

ai(3m + 1)qm ≡ 0 (mod 2), (164)

∞

∑
m=0

ai(3m + 2)qm ≡ 0 (mod 6). (165)

Additionally,
∞

∑
m=0

ai(3m + 2)qm ≡ 4
f 3
6

f2
(mod 16).

On extracting odd parts, we obtain (82), and on extracting even parts and using (15),
we have

∞

∑
m=0

ai(6m + 2)qm ≡ 4

(
f 3
4 f 2

6

f 2
2 f12

+ q
f 3
12
f4

)
(mod 16). (166)
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On extracting odd terms, we obtain

∞

∑
m=0

ai(12m + 8)qm ≡ 4
f 3
6

f2
(mod 16).

On extracting odd terms, we obtain (87). Taking modulo 8 for (166), using (15), and
extracting the even terms gives

∞

∑
m=0

ai(12m + 2)qm ≡ 4 f 2
2 (mod 8).

On extracting odd terms, we reach (86).

Proof of Theorem 15 . For i = 14, 15, we consider

∞

∑
m=0

ai(m)qm = f 2
6

1
f1 f3

Substituting (12) in the above equation and then extracting even and odd terms, we have

∞

∑
m=0

ai(2m)qm =
f 2
4 f 5

6
f2 f 2

3 f 2
12
· 1

f 2
1

, (167)

∞

∑
m=0

ai(2m + 1)qm =
f 5
2 f 2

12
f 2
4 f6
· 1

f 4
1

. (168)

Taking modulo 2 in (167), we have

∞

∑
m=0

ai(2m + 1)qm ≡
f 2
4 f 4

6
f 2
2 f 2

12
(mod 2).

On extracting odd terms from the above equation, we readily reach (92). Consider (168)
and substituting (10),

∞

∑
m=0

ai(2m + 1)qm =
f 5
2 f 2

12
f 2
4 f6

(
f 14
4

f 14
2 f 4

8
+ 4q

f 2
4 f 4

8

f 10
2

)
.

On extracting odd terms, we obtain (93) and (170). Similarly, extracting even terms from
the same, we have

∞

∑
m=0

ai(4m + 1)qm ≡
f 2
6 f 12

2

f 4
2 f 4

4

1
f1 f3

(mod 4), (169)

∞

∑
m=0

ai(4m + 3)qm ≡ 4
f 2
6 f 4

4
f 2
2

1
f1 f3

(mod 8). (170)

Using (12) in (169) and extracting odd terms, we obtain

∞

∑
m=0

ai(8m + 5)qm ≡
f 3
2 f 2

12
f 2
4 f16

(mod 4).
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Extracting odd terms to reach (94). Consider (170) and using (12), on extracting even and
odd terms, we obtain

∞

∑
m=0

ai(8m + 3)qm ≡ 4
f2 f 2

4 f 4
6

f 2
12

(mod 8),

∞

∑
m=0

ai(8m + 7)qm ≡
f 6
2 f 2

12
f 2
4 f6

(mod 8).

Extracting odd terms from both the above equations to obtain (95).

Proof of Theorem 16. For i = 16, 17, we consider

∞

∑
m=0

ai(m)qm =
f12

f6
· f3

f1
.

Using (17) and extracting even and odd terms, we have

∞

∑
m=0

ai(2m)qm =
f2 f8 f 2

12
f4 f24

1
f 2
1

, (171)

∞

∑
m=0

ai(2m + 1)qm =
f 2
4 f6 f24

f8 f12
· 1

f 2
1

. (172)

We use (8) in (171) and extract even and odd terms to obtain

∞

∑
m=0

ai(4m)qm =
f 6
4 f 2

6

f2 f 2
8 f12

, (173)

∞

∑
m=0

ai(4m + 2)qm = 2
f2 f 2

6 f 2
8

f12

1
f 4
1

. (174)

Extracting odd terms from (173), we readily reach (97). Consider (172) and using (8), and
on extracting even and odd terms, we obtain

∞

∑
m=0

ai(4m + 1)qm =
f 2
2 f 4

4 f12

f 4
1 f6 f 2

8

f3

f1
, (175)

∞

∑
m=0

ai(4m + 3)qm = 2
f 4
2 f3 f 2

8 f12

f 5
1 f 2

4 f6
. (176)

Taking modulo 4 in (175),

∞

∑
m=0

ai(4m + 1)qm ≡ f12

f6

f3

f1
(mod 4),

which implies ai(4m + 1) ≡ ai(m) (mod 4). Now consider (174) and using (10), and on
extracting odd terms, we obtain (98). Taking modulo 8 in (176), we have

∞

∑
m=0

ai(4m + 3)qm = 2
f 2
2 f 2

8 f12

f 2
4 f6

f3

f1
(mod 8).
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Using (17) in the above and extracting even and odd terms, we have

∞

∑
m=0

ai(8m + 3)qm ≡ 2
f4 f8 f 2

12
f2 f24

(mod 8),

∞

∑
m=0

ai(8m + 7)qm ≡ 2
f 4
4 f6 f24

f 2
2 f8 f12

(mod 8).

Extracting odd terms from the above equations, we obtain (99).

5. Conclusions

This paper provides some congruences for Rogers–Ramanujan type identities to
modulo powers of 2, 3, and 6. As mentioned in Section 1, these ’sum-product’ identities
have been studied by many mathematicians in various contexts (see Refs. [5,18,25,26]).
However, in the literature, to the best of our knowledge, we have not found any congruences
for Rogers–Ramanujan type identities; instead, there is a huge selection of literature that
studies congruences for partition functions. For instance, Ramanujan beautiful congruences
for partition functions are shown as:

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

These congruences are generalized and written in the form

p(`n− δ`) ≡ 0 (mod `),

where δ` = (`2 − 1)/24. The above three congruences were further extended to arbitrary
powers of 5, 7, and 11 (for instance, see Ref. [27]). Thus, our paper adds one more direction
to the study of Rogers–Ramanujan type identities. For future research, one could look for
further interesting Rogers–Ramanujan type identities or others available in the literature to
find their congruence modulo higher primes. Furthermore, one can think of generalizing
the congruences that are proved in this paper. Moreover, it will be fascinating to prove
these congruences using some other techniques, such as modular forms.
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