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Abstract: Model-based controllers suffer from the effects of modeling imprecisions. The analytical
form of the available model often contains only approximate parameters and can be physically
incomplete. The consequences of these effects can be compensated by adaptive techniques and by the
improvement of the available model. Lyapunov function-based classic methods, which assume exact
analytical model forms, guarantee asymptotic stability by cautious and slow parameter tuning. Fixed
point iteration-based adaptive controllers can work without the exact model form but immediately
yield precise trajectory tracking. They neither identify nor improve the parameters of the available
model. However, any amendment of the model can improve the controller’s operation by affecting
its range and speed of convergence. It is shown that even very primitive, fast, and simple versions of
evolutionary computation-based methods can produce considerable improvement in their operation.
Particle swarm optimization (PSO) is an attractive, efficient, and simple tool for model improvement.
In this paper, a PSO-based model approximation technique was investigated for use in the control of
a three degrees of freedom PUMA-type robot arm via numerical simulations. A fixed point iteration
(FPI)-based adaptive controller was used for tracking a nominal trajectory while the PSO attempted
to refine the model. It was found that the refined model still had few errors, the effects of which
could not be completely neglected in the model-based control. The best practical solution seems to be
the application of the same adaptive control with the use of the more precise, PSO-improved model.
Apart from a preliminary study, the first attempt to combine PSO with FPI is presented here.

Keywords: adaptive control; fixed point iteration; particle swarm optimization

MSC: 37M10

1. Introduction

The difficulties in creating satisfactorily precise dynamic models of robots in a direct
(i.e., not control task-related) manner have been well explored in the 1990s [1]. For modeling
other physical systems, such as turbo jet engines, tremendous efforts must be made from the
“diagnostics side” (e.g., through observing the magnetic field around the engine [2], or the
application of thermal imaging diagnostics methods [3]). A quite complicated numerical
design methodology must be applied to improve the operation of turbo jets by injecting
water into the system: in this case, the generated steam serves as the working medium of
the classical steam engines (e.g., [4]). However, these very complex investigations normally
result in a relatively simple and primitive “dynamic model” that can be utilized for control
purposes (e.g., [5,6]). These “simplified models” are only approximations of reality. This fact
emphasizes the significance of the use of the adaptive techniques that cannot be completely
evaded by the application of “precise models”. In general, both the improvement of the
available model, i.e., the application of sophisticated adaptive techniques as well as the
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combination of these approaches, may be possible ways for improving the operation of the
controlled system. In the sequel, both possibilities are briefly considered.

1.1. On the Adaptive Control Techniques

The adaptive controllers can be classified into two major groups based on the avail-
able information on the dynamic model of the controlled system. In the first group, the
analytical form of the dynamic model is available, and only the parameters of this model are
approximately known. In this case, the adaptation can be regarded as parameter identi-
fication online. The classic prototypes of this method are the adaptive inverse dynamics
controller and the Slotine–Li adaptive controller for robots from the 1990s [7]. This ap-
proach is based on Lyapunov’s Ph.D. dissertation from 1892 [8,9], which became the
mathematical foundation of the prevailing control design methods used even in our days
(e.g., [10–12]).

In the other group, the appropriate feedback signal is applied on the basis of the
actual observations without the need for “learning” or elaborating on an “exact model”.
The prototype of this signal adaptation-based technique is the model reference adaptive
controller (MRAC) from the 1990s [13]. This controller, in addition to guaranteeing precise
trajectory tracking, has the additional function of making the observable behavior of the
controlled system similar to that of a stable linear system for an external control loop by the
application of fast feedback signals. In this case, the external control loop can apply linear
system–tailored design methods. This approach also uses the Lyapunov function-based
technique in the design. A typical alternative example of this approach is the fixed point
iteration (FPI)-based adaptive control using Banach’s fixed point theorem from 1922 [14].
Its prototype was suggested in 2009 in [15]. The main aim was to evade the use of the
complicated Lyapunov function-based design and replace it with a simpler method. The
essence of the method is that it determines a trajectory tracking strategy on the basis of
purely kinematic considerations, and adaptively deforms the “desired time derivative of the
system’s generalized coordinate” before utilizing it in the available approximate dynamic
model for the calculation of the necessary control force. It was successfully applied in the
development of a novel type MRAC controller [16]. Later, several variants were elaborated
on and their applicability was investigated via simulations in various tasks, such as the
control-based treatment of patients suffering from type 1 diabetes [17], and in the adaptive
version of the receding horizon controller in [18]. The first experimental verification of
the method was done in the adaptive control of a small electric motor in a BSc thesis in
2018 [19]. In this solution, simple Arduino components were used without the application
of any noise filtering technique. For less ideal systems burdened by huge measurement
noises, dead time, and delays, preliminary investigations were made for the classical
computed torque controller [20]: the controlled system was a propeller-driven pendulum
with considerable friction in its bearing in [21]. Since then, not yet published experimental
results have been collected for the FPI-based adaptive control of this system. In general,
with regard to the noise effects, it can be stated that for keeping some “static position” of the
controlled system without noise filtering, the non-adaptive version is always better than the
adaptive one in the control of this second-order system, because the second time derivatives
fed back are noise-burdened; in this case, the noise/signal ratio is 1/0. However, in the
strongly dynamical part of the motion in which the essential second time derivatives of the
signal are significant, this ratio becomes much better and the adaptive control has benefits.
Applications of simple and efficient noise filtering techniques (e.g., as used in [22]) can
make this problem insignificant. This expectation is also supported by the existence and
success of acceleration feedback controllers (e.g., [23–25]).

Though this approach does not invest any effort in amending its originally given
approximate analytical model, it does not exclude the possibility of simultaneously im-
proving this model. In [26], the original error feedback term of the classic adaptive inverse
dynamics controller (AIDC) was so modified that the FPI-based approach guaranteed
precise trajectory tracking even at the beginning of the control session (when the dynamic
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model applied was imprecise). Since this feedback term made it possible, the operation of
the Lyapunov function-based parameter tuning of the AIDC, following a slow and cautious
tuning process the model, became very precise, and the FPI-based signal deformation
became quite insignificant at the end. A similar modification of the other classic approach,
the Slotine–Li adaptive controller, was published in [27]. This controller is also based
on Lyapunov’s tuning technique but it uses a Lyapunov function that is different from
that of the AIDC controller. All of these approaches have the common feature that they
dynamically couple the trajectory control process with parameter tuning.

Following the above examples, the idea naturally arose whether it was possible to
combine the FPI-based adaptive controller with other learning methodologies to improve
the available dynamic model. The present paper concentrates on this issue.

1.2. Improvement of the Dynamic Model by the Use of Evolutionary Methods

In general, parameter identification or other model improvement methods can be
formulated as optimization tasks in which some cost terms constructed of error-type
components have to be minimized. For dealing with differentiable cost functions, the
oldest method is Lagrange’s “Reduced Gradient Method”; he originally developed it for
the analytical formulation of the principles of classical mechanics in 1811 [28]. It allowed
restricting the optimum search over some smooth, differentiable, hypersurfaces embedded
in the search space via Lagrange multipliers. Lagrange’s method has become the prototype
of mathematical formulations in modern theoretical physics. For instance, finding the
appropriate Lagrangian for describing dissipative phenomena has been an active research
area in recent years [29,30]. Based on the analogies with classical mechanics, it has also
become the main paradigm of optimal controllers using dynamic programming [31,32].

To resolve the restrictions originating from the use of differentiable cost functions, the
simplex method was proposed in 1965 [33,34]. Its convergence properties were the subjects
of scientific analyses, even in recent years (e.g., [35]). In the simulated annealing approach, the
gradient descent method was combined with stochastic components in the 1980s (e.g., [36]).

By dropping the restriction of differentiable cost functions, new perspectives opened
up for the use of bio- and martial arts-inspired heuristic solutions, such as genetic algo-
rithms [37] that are actively used for optimization in our days (e.g., [38]). In the memetic
algorithms, the results of the evolutionary methods are refined in the final steps via gradient-
based methods (e.g., [39–41]). It is almost impossible to count the large number of witty
algorithms that have been inspired by the behaviors of animals. Perhaps the latest includes
the starling murmuration-based optimization [42], moth–flame optimization [43,44], and the
quantum-based avian navigation-based optimizer algorithm inspired by the extraordinary preci-
sion of the navigation of migratory birds during long-distance aerial paths [45], which is an
improvement of the original idea formulated in [46].

The particle swarm optimization (PSO) is one of the first socialization algorithms that
mimic the social behaviors of the population and the interactions between individuals—a
so-called swarm-based approach. The first example of PSO was published in 1995 when
Kennedy and Eberhart developed mathematical and coding concepts [47]. Its flexible
ability to tackle and solve many difficult problems has been approved, and it is used as a
powerful optimization tool in many applications, e.g., solving temporospatial boundary
condition problems [48], efficient smart city planning, heating load estimations [49,50],
energy consumption [51], cloud computing [52], and Internet of things applications [53,54].

The PSO—in addition to its fast convergence, stable response, and usage in a wide
range of problems of different natures—can easily be implemented and combined with
other mathematical techniques. Since the method can learn, it can be directed toward
the suitable task goal and, thus, it has become an attractive research area. It can absorb
modifications and improvements. There are many proposals for improving PSO due to the
complexity of the problem. In [55], leaving and researching mechanisms were introduced
to the PSO algorithm. In [56], an adaptive weighted delay velocity (PSO-AWDV) was
introduced. Additionally, the PSO is used to maintain the parameters in which benefits
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from the power of coupled algorithms are expected, as in [57], where PSO was used in
cooperation with an artificial neuro-fuzzy inference system (ANFIS), and with the sliding
mode control (SMC) to obtain sliding surface parameters to control the robot manipulator.
In [58], the authors utilized it to optimize the input feature of the ELM (extreme learning
machine) network when proposing a classification of any input feature variation from
the optimal value. The fast operation of PSO can be used to find a global solution in
combination with a local search method based on Lyapunov’s theory [59].

For the evaluation of evolutionary algorithms in practice, various test systems can be
used. Since PSO is well applicable for non-convex optimization tasks, its success strongly
depends on the nature of the cost function to be optimized. Perhaps the most rigorous test
function is the Rastrigin probe, i.e., an everywhere continuous and differentiable function
(in two dimensions). It has an absolute minimum, but this minimum is surrounded by
plenty of local minima that provide only a little bit of a higher value than the absolute
minimum. The idea was published in 1974 [60] and it soon was applied for test purposes
in optimization [61]. The density of the local minima can be manipulated via scaling
the coordinates of this function. Evidently, for the PSO algorithm, it is not important to
approach the global optimum by each particle, by increasing the density of the particles in
the search space, and manipulating the speed of the random motion; thus, the odds of well
approximating the global optimum can be increased. It can be assumed that Rastrigin’s
idea was motivated by the famous example by Weierstraß in 1872 [62]. He proved (by his
constructive proof) that there exists everywhere continuous (but nowhere differentiable)
functions. Finding the global optima of such functions could serve as an ultimate challenge
for evolutionary methods. Evidently, in practical applications, the appropriate scaling
can be known or at least guessed in advance. While in many applications, the quality
of the applied random number generator has considerable significance, especially in the
inverse problem theory where Monte Carlo integration is applied (e.g., [63]), or in the case
of designing novel versions of Kalman filters (e.g., [64–66]); this issue is less important in
the most primitive forms of the classic PSO algorithms. To drive the particles toward a
given direction, a simple random number generator working in the domain [0, 1] can work
well. To kick out the particles of a local minimum, a similar one working in the interval
[−0.5, 0.5] can work well. For such purposes, a simple even distribution over the interval
can be satisfactory. The Kalman filters normally assume Gaussian distribution.

1.3. Preliminary Conclusions for the van der Pol Oscillator

To improve the model used by the FPI-based adaptive controller, our first choice in
this direction was the PSO-based approach (due to its simplicity and ingenious nature). In
[67], only a very primitive, small-dimensional problem was investigated in the control of a
mechanical device containing coupled parasite dynamical components. Complicated Lie
derivatives of a model were substituted by a simple affine term of constant coefficients.
For more precise parameter identification in [68], preliminary investigations were made
concerning the application of this idea with the adaptive control of a typical strongly
nonlinear benchmark system—the van der Pol oscillator [69]. To apply fast real-time
solution, it was assumed that it would be satisfactory to consider only the “recent lump” as
a smaller part of the already visited dynamic state space for the evaluation of the fitness
of the particles. However, it was found that in this manner no convincingly convergent
behavior of the PSO was observed. It was also found that the success of the parameter
identification strongly depended on the nominal trajectory that had to be tracked by
the controller.

To explain this situation, it is expedient to consider the geometric interpretation of the
parameter identification process based on the dynamic model of the controlled system. In
the case of the van der Pol oscillator, the model is given in (1)

q̈ = − k
m

q− b
m

(
q2 − a2

)
q̇ +

1
m

u (1)
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in which q denotes the generalized coordinate of the system, and u is the control force. The
dimension of the parameter space is 4, i.e., the independent parameters can be arranged
in an array as [k, m, b, a]. In principle, if one makes 4 independent measurements for the
associated quantities {qi, q̇i, q̈i, ui|i = 1, 2, 3, 4}, 4 independent equations of the common
form in (1) can be obtained. These equations may have unique solutions. However, the
equations can be so chosen that they have to provide satisfactory information on each
system parameter. For instance, if only the free motion of the system is measured with ui ≡ 0,
then the term u

m will not give enough information on m. If in the observed set utilized by
the PSO algorithm u is underrepresented, neither m nor the other parameters can be found
by a convergent algorithm. In a similar manner, if only small {qi} values are present in
the measured set, parameter k will be underrepresented. Moreover, if the {qi} values are
in the close vicinity of a, it is hopeless to identify parameter b. Furthermore, if only small
{q̇i} values are considered, neither parameter a, nor parameter b can be well identified.
Therefore, the set of the measured values needs to be redundant and well balanced to obtain
satisfactory results for the parameter identification.

Evidently, similar questions may arise in the case of different system models. In each
case, the structure of the system’s model determines the practical meaning of the “well
balanced set”. Consequently, in the case of the robot parameter identification task, the
dynamic model of the robot has to be investigated. In general, it has the form

H(q)q̈ + h(q, q̇) = Q , (2)

in which the positive definite symmetric matrix H(q), and the array h(q, q̇) contain the
model parameters, Q ∈ Rn is the generalized control force that has to be exerted by the
robot’s drives, and q ∈ Rn is the array of the generalized coordinates of the robot.

Regarding the qualitative description of the model, it may occur that, at certain
points, H(q) is ill-conditioned (though it cannot be exactly singular). In these points,
certain q̈ components play non-significant roles in the identification. Moreover, it is known
that the term h(q, q̇) is quadratic in the components of q̇; therefore, for good parameter
identification, it is expedient to consider high q̇ components. Without considering other
particular analytical details of the dependence of H(q) and h(q, q̇) on the independent
parameters of the identification task, no more statements can be done. The detailed model
given in (6)–(8) has a complicated structure; therefore, it does not make sense to go into a
detailed analysis of the parameter sensitivity in the identification task.

On this basis, it can be expected that in the case of the model in (2) for the evaluation
of the particles, their behaviors in the formerly visited and observed state space would
be necessary or at least expedient. This means that as time passes by, the space for the
evaluation of the particles can drastically increase. However, for practical reasons, the size
of this set must be limited.

The structure in (6)–(8) anticipates that if the model altogether has K ∈ N independent
parameters, (2) may support satisfactory information on the model parameters if we have
only the same number, i.e., K independent observations. In an appropriate number of
combinations of the values q, q̇, q̈, and Q, these few examples would convey satisfactory
information for finding the parameters. This observation allows one to believe that a very
huge observed state space lump is not necessary to solve this problem. A set that is a little
bit larger may contain certain redundancies that must not generate problems in the solution.

In the sequel, at first, the essence of the fixed point iteration-based adaptation is briefly
explained in Section 2. The details of the dynamic model of the robot arm considered are
given in Section 3. In Section 4 the PSO algorithm is briefed. The simulation results are
provided in Section 5, and in Section 6 their discussion is given. Finally, the conclusions of
the research are given in Section 7.

2. The Adaptation Strategy in the FPI-Based Control

The “fixed point iteration-based (FPI) adaptive controller” is considered a further devel-
oped version of the “Computed Torque Control” [20] method that uses the “Exact Model”
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to evaluate the control signal for the controlled robot. If the model is not precise (either in
its parameters or even in its structure), the required kinematic data (e.g., in the case of a
second-order system, the desired second time derivatives of the generalized coordinates)
are adaptively deformed before being introduced into the available imprecise model. The
appropriate deformation is found when the realized second time derivative will be equal to the
desired one. In this case, the kinematically (kinetically) designed trajectory tracking policy
is realized and precise tracking control can be achieved. From a mathematical point of
view, the appropriate deformation is found via iteration. The control task is mathematically
transformed SO that the solution is a fixed point of a contractive map to which, according
to Banach’s theorem, the iteration converges. From A technical point of view, in a digital
realization of the control, during one control cycle, only one step of the adaptive iteration
can be realized. However, if the kinematic design is based on feeding back only the PID-like
terms of the tracking error, and the controller is able to abruptly modify the second time
derivatives, the method can work in a practically satisfactory manner. the fixed point to be
tracked by the adaptive controller slowly varies in time, according to the properties of the
nominal trajectory and the PID-type feedback. It works according to the following steps
which are represented by the flowchart in Figure 1:

  

The Kinematics  
(PID)   Adaption   Approx. 

Model 

Exact 
Model

q1
Nom ,q2

Nom ,q3
Nom

¿¿0041 q̈1
Des , q̈2

Des , q̈3
Des

q̈1
Real , q̈2

Real , q̈3
Real

∫
t 0

t

q̈ (ξ )dξ ∫
t 0

t

q̇ (ξ )dξ

q̇1
Real , q̇2

Real , q̇3
Real

τ

τ

q1
Real , q2

Real ,q3
Real

Q1 ,Q2 ,Q3

PSO
q̈1
Est , q̈2

Est , q̈3
Est

q̈1
De f , q̈2

De f , q̈3
De f

Cost 
Function

q̈1
Des , q̈2

Des , q̈3
Des

Internal iterative sequence

Figure 1. The PSO’s operation flow chart. The PSO block takes the information from the real-
ized coordinates qReal

1 , qReal
2 , qReal

3 , their first time derivatives q̇Real
1 , q̇Real

2 , q̇Real
3 , and the control

torque components Q1, Q2, Q3 so that it can calculate their estimated second time derivatives
q̈Est

1 , q̈Est
2 , q̈Est

3 . These estimated values will be evaluated and compared with the realized second
derivatives q̈Real

1 , q̈Real
2 , q̈Real

3 via the cost function defined as Cost = ∑i |q̈Real
i − q̈Est

i |. Here, the usual
process of PSO handles to search journey toward the global minimum in respect of the defined
particles that can be found in Section 4. The dynamics of the PSO-based parameter tuning is not
coupled to that of the adaptive control, in contrast to the operation of the classic tuning methods. The
iterative sequence of the FPI-based adaptive controller is formed within the loop as indicated in the
chart by a red curve.

1. The “Kinematic Design” where the “Desired Signal” q̈Des is generated, based on a
PID-type design using the difference between the nominal coordinate qNom and the
real one qReal as an error e(t) := qNom(t) − q(t), the integrated error as eInt(t) :=∫ t

t0
e(ξ)dξ, and the derivative of the error ė(t). In our approach, the controller is used

with defining a single constant parameter Λ > 0 unlike the common PID gains,
which are independent parameters, such as kp, ki, and kd, and normally they require
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continuous tuning. In our case, as it is given in (3), the special gains correspond to
kp = 3Λ2, ki = Λ3, and kd = 3Λ:(

Λ +
d
dt

)3
eInt(t) ≡ 0⇒

q̈Des(t) = Λ3eInt(t) + 3Λ2e(t) + 3Λė(t) + q̈Nom(t) .

(3)

2. The “Adaptive Deformation Signal” q̈De f (t) generated by deformation of the desired sec-
ond derivative q̈Des(t). Various mathematical deformations can be applied. Since the
studied system is a multi-degree-of-freedom system, the adaptive deformation in this
paper applied the “Abstract Rotation-based Fixed Point Transformation” published in
[70], which realizes Algorithm 1.

3. In the “Approximate System Model”, the control force Q(t) is computed based on the
adaptively deformed q̈De f (t) signal. This force will be applied to the controlled system
(“Actual System”) so that the realized second derivative coordinate q̈Real(t) is obtained.

The sequence of the adaptively deformed signals consists of the elements
{q̈De f (i); i ≥ 1} in which q̈De f (1) = q̈Des(1), as can be seen in the feedback loop in Figure 1,
which also conveys information on the parameter identification process that is explained
in Section 4.

The essence of Algorithm 1 intuitively can be highlighted in the symbolic picture in
Figure 2.

Interpreted dimension

Interpreted dimension

Not interpreted dimension

Rotational axis in the
augmented space

Rotation in the
augmented space

Projection of the rotation in the 
interpreted space

Augmentation

Augmentation

b⃗ a⃗

B⃗

A⃗

φ

Interpolation with the angle of rotation:

φ λa∈[0,1 ]is replaced by λaφ , where 

Figure 2. The symbolic description of the “abstract rotations”: the vectors of physically interpreted
components a, b ∈ Rn are so augmented into the vectors A, B ∈ Rn+1 by adding further orthogonal
components to them that ‖A‖ = ‖B‖ in the sense of the Frobenius norm. These vectors determine a
TWO-dimensional plain within which B can be rotated into A with angle ϕ. The axis of the rotation
is the (n + 1)− 2-dimensional orthogonal subspace of this plain. Due to this rotation the physically
interpreted projection of B, which is b, is exactly transformed into the physically interpreted projection
of A, i.e., into a. The projections suffer rotation and dilatation or shrinking in Rn. With the parameter
λa ∈ [0, 1], by making a rotation only with the angle λa ϕ instead of ϕ some nonlinear interpolation can
be realized.
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Algorithm 1 The abstract rotation-based fixed point transformation algorithm

Require: 0 < ε� 1, λa ∈]0, 1], q̈Des(t); q̈Real(t); q̈De f (t) ∈ R3, A; B; C ∈ R4, q̈max ∈ R+

Ensure: q̈maxtanh( Trans f ormed[1:3]
q̈max

)

A←
[

q̈Des
1 (t) q̈Des

2 (t) q̈Des
3 (t)

√
|R2

a − A[1 : 3]T A[1 : 3]|
]

B←
[

q̈Real
1 (t− 1) q̈Real

2 (t− 1) q̈Real
3 (t− 1)

√
|R2

a − B[1 : 3]T B[1 : 3]|
]

C ←
[

q̈De f
1 (t− 1) q̈De f

2 (t− 1) q̈De f
3 (t− 1)

√
|R2

a − C[1 : 3]TC[1 : 3]|
]

‖A‖ = ‖B‖ = ‖C‖ = Ra

A⊥B← A− (BT B)B
R2

a

‖ A⊥B ‖←
√
|A⊥BT A⊥B|

eα ← A⊥B
|ε+‖A⊥B‖| ; eβ ← B

Ra
; ϕ← asin( ‖A⊥B‖

Ra
)

Gen← eαeT
β − eβeT

α

O← I(4, 4) + sin(λa ϕ)Gen + Gen2(1− cos(λa ϕ)) . Rodrigues formula
Trans f ormed← OC

With regard to the possible convergence of the adaptation process (2) can be considered.
If Ĥ(q) and ĥ(q, q̇) are the approximate model components, and H(q) and h(q, q̇) denote the
exact ones, by the use of the deformed signal q̈De f the realized q̈Real can be computed
as follows:

Q = Ĥ(q)q̈De f + ĥ(q, q̇) , (4a)

q̈Real = H−1Ĥq̈De f + H−1(ĥ− h) . (4b)

In [70], as the generalization of the concept of the single variable monotonic increasing
function for multiple variable cases, the approximately direction keeping f : Rn 7→ Rn function
was defined in the following manner: if ∀∆x the value ∆xT∆ f ≡ ∆xT( f (x + ∆x)− f (x)) u
∆xT ∂ f

∂x ∆x > 0, then f (x) is approximately direction keeping. Evidently, if someone wishes
to achieve some “desired” ∆ f , in the case of such a function, he/she can iteratively find
an appropriate input ∆x. A car driver, who is an intelligent adaptive system, can learn
driving a particular car if the steering wheel, the accelerator, and the brake pedals behave
appropriately. In a similar manner, a fixed point iteration can be made convergent for such
systems. If in (4b) the deformation is realized by the linear operator D as q̈De f = Dq̈Des, it
is concluded that

∂q̈Real

∂q̈Des = H−1ĤD , (5)

that can be made approximately direction keeping by choosing D := µĤ−1H with µ > 0

leading to ∂q̈Real

∂q̈Des = µI. That is, many appropriate adaptive deformations exist, and the fixed
point iteration can find a solution to the problem. More sophisticated and more general
considerations for convergence can be found in [71].

3. Model Dynamics

The simulations were made in Julia language with time resolution δt = 10−3 s by
using the 3-DOF robot system that can be realized by Equations (6)–(8) in which the
following shortcuts were applied for simplifying the appearance as possible: c2 = cos(q2),
s2 = sin(q2), c3 = cos(q3), s3 = sin(q3), c23 = cos(q2 + q3), s23 = sin(q2 + q3).

Q1 = (Θ1 + 0.25m2L2
2c2

2 + 0.25m3L2
3c2

23 + m3L2
2c2

2 + 0.5m3L2L3c23c2)q̈1

+

(
− 0.5m2L2

2c2s2q̇2 −m3L2
3c23s23(q̇2 + q̇3)/2− 2m3L2

2c2s2q̇2

− 0.5m3L2L3s23c2(q̇2 + q̇3)− 0.5m3L2L3c23s2q̇2

)
q̇1 ,

(6)
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Q2 = (0.25m2L2
2 + 0.25m3L2

3 + m3L2
2 + 0.5m3L3L2c3)q̈2 + (0.25m3L2

3 + 0.25m3L3L2c3)q̈3

− 0.5m3L3L2s3q̇3q̇2 − 0.25m3L3L2s3q̇2
3 +

(
0.25m2L2

2c2s2 + 0.25m3L2
3c23s23 + m3L2

2c2s2

+ 0.25m3L2L3s23c2 + 0.25m3L2L3c23s2

)
q̇2

1 + 0.5m2L2gc2 + m3gL2c2 + 0.5m3L3gc23 ,

(7)

Q3 = (0.25m3L2
3 + 0.25m3L3L2c3)q̈2 + (0.25m3L2

3)q̈3 + 0.25(m3L2
3c23s23 + m3L3L2s23c2)q̇2

1

+ 0.25m3L3L2s3q̇2
2 + 0.5m3gL3c23 .

(8)

Table 1 contains the parameters of the exact model to realize the original system
behavior and the approximate model parameters used by the adaptive controller.

Table 1. The robot model parameters in Equations (6)–(8).

Parameter Exact Model Approximate Model

Θ1
[
kg ·m2] 1st link’s inertia moment 50.0 55.0

m2[kg] 2nd link mass 10.0 8.0
m3[kg] 3rd link mass 20.0 18.0
L2[m] 2nd link length 2.0 2.0
L3[m] 3rd link length 1.0 1.0

g
[
m · s−2] gravitational accel. 9.81 9.81

4. Implementation of the PSO Strategy

For estimation of the robot model, five parameters (n = 5) were chosen: Θ1, L2, L3,
m2, and m3. These parameters were placed in a row as input. For the effective minimum
value search, the sixth place was reserved for the cost function, which was computed by
the absolute value of the difference between the estimated ˆ̈q and the realized (observed)
q̈Real values.

For initializing the PSO particles, a non-empty grid of points was set (i.e., it consisted
of a set of random populations with Initial Values {[Θ1ini , L2ini , L3ini , m2ini , m3ini ]}) so that the
evaluated particles could move accordingly. The number of particles was set to 32.

The velocity of the ith particle had the following form, which was a bit amended based
on the “Simulated Annealing” method [36] by adding a complementary random term to the
original ones. In the simulated annealing method, the role of this term involved kicking out
the solution from a small local optimum. The equation of motion of the particles is given
in (9).

vi(t + 1) = c1vi(t) + c2rand()(BLi − Pi(t))

+ c3rand()(BG− Pi(t)) + c4(rand()− 0.5)vi(t) ,
(9)

The function rand() in (9) corresponds to an even distribution between [0, 1]. While in
the “traditional terms” the particle Pi is “pulled toward” the local ({BLi}) or global ({BG})
optima, the last term can have an arbitrary direction weighted by the parameter c4.

The flowchart in Figure 1 explains the signals directly fed from FPI-based control
qReal , q̇Real , and Q that are used to calculate the estimated acceleration for each robot link
as q̈Est

1 , q̈Est
2 , q̈Est

3 . These estimated values are compared to the real second coordinate time
derivatives that are obtained from the FPI control cycle by using the cost function evaluated
by the PSO algorithm.

5. Simulation Results

The simulations were made by the use of Julia language Version 1.6.2 (2021-07-14)
using a DELL vostro 1540 laptop operated by CORETMi3 Intel processor under WINDOWS-10
Home 64-bit operating system. The simulation work consists of two parts: the first realizes
the parameter identification by PSO, while the second tests the CTC controller using the
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identified parameters in Section 5.1. In addition, in the second part, the operation of the
adaptive controller with the identified parameters is considered, see Section 5.2.

5.1. Identifying Parameters by PSO

According to the considerations with regard to the significance of the “well balanced
teaching set” in parameter learning, the FPI-based adaptive controller was used for realizing
or at least well approximating a nominal trajectory that was invented for teaching purposes.
Figure 3 shows the responses of trajectory tracking properties for the three robot links.
As it can be seen in Figures 4–6, which describe the phase trajectory of the motion used
for teaching, several boxes in the phase space of each link are “visited”. Though this is
far from the “exactly even distribution over the cells”, it seems to be more or less well
balanced. The structure of the equations in (6)–(8) is not so “simple” as that of (1); therefore,
in this case, it does not seem to make any sense to go into the details of some complex
analytical considerations. Figure 7 shows how fast the convergence of the PSO algorithm is.
Essentially each parameter was almost perfectly identified.
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Figure 3. Trajectory tracking (a) and the first time derivatives (b) for the three robot links in the
parameter identification process.
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Figure 4. The second time derivatives (a) and phase trajectory tracking (b) for q1.
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Figure 5. The second time derivatives (a) and phase trajectory tracking (b) for q2.
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Figure 6. The second time derivatives (a) and phase trajectory tracking (b) for q3.
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Figure 7. The cost function of the best estimation of the model during PSO teaching iteration.

The accuracy of each estimated value for each targeted parameter is shown in Figure 8.
For revealing the estimation accuracy in the five-dimensional parameter space,
Figures 9 and 10 display the story of the “best global particle” in various 2D projections.
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Figure 8. The estimated vs original parameters during teaching iteration (a) for Θ1 (b) for L2 (c) for
L3 (d) for m2 (e) for m3.
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Figure 9. Projection of the estimated elements (a) Θ1 vs. L2 (b) Θ1 vs. L3 (c) Θ1 vs. m2 (d) Θ1 vs. m3

(e) L2 vs. L3 (f) L2 vs. m2.
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Figure 10. Projection of the estimated elements (a) L2 vs. m3 (b) L3 vs. m2 (c) L3 vs. m3 (d) m2 vs. m3.
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5.2. Operation of the Non-Adaptive CTC vs. Adaptive CTC for the Identified Parameters

After identifying the appropriate parameters by PSO, a natural option would be using
the common non-adaptive CTC in the possession of the identified model. However, the
computations revealed that the small errors in the identified parameters are not completely
insignificant. It may be advantageous to maintain the adaptive controller even in the case in
which the identified dynamic parameters are used. For this reason, two versions of the CTC
controller were applied: one without any adaption technique, while the other by activating
the FPI-based adaptive mechanism. It can be expected that the effect of adaptivity will be
more significant in the identification phase when a very imprecise model will be used for
tracking a prescribed trajectory. It can be expected that its significance will not be so great
when a more precise model will be in use.

In fact, the trajectory tracking error in the PSO-based identifying process was be-
tween −0.01[m] and 0.0075[m] whereas it increased in non-adaptive CTC within the range
[−0.02, 0.02][m]. The better improvement was in the adaptive CTC within the range
[−0.008, 0.004][m]. The same holds for the first derivative trajectory tracking error. It in-
creased from [−0.75, 0.75][m · s−1] in the original identifying process to [−1.0, 1.0][m · s−1]
in non-adaptive CTC. The error decreased to [−0.35, 0.30][m · s−1] in adaptive CTC. The
comparison can be seen in Figures 11–13. The detailed explanation and interpretation of
these observations are discussed in the sequel in Section 6.
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Figure 11. Trajectory tracking error (a) and its first time derivative (b) during the parameter identifi-
cation process.
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Figure 12. Trajectory tracking error (a) and its first time derivative (b) for the non-adaptive CTC
controller using the identified parameters.
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Figure 13. Trajectory tracking error (a) and its first time derivative (b) for the adaptive CTC controller
using the identified parameters.

6. Discussion

Since in the case of the control of a second order system the essence of the FPI-based
adaptive control is the “deformation of the second time derivatives”, the details of the
figures conveying information on that of the nominal trajectory as q̈Nom

1 (t), q̈Nom
2 (t), q̈Nom

3 (t),
the “Desired” values as q̈Des

1 (t), q̈Des
2 (t), q̈Des

3 (t), the “Deformed” ones as q̈De f
1 (t), q̈De f

2 (t),

q̈De f
3 (t), and the “Realized” terms as q̈Real

1 (t), q̈Real
2 (t), q̈Real

3 (t) have to be investigated.
In general, it can be expected that in the case of an imprecise model the non-adaptive

controller has to apply significant PID error correction terms to the second time derivatives
of the nominal coordinates; therefore, in this case, quite considerable differences can be
expected between the values of q̈Nom

1 (t), q̈Nom
2 (t), q̈Nom

3 (t), and q̈Des
1 (t), q̈Des

2 (t), q̈Des
3 (t): the

significant additions in the desired terms have the role of making the necessary corrections
in the non-adaptive controller. For a good operation, the “Realized” values should well
track these “Desired” ones, but this cannot be well realized in the non-adaptive controller.
The limited applicability of the non-adaptive controller consists in this fact. However, when
the adaptation mechanism is in use, it is expected that the “Realized” value better approxi-
mates the “Desired” one, consequently the necessary PID-type corrections in the “Desired”
term continuously decrease in time, therefore both the “Desired” and the “Realized” values
converge to the “Nominal” ones, while the “Deformed” ones can increase accordingly. (As
the final results, the precision of trajectory tracking and that of the first time derivatives of
the generalized coordinates can be compared by the use of Figures 11–13. It can be seen
that the non-adaptive controller that uses the identified parameters has the greatest error,
the “second greatest error” belongs to the adaptive CTC controller using the original data,
and finally, the most precise tracking was achieved by the adaptive controller using the
identified model parameters.)

The above-mentioned effects can be well observed in the simulation results when the
not completely precise identified parameters were used in the non-adaptive and adaptive
versions of the CTC controller. This effect can be well tracked in the “zoomed-in excerpts”
of Figures 14 and 15 for the coordinate q1.
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Figure 14. Second time derivatives for q1 (a) and the zoomed-in excerpts (b) for the non-adaptive
CTC controller using the identified parameters.
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Figure 15. Second time derivatives for q1 (a) and the zoomed-in excerpts (b) for the adaptive CTC
controller using the identified parameters.

Similar effects can be well identified in Figures 16 and 17 for the coordinate q2, and in
Figures 18 and 19, for the coordinate q3, too.
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Figure 16. Second time derivatives for q2 (a) and the zoomed-in excerpts (b) for the non-adaptive
CTC controller using the identified parameters.
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Figure 17. Second time derivatives for q2 (a) and the zoomed-in excerpts (b) for the adaptive CTC
controller using the identified parameters.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

300

200

100

0

100

200

300

A
cc

e
le

ra
ti

o
n
 [
m

s
2
]

The 2nd Deriv. for q3, Non-Adap CTC

Nom

Des
Def

Real

(a)

2.5 2.6 2.7 2.8 2.9 3.0
Time [s]

300

200

100

0

100

200

300

A
cc

e
le

ra
ti

o
n
 [
m

s
2
]

The 2nd Deriv. for q3, Non-Adap CTC

Nom

Des
Def

Real

(b)

Figure 18. Second time derivatives for q3 (a) and the zoomed-in excerpts (b) for the non-adaptive
CTC controller using the identified parameters. The results of the simulation investigations generate
conclusions detailed in Section 7.
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Figure 19. Second time derivatives for q3 (a) and the zoomed-in excerpts (b) for the adaptive CTC
controller using the identified parameters.

Though for the very imprecise initial model no non-adaptive simulations were done,
in Figures 20–22, similar observations can be done for the coordinates q1, q2, and q3,
respectively. The adaptive controller brought closer to each other the q̈Nom, q̈Des, and q̈Real

values by applying a considerable extent of adaptive deformations.
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Figure 20. Second time derivatives for q1 (a) and the zoomed-in excerpt (b) during the parameter
identification process.
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Figure 21. Second time derivatives for q2 (a) and the zoomed-in excerpt (b) during the parameter
identification process.
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Figure 22. Second time derivatives for q3 (a) and the zoomed-in excerpt (b) during the parameter
identification process.
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A possible “measure of extent of adaptive deformation” is the angle of abstract rotation
in this special adaptive controller. Figure 23 underpins the fact that: the use of the very
imprecise model during the parameter identification process needed a much more drastic
adaptive deformation than the adaptive use of the identified parameters.
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Figure 23. The angle of adaptive abstract rotation during the parameter identification process (a),
and for the adaptive CTC controller using the identified parameters (b).

In the previous sections, the operation of the controllers was illustrated by zoomed-in
excerpts of appropriate figures. For a more exact comparison, the use of the measures of
operation can be introduced:

eavg =
1
T

∫ t0+T

t0

‖e(ξ)‖dξ , (10a)

ėavg =
1
T

∫ t0+T

t0

‖ė(ξ)‖dξ , (10b)

ëavg =
1
T

∫ t0+T

t0

∥∥∥q̈Des(ξ)− q̈Real(ξ)
∥∥∥dξ , (10c)

that is the average tracking error eavg, the average 1st derivative tracking error ėavg, and the
average second derivative error ëavg in which the Manhattan distance-based norm was in use
in the case of second derivative the error is not a tracking error but the difference between
the “desired” and the “Realized” values. The computational results for the average errors
are given in Table 2:

Table 2. Comparison of the various error measurements.

Measurements for Tracking Error
Approximate Model Improved Model

Non-Adaptive Adaptive Non-Adaptive Adaptive

eavg [rad] 0.0314 0.0047 0.0115 0.0039
ėavg

[
rad · s−1] 1.0047 0.3216 0.4472 0.2864

ëavg
[
rad · s−2] 124.6491 12.327 41.648 4.8346

From the previous Table 2 it can be seen that, in general, in the adaptive control more
accurate trajectory tracking, i.e., less average tracking error was achieved than in the case
of the non-adaptive approach. Furthermore, in the case of the improved model the trajectory
tracking error became even less. For example, in the case of using the Approximate Model,
adaptivity made the average trajectory tracking error decrease approximately by the factor
0.0047/0.0314 u 0.1497 times that of its non-adaptive counterpart. While in the case of the
Improved Model it decreased by approximately 0.0039/0.0115 u 0.3662 times. The difference
in accuracy using the adaptive activation between the approx model and improved model is
1:1.2 (regarding the favor of the last). The same can be said for the average first derivative
of the trajectory tracking error and the average second derivative tracking error. The error
decreased, respectively, by 0.3201 and 0.1 times by adaptivity in the case of the Approximate
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Model. In addition to the ratio of 1:1.12 for the first derivative, and the ratio of 1:2.55 for the
second derivative of the adaptive controllers when the Approximate Model was replaced by
the Improved Model.

The results of the simulation investigations generated conclusions detailed in Section 7.

7. Conclusions

The most important conclusion can be that, by using the PSO algorithm, it is easy
to achieve a relatively precise identification of the model parameters, the effects of the
remaining imprecisions cannot be completely neglected. Since the FPI-based adaptive
technique can be well combined with evolutionary methods to achieve improved efficiency
(e.g., [72]), the application of this adaptive technique seems to be promising.

Regarding the usefulness of parameter identification by PSO—adaptive deformations
that are too big may cause problems in the floating point representation of the numbers
in the computers. These problems can be evaded if the necessary adaptive deformations
can be reduced, i.e., when the initial approximate model is relatively precise because it is
identified by PSO-based processes.

For future work, the possible problem involving measurement noises (in connection
with the FPI-based control) deserves attention. The noise effects were not investigated in
this simulation study; they can be the subjects of detailed investigations.

Presently, preparations are taking place to test the adaptive method experimentally
by using industrial controller components instead of simple Arduino-based units on a
mechanical test engine made of the components of a real robot. It is expected that the
higher speeds of these control units will make it possible to study the effects of such drastic
nonlinear effects (as sticking) that can be modeled by quite sophisticated friction models.

The bases of our expectations are based on the nature of the FPI-based control method
outlined in Figure 1. In general, the speed of convergence of the method can be increased
by decreasing the cycle time of the digital controller; this speed directly concerns the
available precision of the controller. Furthermore, in the adaptive deformation, some
“delay” (normally the cycle time of the controller) is applied. If the dynamics of the
controlled system are very fast, during this delay time, the observed model can become
obsolete by the time of the next control cycle. These properties of the FPI-based adaptation
seriously concern the possible efficiency of such controllers.

This adaptive approach in principle is applicable in higher-order and higher relative
order controllers, in which higher derivatives of 2 must be observed. A typical case is
when a quantity that should be controlled by the physically available control force is
connected to the action point of the force through the connected subsystem. In such cases,
the computations of the higher derivatives need a lot of mathematical operations, i.e., the
computations of various Lie derivatives. Instead of using the time to compute them, they
can be approximated by the use of simple affine terms, and the errors caused by them can
be adaptively compensated. The “goodness” of this affine approximation concerns the
necessary steps of the Banach iteration; in this manner, it also concerns the precision of
the trajectory tracking. Instead of complicated theoretical considerations, experiments and
measurements can give reliable answers to the range of applicability of this control method.
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