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Abstract: The gradual transition from a traditional transportation system to an intelligent trans-
portation system (ITS) has paved the way to preserve green environments in metro cities. Moreover,
electric vehicles (EVs) seem to be beneficial choices for traveling purposes due to their low charging
costs, low energy consumption, and reduced greenhouse gas emission. However, a single failure
in an EV’s intrinsic components can worsen travel experiences due to poor charging infrastructure.
As a result, we propose a deep learning and blockchain-based EV fault detection framework to
identify various types of faults, such as air tire pressure, temperature, and battery faults in vehicles.
Furthermore, we employed a 5G wireless network with an interplanetary file system (IPFS) protocol
to execute the fault detection data transactions with high scalability and reliability for EVs. Initially,
we utilized a convolutional neural network (CNN) and a long-short term memory (LSTM) model to
deal with air tire pressure fault, anomaly detection for temperature fault, and battery fault detection
for EVs to predict the presence of faulty data, which ensure safer journeys for users. Furthermore, the
incorporated IPFS and blockchain network ensure highly secure, cost-efficient, and reliable EV fault
detection. Finally, the performance evaluation for EV fault detection has been simulated, considering
several performance metrics, such as accuracy, loss, and the state-of-health (SoH) prediction curve for
various types of identified faults. The simulation results of EV fault detection have been estimated at
an accuracy of 70% for air tire pressure fault, anomaly detection of the temperature fault, and battery
fault detection, with R2 Scores of 0.874 and 0.9375.

Keywords: electric vehicle; convolutional neural network; long-short term memory; fault detection;
blockchain; deep learning

MSC: 68T07

1. Introduction

EVs have completely revolutionized conventional vehicles worldwide due to their
benefits, e.g., decarbonization, being eco-friendly, and low maintenance costs. Immense
burning of fossil fuels in conventional gasoline or diesel vehicles can generate a high
amount of harmful greenhouse gases that are detrimental to the greener environments

Mathematics 2022, 10, 3626. https:/ /doi.org/10.3390/math10193626

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math10193626
https://doi.org/10.3390/math10193626
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9489-9592 
https://orcid.org/0000-0002-9591-0132
https://orcid.org/0000-0003-3298-4238
https://orcid.org/0000-0003-0486-8045
https://orcid.org/0000-0002-1776-4651
https://orcid.org/0000-0002-0439-3265
https://orcid.org/0000-0002-7277-4377
https://orcid.org/0000-0001-8972-5953
https://orcid.org/0000-0003-3439-6413
https://doi.org/10.3390/math10193626
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193626?type=check_update&version=2

Mathematics 2022, 10, 3626

20f22

of metro cities. The aforementioned disadvantages of conventional or gasoline vehicles
have led to an increased usage of EVs, especially in urban areas. Based on the current
momentum, the International Energy Agency (IEA) estimated that the number of EVs on the
road will increase by 120 million in the near future [1? ]. However, despite the low energy
consumption and decarbonization features of EVs, they seem to exhibit high complexities
due to their involvement in highly intricate core components along with several sensors and
actuators that can deteriorate their performances, which can discourage people who want to
travel longer routes. Therefore, an individual’s journey can be worsened or life-threatening
due to various effecting parameters, such as fluctuating battery levels, temperature levels,
and air tire pressure ranges of EVs. These parameters need to be considered to deal with
increasing faults in EVs [3].

Many researchers have discussed persuasive solutions to perform reliable and efficient
fault detections in EVs. For example, the authors in [4] investigated a Takagi-Sugeno EV
sensor fault diagnosis system based on an observer strategy. The fault diagnosis system in
the aforementioned research study only highlighted the detection of sensor faults while
ignoring the other types of faults in the EVs. Later, to monitor the battery faults in EVs,
which was not considered by the authors in [4], Yuan et al. [5] applied a voltage prediction
method to implement the fault diagnosis for internal short circuits in the lithium—ion
batteries of EVs. Similarly, Li et al. [6] performed the battery fault detection highlighting
the two-dimensional residual signals. A LiFePO4 battery is chosen for implementing fault
detection, which is more resilient in overheating and safety than lithium-ion batteries.
Then, the authors of [7] implemented both voltage sensor fault and battery fault detection
in the lithium—-ion batteries of EVs, considering their aging effects.

Later, Selvaraj et al. [8] contemplated a fault-tolerant power converter system for
EV propulsion. The main objective of their work was to provide real-time and reliable
fault control by implementing the test using hardware-in-the-loop for EVs. On the other
hand, the authors of [9] discussed an online signal fault diagnosis and detection system
for EV inverters, which was simulated as per the world harmonized light-duty vehicle test
driving cycle. Nevertheless, the fault detection system proposed in the aforementioned
literature [5-7] mainly emphasized battery fault diagnoses in EVs while ignoring thermal
and air pressure faults, which could also affect EV efficiency. Thus, to accomplish an
efficient and reliable EV fault diagnosis, researchers have provided effective solutions
considering other types of faults in EVs. For example, Klink et al. [10] considered lithium-
ion cells to perform thermal fault detection by observing the fluctuations in electrical
behavior. They simulated the fault detection using a standardized WLTP procedure similar
to the experiment in [9].

Sun et al. [11] investigated an online fault diagnosis approach by warning about the
thermal runaway that could be triggered by high fluctuations in the voltage and battery
temperature. However, the research works mainly highlighted the thermal fault detection
and diagnosis approaches, neglecting the air pressure fault. Therefore, it can be observed
from the literature that researchers did not consider the combination of three types of
fault detection, i.e., thermal, air tire pressure, and battery level to improve the safety and
reliability of EVs during any journey, especially traveling the longer one [12]. Moreover,
most of the aforementioned research works are vulnerable to various security and privacy
issues that are being handled by some of the authors to ensure secure and transparent EV
fault detection.

Li et al. [13] discussed a thermal anomaly detection system similar to the fault diagno-
sis system of [11]. Moreover, the authors of [13] overcame the security and privacy issues
of the above-mentioned identical fault diagnosis system with the help of an unsupervised
shape clustering machine learning algorithm. Erfanian et al. [14] applied a bidirectional
LSTM algorithm to enable protected fault detection in unmanned aerial vehicles (UAV).
Later, the authors of [15] considered a hybrid EV to perform an event-based anomaly
detection implemented with a support vector machine (SVM). The fault detection system
proposed by the authors applied various machine learning models to make the EV fault-
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free with strengthened privacy. However, the applied AI models could not maintain data
integrity or confidentiality in the EV fault detection system. Due to this, malicious attackers
can easily forge the components of EVs, which can cause several types of faults, such as air
tire pressure, temperature, and batteries, which further deteriorate the performance of the
fault detection. Therefore, to strengthens the security of EV fault detection, in this paper,
we propose a blockchain and deep learning-based EV fault detection approach for safe
journeys. A blockchain platform incorporated with deep learning models strengthen the
security and confidentiality during fault detection in EVs. Once data are appended to the
blockchain network, they cannot be manipulated by malicious attackers, which can predict
faults in EVs correctly without any delay (with the high data rates and a low latency 5G
wireless network). Moreover, Table 1 shows the comparative analysis of several trending
technologies, such as blockchain, 4G, 5G, and IoT, along with their associated benefits and
challenges. Based on the benefits, i.e., high security, high data rate, and low latency features
of blockchain and 5G networks, EV fault detection using deep learning models is proposed
for the safety of users during the journey. Additionally, Figure 1 shows the evolution
of blockchain technology, which started with the release of Bitcoin Whitepaper, released
by Satoshi Nakamoto in 2009, and the deployment of cryptocurrency in 2011. Then, in
2013, smart contracts were deployed to overcome the security issues of IoT and machine
learning models. Then, blockchain evolved by facilitating the deployment of decentralized
applications in various sectors. Therefore, the evolution of blockchain technology impacts
EVs in terms of better security, privacy, and reliability by modernizing the transportation
system, which also helps to perform fault detection without any malicious attacks. For fault
identification, we considered various types of faults (i.e., air tire pressure, temperature, and
battery) to perform the prediction using CNN and LSTM anomaly detection models with
higher accuracy. Blockchain combined with IPFS and a 5G network is advantageous for EV
fault detection in terms of high security, reduced data storage costs, high reliability, and
improved efficiency.

Table 1. Comparison analysis of several trending technologies.

Trending Technologies

Benefits Challenges

Enhanced security, verifiable, immutable, Private keys owners are vulnerable, high energy

Blockchain end-to-end encryption, high reliability consumption, time-consuming, high data
storage issues
4G networks Data rate up to 1 Gbps, low latency (<60 I.n.s)' low Slow and less efficient than 5G
cost per bit, portable, and global mobility
High data rate (up. to 10 Gbps), low latency Security and privacy issues, limited accessibility,
5G networks (<1 ms), high availability, reduced energy o
. - A compatibility issues
consumption Better edge computing possibilities
Internet Of Things Remote data logging, fault alert system, real-time =~ Complex technical structure, high maintenance,

tracking features need to improve security
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Figure 1. Evolution of Blockchain.

1.1. Motivation
The objectives of this research work can be defined as follows:
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*  Most of the existing Al-based EV fault detection frameworks mainly emphasize
strengthening the privacy of EVs. However, there is no discussion on maintaining the
integrity and confidentiality of EV data while considering diverse faults.

*  Considering the outlook of the literature, researchers [4-9] have highlighted the in-
tegrity and transparency challenges arising in EV fault detection systems. To overcome
these issues, authors [13-15] have applied various Al models to ensure protected EV
fault detection. However, they are still vulnerable to various security attacks due
to the easy forging of data in Al models. Additionally, no literature discusses the
combination of faults for EVs.

*  Thus, deep learning and blockchain-based EV fault detection frameworks are persua-
sive solutions to tackle multiple faults (air tire pressure, temperature, and battery)
arising due to the intricate components of EVs. Moreover, the inclusion of 5G and
IPFS strengthen EV fault detection in terms of reliability, storage costs, and scalability.

1.2. Research Contributions
The contributions of this research work can be explained as follows:

*  We propose a deep learning and blockchain-based EV fault detection framework
considering faults, such as air tire pressure, temperature, and battery, which can occur
due to the intricacy of components. Moreover, the inclusion of IPFS with the 5G
network improves the scalability and reliability of fault detection for EVs.

e  Furthermore, the fault detection was performed considering the various EV faults
using CNN and LSTM deep learning models to predict the output, which can be
further classified as faulty or not.

*  The performance evaluation of the EV fault detection was estimated by implementing
CNN and LSTM with the help of metrics, i.e., F1-score, precision, and recall. Then, we
depicted the accuracy and loss curves for the various fault predictions of EVs.

1.3. Organization

The rest of the paper is organized as follows. Section 2 introduces the system model
and problem formulation. Section 3 presents the proposed deep learning and blockchain-
based EV fault detection framework. Section 4 presents the simulation result analysis.
Finally, Section 5 presents the concluding remarks.

2. Related Works

Many researchers have proposed convincing solutions for EV fault detection (for
safer journeys). For example, the authors of [16] presented a charging pile error detection
mechanism based on the machine learning technique. Unlike the standard charging pile
fault detection approach, the proposed mechanism generates data for common charging
pile traits and builds a classification prediction framework based on the extreme machine
learning algorithm. However, they needed to focus on the optimal charging aspect to
perform the multiple faults detection for EVs’ safety. Then, Basnet et al. [17] discussed
the performance of the applied deep learning-based ransomware detection in supervisory
control and data acquisition system (SCADA) for EVs. They enhanced the data integrity
and privacy of the system by protecting EV data from malicious attacks, which were not
discussed in [16]. Later, to address the data loss issues of [17], Li et al. [13] studied a
data-driven approach for detecting battery thermal anomalies in EVs. However, identifi-
cation of air tire pressure fault and data security issues were not discussed to that extent,
which could cause hazardous situations for EVs when traveling longer. Then, the authors
of [18] discussed a machine learning technique to perform sensor fault detection in an
electric motor. The main aim of the proposed scheme is to attain improved accuracy by
implementing various classifiers. However, the setup of the proposed scheme was not
implemented in a dynamic real-time environment.

Furthermore, Javed et al. [19] presented a combinatorial framework of LSTM and
a CNN deep learning model for anomaly detection in automated vehicles. Despite their



Mathematics 2022, 10, 3626

50f22

improved performances, they need to identify multiple faults in automated vehicles, such
as air tire pressure, battery, thermal, etc., for efficient fault detection. To overcome the
security and privacy issues, which were not the main focus of the proposed scheme by
authors in [19], Sani et al. [20] studied a survey on privacy preservation techniques
for EVs with the help of machine learning and deep learning techniques. They also
discussed various research challenges and future opportunities for privacy preservation of
EVs. Further, a hybrid EV paradigm based on renewable energy resources was proposed
in [21] to regulate the power supply and demand by utilizing various renewable energy
sources, such as wind energy, solar energy, a supercapacitor, and a fuel cell. Then, the
authors of [22] implemented an Al-based approach to perform fault detection for an electric
powertrain to achieve a moderate accuracy for fault diagnosis. They should add detailed
information on multiple features to improve the accuracy of the fault detection in the
electric powertrain. Considering the outlook, most of the aforementioned researchers
have incorporated machine learning or deep learning techniques for secure and accurate
fault detection and diagnosis in EVs. However, they did not mention the identification of
multiple types of fault detection in EVs (to ensure safe journeys for the users). Moreover,
deep learning and machine learning techniques do not guarantee high security, privacy,
and confidentiality during fault detection in EVs. Therefore, we propose a blockchain and
deep learning-based fault detection framework for EVs. Blockchain technology overcomes
the security and privacy data storage issues of the deep learning model by securing data
transactions in an immutable and decentralized manner. Moreover, we predicted and
identified three types of faults, i.e., air tire pressure, temperature, and battery, using CNN
and LSTM models, which attain higher accuracies for efficient fault detection. Table 2
presents the comparative analysis of various state-of-the-art EV fault detection schemes
with the proposed framework to highlight the research gaps, such as multiple faults, i.e., air
tire pressure, temperature, and battery fault, security issues, and high data storage issues
associated with the literary work, which motivated us to propose a blockchain and deep
learning-based fault detection framework for EVs.

Table 2. Comparative analysis of various state-of-the-art EV fault detection schemes with the pro-
posed scheme.

Year

Authors Name

Method

Merits

Demerits

2020

Gao et al. [16]

Proposed an EV fault detection
method based on the extreme
machine learning algorithm

High efficiency and precision,
improved accuracy

Different faults need to be
identified and no focus on
optimal charging

2021

Basnet et al. [17]

Presented a deep
learning-based ransomware
detection framework in a
SCADA-based system for EV
charging

Secure against malicious
attacks and high accuracy

Automatic countermeasures are
not discussed and no
discussion on data storage cost.

2021

Lietal. [13]

Studied a data-driven approach
for detecting battery thermal
anomalies in EVs

High resilience to data loss and
early fault detection capability

Data security issues and air tire
pressure faults are not
discussed

2021

Argawal et al. [18]

Discussed a machine learning
method for sensor fault
detection in an electric motor

High accuracy

Needs to be implemented in
real-time environment

2021

Javed et al. [19]

Proposed an anomaly detection
framework for automated
vehicles by combining LSTM
and CNN

Improved performance

Needs to be implemented in a
dynamic environment and also
consider other types of faults
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Table 2. Cont.

Year Authors Name Method Merits Demerits
Studied a survey on privacy
2022 Sani et al. [20] preserYatlon tec.hmques .for Resolv.ed sec.urlty and Faults need to be identified
EVs using machine learning privacy issues and detected
techniques
Proposgd a hybrid EV Real-time implementation
paradigm based on needs to be considered
2022 Mamun et al. [21] renewable energy resources Eco-friendly . .
should focus on improving
to regulate the power supply
data storage costs
and demand
Implemented an Al-based Information on different
. approach to perform fault features can be added and
2022 Hadraoui et al. [22] detection for electric Moderate accuracy should focus on identifying
powertrain multiple faults
Proposed a blockchain and Improved accuracy. hiehl
2022  The proposed framework deep learning-based fault P Y VSR -

. , and reliabl
detection framework for EVs Secure, and refiable

3. System Model And Problem Formulation
3.1. System Model

The blockchain-based EV detection system consists of a number of EVs along with the
IPFS protocol integrated with the wireless 5G network. We consider several sensors equipped
with EVs to detect faults in their components. For example, battery sensors are used for
routine current and voltage values that could be used to detect battery faults in EVs. Next, a
tire-pressure monitoring system (TPMS) sensor is used to obtain the air pressure values of
the EVs. Moreover, the temperature sensor is equipped to yield fluctuation in temperature
values of the EVs. After that, EV data extracted from these sensors should be approved
by an authority so that EV data should be legitimate before IPFS accepts their requests for
data storage. However, before enabling secure data storage through IPFS over a blockchain
network, the extracted fault data from the sensors should be preprocessed and trained using
deep learning models. We considered CNN, anomaly-based detection, and LSTM-based deep
learning models to train the preprocessed air pressure, temperature, and battery (voltage and
current sensors) data. The trained model predicts the output to classify data into faulty or
no-fault. If predicted data are faulty, EVs should be informed about it to prevent any future
accidents. Moreover, we introduced the blockchain network to enhance security in EV fault
detection so that the correct message is forwarded to the EVs about the fault data. For that, a
smart contract as a self-executable code was considered to verify the message forwarded to
EVs, so that EV fault detection can be performed with strengthened security and privacy over
the blockchain network.

3.2. Problem Formulation

In an EV fault detection framework, we included n number of EVs (61, &, d3, 04, J5,
dn) € Oy associated with the number of entities E; € {Eq, Et, Ep} in which E 7 is an entity,
which represents the various faults detected by the sensors {Sp, St, Sy} € Se. Faults can be
represented by E,, E;, and E;, which signifies the air pressure, temperature, and battery
faults that can be detected in the EVs. The TPMS sensor can read various air pressure
range values of the EV tires, which can be denoted by {P;, P, P53, Py, Ps, .., } € Sp, the
temperature sensor reads the temperature data values, {Ty, Tp, T3, Ty, T5, ... Ty } € St, and
finally, the battery sensor reads the data {By, By, B3, Bs, Bs...B,, } € S}, to detect fluctuations
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in the battery values of EVs, which are extracted using voltage and current sensors {S, 5;}
€ Sp, respectively. We take input parameters for batteries, as follows.

Sp={(V1,h),(Vo, 2), (V3,13), (Va, Is), ..., (Vi, In) } ¢))

Moreover, variations in the air tire pressure, temperature, and battery values can
cause faults in EVs. To understand the fluctuations in these values, we considered several
scenarios to prevent faults in EVs for safer journeys. In the first scenario, EVs can suffer
from a fault if maximum air tire pressure values generated from the TPMS sensor are
generated. Considering the second scenario, temperature values associated with EVs tend
to be maximum, increasing the vulnerability of the temperature fault. In another scenario,
voltage and current sensors are considered to broadcast information about the battery fault
to the EVs so that accidents can be prevented beforehand. Battery faults can occur based on
the maximum fluctuation in the voltage and current values of the EVs.

We considered two more cases to represent the battery faults in the EVs. The foremost
case is when voltage values tend to be maximum and current values tend to be minimum
for the fault occurrence. In another case, measured voltage values should be minimum,
while current values measured should be maximum to depict the battery faults in the EVs.
Therefore, all the aforementioned scenarios explain the conditions based on which various
types of faults can be detected in the EVs to ensure safe traveling for individuals. The
association between fault detecting parameters, i.e., pressure, temperature, and battery, can
be represented as follows.

S(EA(ES)) — :zl{maxwgk)} @
8(Ef(ES) — :X;l{maxmk)} ©
8(Ef(ES)) — ki{max(%»minwn)} @
S(EF(ES")) — :Zi{min<v5k>,max<15n>} ©
S(EF(ES")) — ]le{maxw(sk),max(l&n)} ©

{P,T,V,I} >0

Therefore, the data obtained from the various sensors embedded with the EVs can
be used to detect air tire pressure, battery, and temperature fault to inform about them
antecedently to lessen the probability of accidents. Furthermore, the EV data acquired
from the sensors should be preprocessed and trained using various deep learning models.
Various deep learning models, i.e., CNN, anomaly detection, and LSTM, have been applied
to the EV data to predict whether any fault is present or not to broadcast information about
it to the EVs earlier. The deep learning models were trained on the EV fault data of air tire
pressure, temperature, and battery, to securely perform fault detection. The input data of
the various parameters (A;nput, Tinput, Binput) for the prediction using deep learning models
can be represented as follows.

Ainput i> Prediction (7)
Tinput % Prediction (8)
Binput 2, Prediction )

where 1, X, and w signify the prediction of the air pressure, temperature, and battery data
using CNN and LSTM deep learning models.
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Now, the prediction using deep learning models yields an output to classify EV fault
detection as faulty or not faulty. However, EVs should obtain the correct information about
the faulty data so, they can travel to their destinations without harming lives. Therefore,
blockchain as a secure platform has been introduced in EV fault detection to avoid the
broadcast of false information, reducing untimely accidents. However, the inclusion of
an IPFS protocol with the blockchain decentralized network and the execution of smart
contracts help to improve the security of the EV fault detection system by preserving the
privacy of data [23]. Moreover, IPFS as an off-chain data storage uses content-addressing
to store the data in the form of hashes, surpassing the blockchain by providing low costs
for data storage. Finally, blockchain-based EV fault detection can be executed using deep
learning models to warn beforehand about the faults in their components.

4. Proposed Framework

Figure 2 shows the proposed framework consisting of three layers, i.e., EV fault layer,
data analytics layer, and blockchain layer. The detailed descriptions of these layers are
described as follows.

Current sensor Voltage sensor Pressure sensor Temperature sensor
-

) (®) $

o B
5 -
<5 Q@Q
s & ‘
2 :
/M & contract

Blockcﬁa%n

Convolution| | Maxpooling Flatten Dense Output

layer layer layer layer Fault/ No|
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Authority

Data Analytics
Layer

Approve
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Layer
z
z
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—
=
S
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=
[=N
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=
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Figure 2. The proposed fault detection framework.

4.1. EV Fault Layer

This layer involves several EVs embedded with various sensors to acquire the relevant
data to identify faulty data. EV data are initially processed, then feature extraction is
conducted based on the kind and frequency of data flow from the specific data. We
employed three sensors for each type of problem in our model. TPMS as a tire-pressure
monitoring system sensor is used to measure the air pressure in the tires. This information
allows us to identify whether the tire is flat or full of pressure. To monitor the thermal
state of EVs, we employ a temperature sensor that produces a temperature measurement at
regular intervals. Finally, for the battery, we employ current and voltage sensors to use the
output of these values after a predetermined time interval to pre-process the relevant data.

The TPMS gives the output A; of air pressure in the unit of pressure per square inch
(PSI). The minimum threshold for the data to be in the normal range is considered to be
45 PSI. Here, the input parameter for the model is taken as A;yp,;, and it is the data frame
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for the readings of TPMS after the specified time interval. The above-mentioned association
can be represented as follows.

Ainput = {A11A2/ A3/ A4/ A5/"'A11} (10)

The temperature sensor output is given in either Fahrenheit or Celsius units. The EV
temperature is utilized as an output and turned into a time series data frame T, which
is then used to train the proposed model.

Tinput = {T1, To, T3, Ty, T5, ... Tt } (11)

where T; = {Time, Temperature}. Finally, for the battery fault detection, we obtain value
from the voltage and current sensors associated with the battery for the specific time interval.
The units for the current and voltage measured are in amperes and volts, respectively.
The incoming data are then converted into a data frame containing the values of the voltage
V and current [ for specific time stamps. The collections of data are represented by Bjput,
as follows:

W Ip

Binput = 12)
Vi Iy

The data obtained from these sensors should be passed to the data analytics layer for further
pre-processing and training using deep learning models. Prior to that, the data should be
approved by an authority who assigns them the token, which can be used to prove one’s
identity before data are pre-processed at the data analytics layer. Moreover, the security
and privacy issues associated with the EV fault layer arises the need for the data analytics
layer to perform the prediction of several faults in EVs. The main reason for security issues
is due to the different sensors involved in extracting the information of faulty data from
EVs that need to be tackled to ensure secure fault prediction.

4.2. Data Analytics Layer

Based on the type of EVs fault, the data analytics layer is separated into three stages,
i.e., air tire pressure, temperature, and battery. We applied different deep learning models
to the EV faulty data extracted from the EV fault layer. Therefore, we can consider three
types of EV faults to apply CNN and LSTM to the data, which can be explained as follows:

4.2.1. Air Tire Pressure

We employ a CNN model to predict the air tire pressure for the detection of faults in
EVs (as shown in Figure 3). CNN has been proven to produce the best results based on the
considered image dataset [24]. The considered image dataset utilizes the images of tires for
which the pressure is measured in PSI. It is trained on the image dataset, and subsequent
predictions are produced for the prediction. Dataset D can be expressed as follows:

D= (EL) (13)

where dataset D consists of each example E, which is labeled with the appropriate label L,
which is then fed as an input to the CNN model. Table 3 shows the parameters considered
to train the aforementioned model for the air tire pressure fault.
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Table 3. Model parameters for air tire pressure fault.

Epochs 64
Learning rate 0.001
Input size (244, 244, 3)
Optimizer Adam
Activation function Softmax
Loss function Categorical cross-entropy

inception_v3_input | input:

[(None, 224, 224, 3)] | [(None, 224, 224, 3)]
InputLayer output:

\

inception_v3 | input:

(Nomne, 224, 224, 3) | (None, 3, 5, 2048)
Functional | output:

max_pooling2d_4 | input:
MaxPooling2D output:

(None, 5, 5, 2048) | (None, 2, 2, 2048)

flatten | input:

(None, 2, 2, 2048) | (None, 8192)
Flatten | output:

\

dense | input:

(None, 8192) | (None, 3)
Dense | output:

Figure 3. CNN architecture for air tire pressure fault.

4.2.2. Temperature Fault Analysis

We consider the anomaly detection technique to identify the temperature fault in
EVs. Unsupervised learning is used to train the model for this prediction, and we utilize
the LSTM model to predict the data as faulty or not. EV temperature fault data are first
preprocessed based on the requirement. The min—-max scaler is used to preprocess the
relevant parameters for training and testing the datasets for temperature fault detection.
It transforms the temperature dataset T into a value range of [0,1]. The dataset T is
[22,695, 5] in size. This dataset is then split into two parts, i.e., a training dataset and a
testing dataset. T4, and Tt are created using different variables, such as prediction
time, unroll-length, and test data size, which can be denoted by &, ¥(50), and k(1000),
respectively. The above associations can be described as follows.

D=S+k+1 (14)

where the value of o is calculated for splitting the dataset into train and test values.
The trained values of the temperature fault data are then passed to the LSTM model with
the considered parameters. Table 4 depicts the parameters used for temperature fault
prediction in EVs using the LSTM model.
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Table 4. Model parameters for temperature fault prediction in EVs.

Epochs 50
Validation split 0.1
Batch size 3028
Input size (21,593, 50, 5)
Optimizer RMSProp
Loss function MSE

The learning rate is defined as the root mean square propagation (RMSProp). It elimi-
nates the requirement for learning rate adjustment by choosing it automatically for each
parameter. Moreover, the RMSProp selects a different learning rate each time for differ-
ent numbers of parameters. The detailed procedure for the RMSProp optimizer can be
explained in the following steps.

or = por 1+ (1—p)xg7 (15)
dwr = (—n/ /vt +1)xgt (16)
W41 = Wt + (SaJt (17)

where 7 is the initial learning rate, v; is the exponential average of squares of gradients and
gt is the gradient at time t along with w;. For each wrong prediction, the loss penalized
can be defined as the mean squared error loss. The mean squared error (MSE) for each
parameter can be calculated as follows.

s —
MSE = 21:] ‘ZZ yl| (18)
The square element of the MSE ensures that no outlier prediction and error can occur in the
trained model while detecting the anomalies in the EVs.

4.2.3. Battery Fault Analysis

The model deployed for EV battery fault analysis is the LSTM model. After prepro-
cessing the input training data, the data By, are provided to the LSTM model for training
and testing the data. The input sizes of the data, i.e., Bj,,, are considered (34,866, 7) and
Table 5 shows the relevant parameters considered for training the considered LSTM model
along with the input data Bj,; (34,866, 7).

Table 5. Model parameters for battery fault analyses in EVs.

Epochs 50
Validation split 0.1
Batch size 25
Optimizer Adam
Activation ReLU
Loss function Mean absolute error

For the Adam optimizer, the parameters values, i.e., § = 0.9 and € = e=8, are con-

sidered. Furthermore, the activation function used for the dense layer of the model is the
rectified linear activation function (ReLU) activation, which can be defined as follows:

f(x) = max(0,x) (19)
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Each parameter in the dataset has an input value of x. If the input value is less than zero,
the function returns to 0; if the input value is larger than 0, then the function returns x. The
loss for the applied LSTM model on the battery fault data is determined using the mean
absolute error loss function L(x, x") to minimize the loss function. Therefore, the function
can be defined as follows.

n_ 1 )
L(x,x") = NZ’xi_xi‘ (20)
=0

where x is the real value and x” is the predicted value of the LSTM model.

Finally, the CNN and LSTM models can be applied to the air tire pressure, temperature,
and battery fault for predicting the data as faulty or no-fault. Algorithm 1 shows the detailed
procedure of three types of EV fault detection along with their input parameters that can
be predicted with the time complexities of O(a), O(t), and O(on). Moreover, based on the
output of faulty data, EVs can be warned beforehand to prevent any kind of severe accident
beforehand. However, applied deep learning models cannot prevent various security
attacks, such as data manipulation, data spoofing, and cyber attacks against the output of
prediction of faulty data. For example, some malicious attackers can forge the output, which
can transfer false information about the fault to EVs leading to the cause of an accident.
Therefore, the blockchain layer is introduced to overcome the aforementioned security and
privacy issues that occur while predicting the output of faulty data for EV safety.

Algorithm 1 Prediction model algorithm.

Input: Air pressure data (S, ), temperature data (S;), battery data (Sy)
Output: Prediction P

1: Take input data from three sensors

2: Load the input data for data preprocessing

3. for All EV(A) do

4: for S, do

5: Generate input parameter A;;p,; for the CNN prediction model
nochange

6: Sp —— Ainput

7: Feed data to the CNN (1) model

Ainput o, Prediction

8: end for
9: for S; do
10: Create input parameter T}, for the Anomaly detection model
11: Data pre-processing(D) = change units, remove NaN/NULL values
D
12: Sy — Tinput
13: Feed data to the anomaly detection mode(x)
Tinput X, Prediction
14: end for
15: for S, do
16: Create input parameter B;;;,,,; for the LSTM detection model
17: Data pre-processing(D’) = Feature extraction, min-max scaling
D/
18: Sy, — Tinput
19: Feed data to the LSTM model(w)
Binput L5 Prediction
20: end for
21: end for

22: Return Prediction
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4.3. Blockchain Layer

The data extracted from the sensors in the EV fault layers are passed through the data
analytics layer after applying CNN and LSTM models to perform the various types of
fault detection analyses, i.e., air tire pressure, temperature, and batteries on EVs. Now, the
predicted data of the data analytics layer may be vulnerable to various security and privacy
attacks, which can disrupt the transparency of the system. Hence, to strengthen the security
and transparency of fault detection in EVs, we introduced a blockchain layer to protect
the predicted data from the data analytics layer to reduce the probability of EV accidents.
The blockchain platform stores data in the form of a chain of blocks in an unalterable
way to maintain the data integrity of the network. Furthermore, the blockchain utilizes a
consensus mechanism, which ensures that all the nodes in the network should agree to
add to that particular transaction. Otherwise, the transaction can be discarded, further
maintaining the security of the system. Initially, EV fault analysis data can be secured by
registering with an authority that assigns a token to the EVs to detect the faulty parameters
of their components (e.g., battery, tire, or thermal).

Then, the IPFS is involved in the blockchain layer to validate EVs data, which are
preserved by an authority. Now, EVs can issue a request to store their fault analysis data
in the IPFS instead of a blockchain to ensure low-cost data access in a distributed manner
for EVs. The data storage in an IPFS smart contract is written as a self-executable code
that needs to be executed to check the authenticity of the EV data predicted from the data
analytics layer. The data predicted from the data analytics layer seem to have security
and privacy issues for data storage, which can be resolved with blockchain and IPFS.
Furthermore, to allow the data storage of EV data in the IPFS, they need to return the
respective hash keys to the EVs. Now, after attaining the data storage through IPFS in a
cost-efficient manner, EVs can take advantage of the blockchain decentralized network to
accomplish a secure journey (and preserve fault detection analyses for a safer journey).
Blockchain as a distributed network provides a secure platform for EV fault detection by
accessing the corresponding hash keys €5, generated from the IPFS protocol. To attain
secure fault detection for EVs, asymmetric cryptography can be applied to authorize the
EV data during the fault detection using public and private EV keys (© e Q‘S:y)’ which

can be described as follows [25].

1% (6 (Ea, Et, Ep)) = €5, (21)
® ki Q ky
A (Sigpy™ %8 (8¢ (Ea, Er, Ey)) = 78 (8x(Ea, Er, Ep)) (22)

O
where 7% denotes the hash digest to perform fault detection for EVs. A % signifies the
decryption of EV with its public key © 4, and Sigp represents the digital signature of EV
k

with the help of private key () o

5. Simulation Results
5.1. Dataset Description

In this paper, different datasets are referred to for various faults that need to be
detected in the proposed model. The faults considered in the dataset are air tire pressure,
thermal /temperature, and fault pertaining to the battery of EVs. The dataset [26] considered
for the fault detection of air tire pressure consists of images of tires, which are labeled as
either full or flat. For the prediction of temperature fault, we utilize the NAB dataset [27],
which consists of data related to the anomalies. Finally, for fault prediction in electric car
batteries, we utilize the dataset in [28], as it contains many metrics related to lithium—ion
batteries that may be used for prediction. Each of the following datasets is explained
in further sections, regarding data pre-processing and implementation. The datasets
considered for these faults are as follows:
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5.1.1. Air Tire Pressure Fault

The full and flat tire image dataset will detect air tire pressure faults in the EVs. An
air tire pressure fault occurs when the TPMS sensor in the tire of the EV will not be able to
communicate with the car. This warning generally does not appear when the tire pressure
is either too low or too high. The normal range is around 45 PSI and a low PSI range is
considered around 10 PSI. The dataset consists of images of the tire, which can be classified
into three categories, i.e., full tire, flat tire, and no tire. There are a total of 900 images in
which each labeled section consists of 300 images of size 240 x 240. A full tire is defined as
a tire with 45 PSI and a flat tire is defined with 10 PSI. Figure 4a—c shows the different types
of tires in which data have been preprocessed and trained to detect the faults associated
with the air tire pressures in EVs.

(c)

Figure 4. Different types of tires for air tire pressure fault detection. (a) Full tire; (b) flat tire; (c) no tire.

5.1.2. Thermal/Temperature Fault

Thermal (or temperature) EV fault detection was analyzed using the Numenta Anomaly
Benchmark (NAB) dataset [27]. The dataset consists of temperature sensor data of an inter-
nal component of a machine inside the electric vehicle. From the continuous input coming
from the temperature sensors of the machine, it is possible that it may send us a record
that may be an outlier. This outlier may cause difficulties if we want to work on these
data further. Thus, we detect the outlier as an anomaly, considering it as a fault from the
temperature sensor. The first anomaly is a planned shutdown of the machine. The second
anomaly is difficult to detect and directly leads to the third anomaly, a catastrophic failure
of the machine. The dataset consists of the machine’s temperature in Fahrenheit along with
the different timestamps.
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5.1.3. Battery Fault

The definition of fault considered for fault prediction is the predicted battery state of
health. We predict the state of the health of the battery and compare it with the original
data. A fault is declared when there is a difference between the prediction and actual SOH.
We considered the Nasa Li-ion battery aging dataset for battery fault detection. These
data were gathered from the NASA Ames Prognostics Center of Excellence (PCoE) with
the help of a custom-built battery prognostics testbed. With fluctuating temperatures,
Li-ion batteries are subjected to three different operating profiles (charge, discharge, and
electrochemical impedance spectroscopy). These data were collected from commercially
available Li-ion 18,650-sized rechargeable batteries. As a result, the dataset comprises
the following parameters, i.e., cycle, type, ambient temperature, time, data, the voltage
measured, current measured, temperature measured, current charge, and voltage charge
for charging as well as discharging period.

5.2. Data Preprocessing

We discussed the different datasets for various effecting parameters in the EV fault de-
tection. Now, we need to understand the preprocessing of the aforementioned data so that
data of various parameters can be trained and tested utilizing several deep learning models.
Considering the first case of the air tire pressure dataset, there is no required preprocessing
based on the image dataset’s relevancy. We converted all of the given temperature units
from Fahrenheit to Celsius in the thermal fault dataset for better understanding. As this
dataset is mainly considered for anomaly detection, there is no requirement for the removal
of NaN or NULL values.

On the other hand, we customized the battery fault analysis data by considering the
relevant parameters only. The required parameters can be denoted by time, voltage, current,
temperature, and capacity. Furthermore, we optimized the dataset by applying min—-max
scaling to every feature of the training dataset based on the set range of [0,1]. The min—max
scaling (on each attribute of the training data) was performed with the help of equations,
expressed as follows.

(X — X.min(axis = 0))
(X.max(axis = 0) — X.min(axis = 0))

X_std = (23)

X_scaled = X_std x (max — min) + min (24)

We added a new attribute, i.e., SoH, which signifies the state of the battery in terms of
aging; it indirectly reflects the probability of fault occurrence. Now, the data were prepared
for training and testing using CNN and LSTM models, which were analyzed based on the
type of faults.

5.2.1. CNN-Based Results for Air Tire Pressure Fault

We applied the CNN model to perform air tire pressure fault detection in the EVs.
First, the CNN model is trained on the image dataset and then tested on the validation data
and test data of the considered dataset. To analyze the performance of the proposed model,
we identify different parameters, such as F1 score, accuracy, and losses of the trained model,
which help us to analyze its performance and efficiency.

Figure 5 shows the correlation between the prediction accuracy of the CNN model on
the train and test datasets for air tire pressure fault detection. The train and test datasets
were sampled based on the 64 Epochs with a step size of 8 per Epoch.
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Figure 5. Comparison of prediction accuracies for train and test datasets on the CNN model for the

air tire pressure fault.

Similarly, Figure 6 depicts the loss curve for the train and test datasets applied using
the CNN model for air tire pressure fault detection in EVs. Furthermore, Figure 7 shows a
generated confusion matrix for the test data to classify whether prediction by the trained
CNN model yields correct output or not.
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Figure 6. Loss curve for training and testing datasets.
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Figure 7. Comparison of prediction accuracies for train and test datasets on the CNN model for the

air tire pressure fault.
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5.2.2. Anomaly Detection for Temperature Fault

Another result analysis involves EV temperature fault detection. We detected the
abnormal temperature values for EVs by detecting the outliers from the given dataset.
The outliers are detected by implementing the LSTM on the considered dataset of the
temperature fault. On training the LSTM model on the dataset, the temperature values
deviate from the predicted values that are detected as anomalies. The LSTM model is
trained on the dataset by classifying it into training and testing data with a ratio of 80:20.
Moreover, Figure 8 depicts the loss curve while training the LSTM for temperature fault
prediction along with the batch size of 3000 and epochs of 50. Additionally, we observed
that the loss between the training and validation set almost converges and the final loss in
the validation test is 0.0349.

0.40 — Loss
Val_Loss

035
030

025

Loss

020

015

010

005

0.00

Epochs

Figure 8. Loss curve.

The trained model is then used for the test dataset to find the predicted values for the
temperature fault. After the training of the model, we attained the predicted values of the
temperatures from the given values in the test dataset. In Figure 9, the final comparison,
i.e., the difference between the predicted and original test set, is plotted. The comparison
between the predicted and test values indicate the performances of EV temperature fault
prediction using anomaly detection to warn about the predicted data beforehand.

12
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Figure 9. Comparison of the normalized curve for the prediction and test values.

Finally, considering the differences between predicted and test values, Figure 10
depicts the anomalies detected for EV temperature faults. We can conclude that the values
that are not on the regular curve are considered anomalies for the temperature values
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and we can visualize them from the graph (in red). For the evaluation of the model, we
calculate the R? Score due to the presence of continuous values. The value of the R Score
is calculated as 0.8761, which is calculated with the help of an equation, defined as follows:

R%Z =1 — (SSR)/(ssT) (25)

where SSR is the sum-squared regression and SST is the total sum of the squares.

® Anomaly

Value

1386 1387 1388 1389 1390 1391 1392 1393
17

Time_Epoch
Figure 10. Anomaly detection for temperature fault.

5.2.3. LSTM-Based Results for Battery Fault

To analyze the battery fault detection, we considered an additional parameter, i.e.,
SoH, to define the state of the battery of EVs. The other parameter of SoH is predicted
with the help of neural networks to check the performance of the battery based on the
standard parameters. The model is trained considering the input dataset along with the
help of a parameter, i.e., the capacity of the battery calculated using the dataset. Then, SoH
can be computed with the help of the aforementioned capacity of the battery. Finally, the
calculated SoH can be appended to the training dataset while predicting the correct state of
the battery for the improved performance and efficiency of EVs during the journey.

The training dataset is then passed into the model containing dense layers and a single
dropout layer. The model is trained with 50 epochs and a batch size of 25. As a result,
Figure 11 shows the predicted SoH that can be used to define the state of the battery. So,
the poor condition of the battery can cause accidents or interrupt the journey of EVs.
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Figure 11. SoH prediction for battery fault detection analysis.
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The evaluation of the LSTM model for battery fault prediction is estimated based on
the root mean square error (RMSE) and the value of the R? score. The equation of RMSE
can be mentioned as follows [29].

Y |xi — il

n

RMSE = (26)
where 1 is the parameter values in the predicted and training datasets. The value of RMSE
is calculated as 0.02108 and the value of the R? Score is calculated as 0.93753.

5.3. Blockchain and IPFS-Based Analysis

In the proposed framework, we incorporated a blockchain layer to enable secure (and
preserve fault detection in the) EVs. For that, the fault data (air tire pressure, thermal, and
battery) are extracted from various sensors equipped with EVs in the EV fault layer to
predict the data as faulty or non-faulty using deep learning models, such as CNN and
LSTM. Thus, the blockchain layer is further appended along with the IPFS immutable
protocol to store and detect EV data securely and efficiently. In this section, we analyzed the
efficiency of the blockchain with IPFS regarding computation time and delay comparison.
These can be mentioned as follows.

5.3.1. Computation Time

The reliability of the blockchain network with the IPFS protocol in the proposed
model can be measured by calculating the computation time required to perform the EV
data storage or retrieval to the network. Initially, executing a smart contract based on the
predetermined conditions decides the data storage of the EV fault data. Suppose, the smart
contract permits the association of EVs with the blockchain for data storage purposes. In
that case, the computation time of an EV to access the blockchain for data storage takes
approximately 8 x 1072 s [30]. Alternatively, if the additional immutable IPFS protocol is
used with the blockchain network for EV fault detection, then the computation time for data
storage in the blockchain with IPFS can be calculated in 11 x 1072 [31]. The computation
time associated with the mediator IPFS and blockchain network surpasses the computation
time of data storage in the blockchain. Regardless of the higher computation time, the
IPFES protocol is shown to be beneficial for EV fault detection data storage as it seems to be
profitable in terms of cost-efficiency.

We discussed the computation times of EV data storage in blockchain with IPFS for
fault detection. However, we also need to consider the data retrieving the time from the
blockchain. For example, if data are retrieved directly from the blockchain, then it takes
about 6 x 102 s [32] due to the applied SHA-256 algorithm. However, if we incorporate IPFS
with blockchain, then the data retrieval time for the EV fault detection can be calculated
at 0.075 s [30]. Thus, it can be perceived from the aforementioned scenario that the data
retrieval time of EV data storage through the IPFS yields lower than the blockchain.

5.3.2. Data Storage Cost Analysis

In this section, we highlight the data storage cost analysis for the proposed EV fault
detection. The proposed model consists of a blockchain and IPFS combinatorial framework
that incurs a low cost to avail off-chain data storage of EVs. We need to focus on various
aspects to analyze the EV data storage costs. Initially, we have to specify the gas price of a
single word that can be denoted by Gf/’\, ;- Furthermore, the associated gas for 1 KB of data
needs to be computed considering Gf,’v 4 as follows:

1Gly; = 20 x 10° Gas (o = 20k) (27)

g5 = (20 x 10%) x (219/256) Gas (28)
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Nevertheless, after calculating the gas for a particular amount of data (1 KB), the Ethereum
price, ie., Erl’:’i = USD 232.96, and gas price, i.e., gsgz = gwei 23.186, can be combined
to determine the EV data storage cost denoted by Dcl,, for T number of words in the
blockchain. Hence, Dcl,, can be written in the form of the expression to store T number of
words while considering 1E t =10, as follows:

Dcl, = (t x o) /E! (29)

Thus, Dcl,, (in USD) to store T number of words utilizing parameters. Finally, the data

storage costs of K words in USD can be determined by observing the parameters Dcl,,,
pe pe

g8y, and Er, . These parameters can be expressed as follows.

Deky”” = (g5 x Deky) x Ert’ (30)

Therefore, IPFS (as a content-addressing protocol with the blockchain network) leads to

optimized storage costs DCE;SD for EVs with the help of access to data in the form of a
hash [33].

6. Conclusions

This paper highlights a deep learning and blockchain-based EV fault detection frame-
work to ensure safe and fault-free journeys. As per the literature, it has been observed
that conventional EV fault detection systems with Al-based models do not guarantee the
integrity and confidentiality of predicting the combination of faults due to the component
intricacies. Moreover, the inclusion of IPFS and a 5G network with the fault detection
system addresses the high data storage costs and scalability issues of conventional systems
and detects the various types of EV faults, i.e., air tire pressure, temperature, and batteries.
Furthermore, the aforementioned faults were detected utilizing the CNN and LSTM deep
learning models to predict the output (fault or no-fault) with higher accuracy. The CNN
and LSTM models were applied to perform EV fault detection with the predicted accuracy
of 70% for air tire pressure fault, anomaly detection of the temperature fault, and battery
fault detection with R? Scores of 0.874 and 0.9375.
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