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Abstract: This paper focuses on the dynamic workforce scheduling and routing problem for the
maintenance work of harvesters in a sugarcane harvesting operation. Technician teams categorized
as mechanical, hydraulic, and electrical teams are assumed to have different skills at different levels
to perform services. The jobs are skill-constrained and have time windows. During a working day, a
repair request from a sugarcane harvester may arrive, and as time passes, the harvester’s position may
shift to other sugarcane fields. We formulated this problem as a multi-visit and multi-period dynamic
workforce scheduling and routing problem (MMDWSRP) and our study is the first to address the
workforce scheduling and routing problem (WSRP). A mixed-integer programming formulation and a
hybrid particle swarm and whale optimization algorithm (HPSWOA) were firstly developed to solve
the problem, with the objective of minimizing the total cost, including technician labor cost, penalty
for late service, overtime, travel, and subcontracting costs. The HPSWOA was developed for route
planning and maintenance work for each mechanical harvester to be provided by technician teams.
The proposed algorithm (HPSWOA) was validated against Lingo computational software using
numerical experiments in respect of static problems. It was also tested against the current practice,
the traditional whale optimization algorithm (WOA), and traditional particle swarm optimization
(PSO) in respect of dynamic problems. The computational results show that the HPSWOA yielded a
solution with significantly better quality. The HPSWO was also tested against the traditional genetic
algorithm (GA), bat algorithm (BA), WOA, and PSO to solve the well-known CEC 2017 benchmark
functions. The computational results show that the HPSWOA achieved more superior performance
in most cases compared to the GA, BA, WOA, and PSO algorithms.

Keywords: hybrid particle swarm and whale optimization algorithm; workforce scheduling and
routing problem; sugarcane harvester maintenance; dynamic problem

MSC: 90B08

1. Introduction

Sugarcane is one of the major economic agricultural crops of Thailand. In 2021,
Thailand was ranked the world’s second largest sugar exporter, and the fourth largest sugar
producer [1]. However, maintaining the maximum milling capacity is still a challenge in
Thai sugar mills. There is a constant need to improve inbound logistics activities, especially
the harvesting process, to obtain a steady supply of sugarcane for the sugar mills.

In sugarcane inbound logistics, the sugarcane harvest is an important process since the
supply of sugarcane must match the capacity of the mill [2]. In the past, manual harvesting
was intensively used but it is not presently practical due to the challenging nature of the
work, leading to labor shortages and high labor costs. Thus, mechanical harvesters have
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been introduced and widely used to overcome the labor scarcity, to control the high labor
wages, and importantly, to obtain a daily steady sugarcane supply that matches the mill’s
maximum capacity. Improvement of sugarcane delivery from fields to the sugar mill at the
right time is thus crucial and is required during the crushing season [3].

Often, the challenge of using mechanical harvesters is their low utilization. In ac-
tual practice, operation of a mechanical harvester is a complicated activity since there
are various teams used to operate the sugarcane harvester. The teams involved include
(1) transporting trailers or trucks (so-called forwarders) moving by the side of the me-
chanical harvester to transport the chopped sugarcane to the mill, (2) teams providing
maintenance and fuel supply services, and (3) teams supporting emergency services (e.g.,
fire trucks). These three components are usually referred to as harvest fronts [4]. It is
apparent that harvesters are the most crucial machines in the mechanical harvesting system,
since sugar production relies on machine performance, which is directly related to field
efficiency. Therefore, time loss, especially due to delays in machine repair, results in a
significant reduction in sugarcane harvest capacity and the mill’s fluctuating production
capacity, as well as increased production costs.

In the current practice in Thailand, time loss due to delayed machine maintenance
is high due to inappropriate field service scheduling, which is complicated due to the
increasing number of harvesters, number and skills of technicians, and types of maintenance
services for the harvesters (preventive maintenance (PM), break-down maintenance (BM),
and corrective maintenance (CM)), each of which includes three sub-systems comprising
mechanical, hydraulic, and electrical systems [5]. Normally, each sub-system requires
specific types of technicians to perform maintenance tasks. The scheduling is complicated
when a harvester requires more than one service operation (PM, CM, or BM) simultaneously.
In this case, if any service operation is not completed, the harvester is still not able to work.
More importantly, in order to avoid losses in harvester productivity, a subcontractor is
required when harvesters require servicing but a technician team is not available. Time
loss also occurs because mechanical harvesting is a dynamic process. Harvesters and
technicians usually move and operate in different locations during each time period. More
importantly, uncertainties related to harvesters usually occur in the planning horizon (e.g.,
harvester breakdowns). These aforementioned factors cause delays in servicing, resulting
in reduced utilization of the harvesters. Therefore, the potential approach to maintaining
the harvesting capacity is to keep the harvesters in operation for the longest period by
minimizing the time loss due to these issues.

Given the mechanical harvest plan, in this paper, the allocation and scheduling of
multi-heterogeneous technician teams, with consideration of transportation for the teams
and the operations of sugarcane harvesters, were addressed to reduce time loss. This is
because, in actual practice, harvesters and technicians usually move and operate in different
locations during each time period, and uncertainties related to harvesters usually occur
in the planning horizon (e.g., harvester breakdowns). All these factors, involving limited
resources but more dynamic operations, were taken into consideration in this paper. In
other words, a more realistic and challenging dynamic workforce scheduling and routing
problem (DWSRP) was addressed. A decision in terms of the allocation and scheduling of
different types of service staff to perform operations at several locations was taken such
that the delay in harvester servicing and travel distance of technicians were minimized. In
this problem, the objective was to minimize the total cost, including technician labor cost,
penalty for late service, overtime, travel, and subcontracting costs.

Since there are several types of teams, each of which includes many teams, and some
harvesters might require more than one type of service during each time period, this
problem was formulated as a multi-visit and multi-period dynamic workforce scheduling
and routing problem (MMDWSRP) (see the systematic diagram shown in Figure 1). The
problem consisted of two sub-problems: (1) technician team allocation and scheduling and
(2) routing of the technicians. In the first sub-problem, workforce allocation of technician
teams was performed through consideration of clusterization in certain geographical areas,
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eligibility, and skills. Then, their sequences and routings were determined in the second
sub-problem, with consideration of time windows, maximum duration of work, and
dynamic requests of harvesters during a day. In general, only a few studies in the literature
have formulated the workforce scheduling and routing problem (WSRP) as a dynamic
routing problem. To the best of our knowledge, the DWSRP has been implemented in a
home health-care routing problem (DHHC) [6,7], a telecommunication problem [8,9], and a
technician routing and scheduling problem (DTRSP) [10].
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The main contribution of this paper is the novelty in considering dynamics to be part
of the problem. In other words, we believe our work is the first of its kind in addressing
the WSRP problem, which combines a dynamic problem and multiple customer visits by
technician teams. In such a problem, the service skills of staff (mechanical, hydraulic, and
electrical), types of maintenance (BM, CM, and PM), time windows, eligibility, maximum
duration of work, dynamic requests of harvesters, and the shifts in the harvester’s position
during a day may be considered simultaneously. To solve a realistic-sized dynamic prob-
lem, a novel swarm-based meta-heuristic optimization algorithm, the whale optimization
algorithm (WOA), was proposed. The WOA has been used intensively to solve complex
optimization problems [11] such as allocation [12], scheduling [13–15], routing [16,17],
and manufacturing [18,19]. Even though the WOA has been used extensively in various
problems, it has never been used to solve WSRPs. This study is believed to be the first
to employ the WOA and the hybrid particle swarm and whale optimization algorithm
(HPSWOA) to solve the MMDWRSP. The proposed algorithm was validated against Lingo
computational software using numerical experiments in static problems. It was also tested
against the current practice, the traditional whale optimization algorithm (WOA), and
traditional particle swarm optimization (PSO) in respect of dynamic problems. The compu-
tational results demonstrate that the HPSWOA yielded a solution with significantly better
quality. The HPSWO was also tested against the traditional genetic algorithm (GA), bat
algorithm (BA), WOA, and PSO to solve the well-known CEC 2017 benchmark functions.
The computational results show that the HPSWOA achieved a more superior performance
in most cases compared to the GA, BA, WOA, and PSO algorithms.

The remainder of this paper is organized as follows. In Section 2, a brief literature
review of the WSRP is presented. Section 3 presents the mathematical model. In Section 4,
the HPSWOA algorithm for MMDWSRP problems is developed. Computational results are
discussed in Section 5. The last section delineates conclusions and future research directions.
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2. Literature Review

Presently, a significant amount of research has been undertaken in respect of WSRP,
with consideration of several factors including staff skills, planning horizon, time windows,
transportation modes, teaming, and the dynamics of the problem. These factors may result
in different WSRP characteristics. The most studied and uncomplicated WSRP involved
a single-period planning horizon without team building. Studies of this problem type
included those of Xu and Chiu [20], Dohn et al. [21], Pillac et al. [22], Pinheiro et al. [23],
and Mathlouthi et al. [24], while the studies of Cordeau et al. [25], Kovacs et al. [26],
Anoshkina et al. [27], and Çakırgil et al. [28] focused on a WSRP with a single period
including team building. To solve a WSRP with a single period, both mathematical and
heuristic approaches (e.g., variable neighborhood search, adaptive large neighborhood
search, and decomposition solution methods) were used to solve the problem.

During the past decade, a multiple-period WSRP with team building has been investi-
gated by several researchers. For example, in the study of Blakeley et al. [29], Zamorano
and Stolletz [30], Pekel [31], and Punyakum et al. [32], technicians with different skills were
considered. A tabu search approach was applied to solve the problem. Later, Zamorano
and Stolletz [30] studied a technician routing and scheduling problem (TRSP) with con-
sideration of the skills of technicians and time windows in a multiple-period horizon in
order to decide the daily team formation, and daily team assignments to tasks and to
routes. A branch-and-price approach was applied to obtain the operating costs. Recently,
Pekel [31] focused on a multi-period TRSP with the objective of minimizing operating
costs. An improved particle swarm optimization (IPSO) approach, which is a hybrid of
particle swarm optimization (PSO) and the neighborhood operator, was used to solve
the problem. Later, Punyakum et al. [32] concentrated on a multi-visit and multi-period
WSRP (MMWSRP) in the field service operation of a sugarcane mill company. A hybrid
differential evolution and particle swarm optimization (HDEPSO) algorithm was used to
obtain the solution, with the objective of minimizing operating costs. The HDEPSO was
tested against the PSO and differential evolution. It was found that the HDPSO resulted in
a solution of much higher quality.

For a dynamic problem, prior to planning, information about customers may be
unknown or only partially known. For example, in the study of Lesaint et al. [8], a
workforce scheduling problem was considered for British Telecom, in which technicians
were assigned to tasks that arrived dynamically during the day. The objective of the
problem was minimizing cost. The simulated annealing approach was employed to solve
the problem. Borenstein et al. [9] modified Lesaint et al.’s problem [8] with the objective
of maximizing the number of completed tasks. The decomposition method was applied
to solve the problem. In 2018, Pillac et al. [10] studied a dynamic technician routing and
scheduling problem (DTRSP) in which new requests appeared over time. Time windows,
tools, spare parts, and skills were taken into account in designing staff routing to respond
to requests for service, and an adaptive large neighborhood search approach was applied
to solve the problem, with the objective of minimizing the total working time and total
distance. Later, Ouertani et al. [6] studied a dynamic home health-care routing problem
(DHHC) in which new calls from patients could arrive after the departure of the caregiver,
and the caregiver’s route had to be replanned to include these new patients. The objective of
DHHC was to minimize the travelling cost. The hypermutation genetic algorithm method
was used to obtain the solution. Later, Demirbilek et al. [33] studied the home healthcare
routing and scheduling of multiple nurses in a dynamic environment. A scenario-based
method for several nurses was used to determine the maximum number of patient visits
for a group of nurses during the planning horizon.

In our study, a more realistic dynamic workforce scheduling and routing problem
(DWSRP) was investigated, which could be formulated as a multi-visit and multi-period
dynamic workforce scheduling and routing problem (MMDWSRP) with the objective of
minimizing the total cost, consisting of labor cost, traveling cost, penalty for late service,
overtime, and subcontracting cost. To the best of our knowledge, the MMDWSRP has not



Mathematics 2022, 10, 3663 5 of 20

been addressed in the literature. Among the studies reported in the literature, the only one
that closely matches this study is the MMWSRP (Punyakum et al. [32]). That study does
not involve the dynamic WSRP, employs a different methodology, and does not consider
technician labor cost in the objective function.

Recently, the whale optimization algorithm (WOA) has been efficiently applied to
solve complicated optimization problems [11]. The WOA was developed by Mirjalili and
Lewis [34]. It imitates the hunting manipulation of humpback whales. The WOA with a
stochastic nature is simple, flexible, and fast in convergence speed; it has gained a great
deal of attention among researchers in various disciplines [35]. The WOA is widely used in
several fields such as manufacturing, allocation, scheduling, and routing problems. For ex-
ample, in 2019, Saleh et al. [12] determined the optimal allocation of distributed generation
and capacitors in radial distribution systems while reducing single- and multi-objective
functions (network power losses, voltage deviation, and total operating cost). The weighted
sum method was used to create the multi-objective function. The WOA was used to obtain
the solution. Later, Liu et al. [15] used a hybrid WOA improved with Lévy flight and differ-
ential evolution to solve job shop scheduling problems. The proposed algorithm achieved
superior performance when solving small and large benchmark instances compared to
nine other algorithms and was not inferior when solving hard instances. In the same year,
Tanvir et al. [19] studied stainless steel 304 in respect of turning operations. The effects
of machining parameters such as the feed rate and depth of cut on surface roughness,
cutting forces, cutting speed, peak tool temperature, power, material removal rate, and
heat rate were studied. A hybrid WOA and Grey relational analysis was used to decide
the machining conditions for optimizing the production unit cost and production quality.
Later, Dewi and Utama [16] considered a green vehicle routing problem (GVRP) with
the objective of minimizing the distribution cost, considering the vehicle usage cost, fuel
consumption, and carbon emissions. A hybrid whale optimization algorithm developed by
combining the WOA algorithm, TS algorithm, and local searching was used to obtain the
minimum distribution cost.

Hybrid algorithms are more frequently employed. A hybrid algorithm combines two
or more methods and is intended to perform better than each algorithm individually [36].
Wang and Shoup [37] investigated a hybrid optimization technique that combines the best
elements of four conventional techniques for optimization, including the Hooke and Jeeves
pattern search approach, the simplex method, the pattern search method, and the random
search method. Their method was tested against 11 conventional test functions, and the
results show that it performed better than eight of the selected search methodologies. Khaje-
hzadeh et al. [38] combined the adaptive gravitational search algorithm and pattern search
method to solve the multi-objective optimization of reinforced concrete retaining walls.
The embedded CO2 emissions and total cost were the objective functions. Later, Koessler
and Almomani [39] studied a hybrid particle swarm optimization and pattern search al-
gorithm (PSOPS) to solve benchmark functions and the optimization of basin networks.
When compared against other hybrid techniques for a basin network optimization prob-
lem, the PSOPS algorithm outperformed them. Recently, Khajehzadeh et al. [40] proposed
the hybrid tunicate swarm algorithm and pattern search (HTSAPS). In benchmark test
functions and model application, the HTSAPS was also compared to the tunicate swarm
algorithm, sine-cosine algorithm, and grey wolf optimization method. The numerical
studies demonstrated that the HTSAPS offered better optimal solutions and outperformed
the other techniques. In 2004, Victoire et al. [41] concentrated on the economic dispatch
with valve-point effect problem. A hybrid particle swarm optimization and sequential
quadratic programming approach was developed to solve the problem with the objective
of minimizing fuel costs. Later, Eslami et al. [42] considered damping controller design for
power system oscillations. The damping ratio and damping factor were included in the
objective functions. The hybrid genetic algorithm and sequential quadratic programming
were used to solve the problem. Recently, Abdel-Mawgoud et al. [43] studied integrating a
battery energy storage system into distribution networks. A hybrid arithmetic optimiza-
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tion algorithm and a sine cosine algorithm were developed to solve the problem with the
objective of minimizing the whole active power loss of the network.

From the literature, it was found that the most commonly used solution methods
for WSRPs are mathematical programming and metaheuristics. However, the WOA has
not been used for solving WSRPs. In this study, the WOA, PSO, and the hybrid particle
swarm and whale optimization algorithm were proposed to solve the MMDWRSP. The
main contribution of this paper involves considering the WSRP by combining a dynamic
problem and multiple customer visits by technician teams, which has not previously been
proposed in the literature.

3. Mathematical Formulation

In this study, there were several types of teams and each of which included various
teams. Some mechanical harvesters might require more than one type of service during
each time period; this problem was therefore developed as a multi-visit and multi-period
dynamic workforce scheduling and routing problem (MMDWSRP), where new mainte-
nance service requests in respect of sugarcane mechanical harvesters appear while the
technician teams are performing maintenance tasks on their routes. In this section, the
mathematical model of the MMDWSRP is developed with static data. It is extended from
the mathematical model of Punyakum et al. [32], which was developed as a multi-visit and
multi-period workforce scheduling and routing problem (MMWSRP).

In the MMDWSRP, J harvesting jobs require S sub-systems, namely mechanical, hy-
draulic, and electrical, for maintenance. Job m might require more than one sub-system’s
services at once throughout each period t. For each sub-system, s ∈ S represents a set
of sub-systems (mechanical, hydraulic, and electrical), Rs represents a set of teams in
sub-system s, and Ls represents a set of skill types in sub-system s (1 = basic, 2 = medium,
3 = expert). In a day, each technician team may provide services in respect of more than
one job (e.g., sugarcane mechanical harvester) dispersed in several sugarcane fields, and
the jobs may require servicing by more than one technician team for different sub-systems.
Since sugarcane fields are far apart, jobs may have to wait a long time for servicing by
the technician teams. A technician team usually works in more than one sugar field in
a day, and thus usually moves from one field to another. In order to prevent losses in
harvester productivity when no technician team is available, a subcontractor is needed.
The following are the assumptions for mathematical formulation of the MMDWSRP:
(i) only one technician team in a sub-system is allowed to service a job; (ii) each tech-
nician team always has the required spare parts and equipment; (iii) before starting the
servicing, technicians are allocated to a team; (iv) only one size of transport vehicle is consid-
ered; (v) no splitting of maintenance services is allowed; (vi) a technician team will go back
to the company only when they finish the assigned servicing; (vii) degree of dynamism = 0.
Therefore, modifications in the MMDWSRP were made from the MMWSRP model de-
veloped by Punyakum et al. [32] as follows: (1) the labor cost of technicians was added
to the objective function; (2) since this problem is a dynamic WSRP, constraints 13 and
14 in this mathematical model were revised from constraints 16–19 [32] of the MMWSRP
mathematical model to ensure that the number of technicians and the technician teams’
skill levels and types are sufficient for servicing; and (3) constraint 15 was added to the
MMDWSRP mathematical model to determine the number of teams required to service the
mechanical harvesters. The following is a list of the notation used in this paper.

Indices:
m, n Jobs and depot indices (m, n = 1, 2, . . . , J)
s Sub-systems; mechanical, hydraulic, and electrical sub-systems (s = 1, 2, . . . , S)
r Technician teams (r = 1, 2, . . . , Rs)
t Working periods (t = 1, 2, . . . , T)
l Technician team skills (l = 1, 2, . . . , Ls)
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Parameters:
J Set of jobs and depot
J′ Set of jobs (m, n = 2, 3, . . . , J)
S Set of sub-systems
Rs Set of technician teams in sub-system s
T Set of working periods
Ls Set of skill types in sub-system s
LCcr,s Labor cost of technician team r in sub-system s (units)
TCcm,n Technician transportation cost moving from jobs m to n (units)
LTcm Penalty cost from a job m’s that was finished late (unit per minutes)
OVcr,s Overtime cost of technician team r giving service sub-system s (unit per minutes)
STcm,s Subcontracting cost of sub-system s of jobs m (unit)
et Starting time of period t
ft Completion time of period t
am Starting time of job m
bm Completion time of job m
tvm,n Travel time from job m to job n (minutes)
ptm,s Service time of job m in sub-system s (minutes)
wr,s,l Proficiency of technician team of skill l in sub-system s
um,s,l For job m, a technician team with the attribute wr,s,l is required
os The quantity of technician teams in sub-system s
qm,s The quantity of technicians needed to complete job m for sub-system s
kr,s The quantity of technician team r in sub-system s

dm,s
= 1 if job m needs a team of sub-system s
= 0, otherwise

H Large number
LTm Maximum allowed delay time
OVm Maximum allowed overtime

Decision variables:
LTm Amount of service delay time of job m (minutes)
OVs,r,t Overtime of team r in sub-system s in period t (minutes)
cm,s,r,t Starting time of team r in sub-system s for job m in period t

Xm,n,s,r,t
= 1, if team r of sub-system s leaves job m for job n in period t;
= 0, otherwise

Ym,s,r,t
= 1, if team r of sub-system s services job m in period t;
= 0, otherwise

Zs,r,t
= 1, if using technician team r of sub-system s in period t;
= 0, otherwise

STm,s
= 1, if job m requires a service from a subcontract for subsystem s;
= 0, otherwise

Objective function:

Minimize : ∑
s∈S

∑
r∈Rs

∑
t∈T

LCcr,s·Zs,r,t + ∑
m∈J

∑
n∈J

∑
s∈S

∑
r∈Rs

∑
t∈T

Xm,n,s,r,t·TCcm,n + ∑
m∈J

LTm·LTcm

+ ∑
s∈S

∑
r∈Rs

∑
t∈T

OVs,r,t·OVcr,s + ∑
m∈J

∑
s∈S

STm,s·STcm,s
(1)

Subject to:
∑

r∈Rs

∑
t∈T

Ym,s,r,t + STm,s = dm,s ∀ m ∈ J′, s ∈ S (2)

∑
n∈J′

Xm,n,s,r,t = Ym,s,r,t
∀ m ∈ J′, s ∈ S,
r ∈ Rs, t ∈ T; m 6= n

(3)

∑
n∈J′

(Xm,n,s,r,t − Xn,m,s,r,t) = 0
∀ m ∈ J′, s ∈ S,
r ∈ Rs, t ∈ T; m 6= n

(4)

(cm,s,r,t + ptm,s + tvm,n)·Ym,s,r,t−H(1− Xn,m,s,r,t) ≤ sm,s,r,t

∀ m ∈ J, n ∈ J′,
s ∈ S, r ∈ Rs, t ∈ T;

m 6= n
(5)

cm,s,r,t ≥ am·Ym,s,r,t
∀ m ∈ J′, s ∈ S,

r ∈ Rs, t ∈ T
(6)
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cm,s,r,t − (bm − ptm,s)·Ym,s,r,t ≤ LTm
∀ m ∈ J′, s ∈ S,

r ∈ Rs, t ∈ T
(7)

LTm ≤ LTm ∀ m ∈ J′ (8)

cn,s,r,t ≥ (et + tvm,n)·Xm,n,s,r,t
∀n ∈ J′, s ∈ S,
r ∈ Rs, t ∈ T, m = 1

(9)

cm,s,r,t −OVs,r,t + (tvm,n + ptm,s)·Xm,n,s,r,t ≤ ft
∀ m ∈ J′, s ∈ S,
r ∈ Rs, t ∈ T, n = 1

(10)

OVs,r,t ≤ OVm s ∈ S, r ∈ Rs, t ∈ T (11)
∑

n=J′
∑

r∈Rs

Xm,n,s,r,t ≤ os ∀s ∈ S, t ∈ T, m = 1 (12)

qm,s·Ym,s,r,t ≤ kr,s
∀m ∈ J′, s ∈ S,
r ∈ Rs, t ∈ T

(13)

um,s,l ·Ym,s,r,t ≤ wr,s,l
∀m ∈ J′, s ∈ S,
r ∈ Rs, t ∈ T, l ∈ Ls

(14)

Zs,r,t ≥ Ym,s,r,t
∀m ∈ J′, s ∈ S,

r ∈ Rs, t ∈ T
(15)

Xm,n,s,r,t = {0, 1} ∀m, n ∈ J, s ∈ S,
r ∈ Rs, t ∈ T

(16)

Ym,s,r,t = {0, 1} ∀m ∈ J, s ∈ S,
r ∈ Rs, t ∈ T

(17)

Zs,r,t = {0, 1} ∀s ∈ S, r ∈ Rs,
t ∈ T

(18)

STm,s = {0, 1} ∀ m ∈ J, s ∈ S (19)

Objective function (1) is used to minimize the total cost, including labor cost, travel
cost of technician teams, penalty for late services, overtime, and subcontracting cost. The
mathematical formulation constraints are described in Table 1.

Table 1. Mathematical formulation constraints.

Constraint Description

(2) Ensures that job m in sub-system s is serviced either by a team or a
subcontractor.

(3) Indicates that job m is serviced by team r in sub-system s.

(4) Ensures that, after service completion, the team transport vehicles had to leave
the job.

(5) Indicates that the start time for servicing job n is equal to the sum of the
completion time of job m and the travel time of team r.

(6) Ensures that a team is able to start servicing only when the job is ready.

(7) Ensures that if a team cannot finish the service in time, a delay occurs.

(8) Ensures that the service delay must not exceed an allowed delay time.

(9) Specifies the time when a team can start a service.

(10) Indicates team overtime for late arrival at the depot.

(11) Ensures that the amount of overtime used by each team in a given period must
not exceed the allowed overtime.

(12) Ensures that the number of teams servicing the jobs must not exceed the
number of teams that are actually available.

(13) Ensures that the number of technicians in team r in sub-system s is sufficient
for servicing job m.

(14) Ensures that the technician teams’ skill levels and types are adequate for
servicing job m.

(15) Determines technician team r of the sub-system s required during period t.

(16)–(19) The binary variable constraints.
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4. The Proposed Method

The hybrid particle swarm and whale optimization algorithm (HPSWOA) is de-
scribed below.

4.1. Initial Solution

The proposed algorithm starts by generating an initial population size or the number
of vectors of each sub-system (mechanical, hydraulic, and electrical). The vector consists
of a job vector and a technician team vector. Firstly, each job vector will be randomly
generated, equal to the number of jobs. Decryption arranges each vector’s rank order
value in ascending order to obtain the sequence of jobs to be completed. An additional
vector is the technician team vector, which will also be randomly generated and equal to
the number of technician teams. Secondly, each technician team vector will be randomly
generated, equal to the number of jobs. The technician team vectors are used to assign a
technician team to a job. Figure 2 shows an illustrative example of the construction of a
vector of a sub-system. There are five jobs and two technician teams. For example, the
job vector is 0.51-0.83-0.64-0.11-0.25. The job ID is 1-2-3-4-5. After the job vector is sorted
in ascending order, the vector obtained is 0.11-0.25-0.51-0.64-0.83. Therefore, the job ID is
4-5-1-3-2. The first technician team vector is 0.43–0.24. The technician team ID is 1–2. After
the technician team vector is sorted in ascending order, the technician team vector obtained
is: 0.24–0.43. Therefore, the technician team rank is 2–1. To establish the sequence for all
technician teams, the procedure is as follows. The jobs are assigned by rank of the job ID to
the technician team rank. If the first team’s skill and the number of team members do not
match with the job, the job will be assigned to the next technician team, and so on until all
jobs have been assigned to the teams. Jobs that cannot be assigned to the technician teams
will be outsourced to subcontractors. The objective calculation as shown in Equation (1) is
used to minimize the total cost.
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4.2. Particle Swarm Optimization (PSO)

Eberhart and Kennedy [44] introduced PSO. The simulation of social and psychological
expression in fish and birds served as the inspiration for this algorithm. In looking for food,
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a living swarm (such as a school of fish or a flock of birds) will scatter and then regroup
in search of the best feeding area. The mathematical formulae that produce updates
in respect of position and velocity throughout the course of one iteration are given by
Equations (20) and (21):

Xi,j(t + 1) = Xi,j(t) + Vi,j(t + 1) (20)

Vi,j(t + 1) = wVi,j(t) + C1r1
(

Pbesti,j(t)− Xi,j(t)
)
+ C2r2

(
Gbestj (t)− Xi,j(t)

)
(21)

where Xi,j and Vi,j are the position and velocity of the jth member of the ith vector (or
particle), t is the current iteration, Gbestj is the global best position of all vectors, and Pbesti,j
is the personal best position of the jth member of the ith vector. C1 and C2 are personal and
global best position weights, respectively; r1 and r2 are random numbers from 0 to 1; and
w is the inertial weight.

4.3. Whale Optimization Algorithm (WOA)

This algorithm is built on the copying of natural phenomena in a way that mimics
animal behavior. The algorithm was developed by Mirjalili and Lewis [34] and inspired by
the foraging behavior of humpback whales. Humpback whales have a unique prey trait
when they know the location of their prey. Humpback whales create a spiral bubble around
their prey that continuously encircles them, while swimming in a spiral and rising to the
top to eat their prey.

4.3.1. Encircling Prey

When humpback whales know the location of their prey, they surround them. This
determines that the best solution or the closest is the location of the target prey. The
other solution then updates their position with reference to the prey’s position. This
is similar to humpback whales swarming around their prey, which is represented by
Equations (22) and (23).

⇀
X(t + 1) =

⇀
Xbest(t)−

⇀
A·

⇀
D (22)

⇀
D = |

⇀
C ·

⇀
Xbest(t)−

⇀
X(t)| (23)

⇀
A = 2

⇀
a ·⇀r −⇀

a (24)
⇀
C = 2

⇀
r (25)

where
⇀
A and

⇀
D are coefficient vectors, t is the current iteration,

⇀
X is a position vector,

⇀
Xbest

is the position vector of the best current solution (leader whale),
⇀
r is a random number

between 0 and 1, and
⇀
a is a variable that decreases linearly from 2 to 0 during the course of

the iteration.

4.3.2. Bubble-Net Attacking Method

This behavior simulates the spiral motion of humpback whales surrounding prey and
is represented by Equations (26) and (27).

⇀
X(t + 1) =

⇀
D′eb·l cos 2πl +

⇀
Xbest(t) (26)

⇀
D′ = |

⇀
Xbest(t)−

⇀
X(t)| (27)

where l is a random number from −1 to 1 and b is a constant that defines the logarith-
mic shape.
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4.3.3. Searching for Prey

To allow humpback whales to explore more, random searching for prey may be
represented by Equations (28) and (29).

⇀
X(t + 1) =

⇀
Xrand(t)−

⇀
A·

⇀
D (28)

⇀
D = |

⇀
C ·

⇀
Xrand(t)−

⇀
X(t)| (29)

where
⇀
Xrand is a random search agent from the current population.

4.3.4. Updating Position

Humpback whales exhibit swimming behavior either by swimming towards prey
(updating position) or moving around prey (spiral updating position). To simulate this
behavior, the WOA assigns a probability equal to 50%, as shown in Equation (26). Updating
the position of a humpback whale may be determined by using either Equation (22)

(|
⇀
A| < 1 ) or Equation (28) (|

⇀
A| ≥ 1).

⇀
X(t + 1) =

{ ⇀
Xbest(t)−

⇀
A·

⇀
D i f p < 0.5

⇀
D′eb·l cos 2πl +

⇀
Xbest(t) i f p ≥ 0.5

(30)

where p is a random number from 0 to 1.

4.4. Self-Adaptive Control Parameter

In using the PSO to determine an optimum solution, low inertial weight will lead to lo-
cal trapping, while high inertial weight delays the optimization’s convergence. Jia et al. [45]
proposed a self-adaptive parameter control technique by considering each individual’s
fitness data to deal with local trapping and slow convergence. This technique was used in
this work for better searching as shown in Equation (31).

wi(t + 1) =


wmin + (wi(t)− wmin)×

f (Xi(t+1))− fmin
favg− fmin

i f (r3 < τ and f (Xi(t + 1)) < favg)

r4 i f (r3 < τ and f (Xi(t + 1)) ≥ favg)
wi(t) i f (othewise)

(31)

where τ indicates probabilities to adjust factor wi, wmax and wmin are the maximum and
minimum values of the inertial weights, r3 is a random number from 0 to 1, and r4 is a
random number from wmin to wmax.

4.5. Hybrid Particle Swarm and Whale Optimization Algorithm (HPSWOA)

This algorithm was proposed by Trivedi et al. [46]. Due to its constant inertial weight,
PSO’s only limitation is its coverage of a narrow search space; hence, it is not suitable
for tackling higher-order or complex problems. The HPSWOA can be used to solve this
problem because it extracts the quality characteristics of both the WOA and PSO. Since
the WOA uses a logarithmic spiral function, it covers a larger area in an uncertain search
space during the exploration phase. Therefore, we combined the WOA and PSO to increase
their ability to find the solution. Additionally, the WOA accelerates the vector direction
toward the optimal value and reduces the computing time. In order to achieve the desired
optimal solution, HPSWOA combines the WOA and PSO by having the WOA’s vector

(
⇀
X(t + 1)) replace PSO’s personal best (Pbesti,j(t)). The HPSWOA updates position and

velocity using Equations (32) and (33). The HPSWOA’s self-adaptation can regulate inertial
weight values using Equation (31). The pseudo-code for the HPSWOA for a multi-visit and



Mathematics 2022, 10, 3663 12 of 20

multi-period dynamic workforce scheduling and routing problem (MMDWSRP) is shown
in Algorithms 1 and 2. The flowchart of the HPSWOA is shown in Figure 3.

Xi,j(t + 1) = Xi,j(t) + Vi,j(t + 1) (32)

Vi,j(t + 1) = wi(t)Vi,j(t) + C1r1(
⇀
Xi,j(t + 1)− Xi,j(t)) + C2r2

(
Gbestj (t)− Xi,j(t)

)
(33)
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4.6. Current Practice Method (CP)

In the CP, jobs will be assigned to technician teams on a first-come first-served (FCFS)
basis. If the number of team members and the chosen team’s skill do not meet the work
requirement, the next technician team will be chosen instead. The overall details of the CP
method are given in Algorithms 1 and 3.

Algorithm 1. Re-schedule for multi-visit and multi-period dynamic workforce scheduling and
routing problem (MMDWSRP).

Input: MMDWSRP data, Total cost = 0, ℵ = ∅
Output: Total cost
For each period

Set technician teams’ position at depot
Add job for each sub-system that knows the repair time at start period time to ℵ.
While job in period is still in need of completion do

Plan ℵ by selected method
Assign the technician teams by the selected method plan
If new job or harvester relocation then

Update Time
If job in the plan completes before updated time then

Remove the job in ℵ and add to period plan
Update technician teams’ position

End if
Add new job to ℵ or update job’s position

End if
End of while
Calculate period plan fitness by Equation (1)
Total cost += period plan fitness

End for
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Algorithm 2. Hybrid particle swarm and whale optimization algorithm (HPSWOA).

Input: MMDWSRP data, HPSWOA parameters (τ, b, C1, C2, wmin, wmax), maximum iteration, NP,
ℵ
Output: plan ℵ for technician teams
Randomly generate a set of WOA vectors i (i = 1 . . . NP) (Section 4.1)
Randomly generate a set of PSO vectors i (i = 1 . . . NP) (Section 4.1)
While maximum iteration not reached do

For i = 1 to NP
Update position WOA vectors i (Section 4.3)
Update position and velocity PSO vectors i (Section 4.5)
Fitness evaluation PSO vectors i (Section 4.1)
If PSO vectors i fitness < Gbest fitness then

Assign particles i to Gbest
Gbest fitness = PSO vectors i fitness

End if
Update inertial weight PSO vectors i (Section 4.4)

End for
If Gbest fitness < leader whale fitness then

Assign Gbest to leader whale
leader whale fitness = Gbest fitness

End if
End of while

Algorithm 3. Current practice method.

Input: MMDWSRP data, ℵ
Output: plan ℵ for technician teams
Sort jobs in ℵ with ready time in ascending order
Sort technician teams with technician team cost in ascending order
For sorted jobs

For sorted technician teams
If technician team can service then

Assign the job to the technician team service
Else then

Assign the job to new technician team service
End if

End for
End for

5. Computational Results

Problems were solved to illustrate the efficiency and effectiveness of the HPSWOA
in respect of the CEC 2017 benchmark functions [47] and the MMDWSRP. In doing so,
the self-adaptive control inertial weight probability was set as τ = 0.1, wmin = 0.4, and
wmax = 0.9 [46]. The control parameters of traditional PSO and the WOA were set as
w = 0.729844, C1 = C2 = 1.49618 [48], and b = 0.5 [34]. The numerical experiments in respect
of the MMDWSRP consisted of 8 static problem sets (Section 5.2) and 18 dynamic problem
sets (Section 5.3) with vector sizes = 100, max iterations = 100, and 10 runs per instance.
The proposed algorithms were run using Python on a 2.38 GHz PC, with 8 GB of RAM, for
testing and evaluation.

5.1. Optimization of CEC 2017 Benchmark Functions

In this section, the proposed algorithm (HPSWOA) is evaluated using benchmark
functions of the well-known CEC 2017. F1 to F9 of the CEC 2017 benchmark functions
were applied. Their specifications are detailed in Table 2. From this table, F1 and F2 are
unimodal functions, which were employed to evaluate the optimization accuracy and
the convergence speed of the proposed algorithms (i.e., the traditional GA, BA, WOA,
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PSO, and HPSWOA), while F3 to F9 are simple multimodal functions. The proposed
algorithm (HPSWOA) was also tested against the traditional genetic algorithm (GA) [49],
bat algorithm (BA) [50], WOA, and PSO to solve the CEC 2017 benchmark functions. The
computational results for the CEC 2017 benchmark functions, with Dim = 10 in terms of
mean and standard deviation of the error values, are shown in Table 3. From this table, it
can be seen that the HPSWOA and PSO achieved the optimum results in F2. Furthermore,
the HPSWOA yielded the best results for F2 to F6 and F8 to F9 (seven out of nine functions).
Therefore, the HPSWOA achieved more superior performance in most cases compared to
other algorithms (the traditional GA, BA, WOA, and PSO).

Table 2. Descriptions of the CEC 2017 benchmark functions.

No. Group Description F*
i

F1 Unimodal functions Shifted and rotated bent cigar function 100
F2 Shifted and rotated Zakharov function 200
F3 Simple multimodal functions Shifted and rotated Rosenbrock’s function 300
F4 Shifted and rotated Rastrigin’s function 400
F5 Shifted and rotated expanded Scaffer’s F6 function 500
F6 Shifted and rotated Lunacek bi-Rastrigin function 600
F7 Shifted and rotated non-continuous Rastrigin’s function 700
F8 Shifted and rotated Levy function 800
F9 Shifted and rotated Schwefel’s function 900

Table 3. Comparative results for the CEC 2017 benchmark functions.

No. GA BA WOA PSO HPSWOA

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

F1 9.3355 × 103 5.2101 × 103 1.1542 × 1013 6.3627 × 1012 5.1413 × 103 3.3779 × 103 2.8359 × 103 1.8965 × 103 3.5739 × 103 2.5432 × 103

F2 1.4435 × 103 9.1837 × 102 3.5692 × 107 2.9560 × 107 6.3598 × 10−6 4.1574 × 10−6 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

F3 5.6102 × 100 4.8250 × 10−1 6.8654 × 105 5.4167 × 105 1.9155 × 100 4.9560 × 10−1 9.8217 × 100 1.4493 × 100 1.1292 × 100 8.7680 × 10−1

F4 9.5142 × 100 2.0899 × 100 5.9447 × 105 2.6542 × 104 2.3524 × 101 5.2721 × 100 1.2314 × 102 2.5796 × 101 1.4057 × 101 4.9011 × 100

F5 2.1875 × 100 1.3174 × 100 6.2376 × 105 5.7474 × 104 1.1509 × 101 8.3052 × 100 5.2498 × 101 1.3300 × 101 1.6095 × 100 8.0240 × 10−1

F6 2.6048 × 101 3.3328 × 100 7.4935 × 105 2.2487 × 104 4.9409 × 101 1.1489 × 101 1.1152 × 102 1.4160 × 10−1 2.0654 × 101 5.4430 × 100

F7 6.5510 × 100 3.4600 × 100 8.4397 × 105 1.6496 × 104 2.3388 × 101 6.4430 × 100 8.3493 × 102 0.0000 × 100 2.1755 × 101 4.4055 × 100

F8 4.3192 × 100 2.8240 × 100 4.7410 × 106 1.7545 × 105 1.6726 × 10−1 1.1135 × 10−1 8.7776 × 102 1.1230 × 101 1.7789 × 10−4 1.2279 × 10−4

F9 3.7047 × 102 2.4671 × 102 3.6634 × 106 3.6975 × 105 6.8409 × 102 2.2967 × 102 1.8222 × 103 4.7987 × 102 2.5487 × 102 1.2286 × 102

5.2. Static Problem

We generated eight static problems (Table 4) to compare the proposed methods with
Lingo computational software. The penalty cost for each customer was generated in the
value interval 15 to 25 for each problem. Job service times and time windows were set in
the intervals 30 to 360 and 180 to 600 min, respectively. Overtime cost for each technician
team was generated in the value interval 6 to 10 for each problem. The technician teams
begin working at the 0th minute and continue until the 480th minute has passed. The
waiting time for a job must not exceed 30 min. Overtime hours are limited to 120 min.
The labor cost (technician team cost) and outsourcing service were priced in the intervals
1600 to 2000 and 300 to 7200, respectively. The travel time and travel cost were set in the
intervals 5 to 100 min and 20 to 400, respectively. In addition, the job requirement for skills
and the number of technicians were 2 skills (1 to 3 levels) and 1 to 2, respectively. We
tested the traditional PSO, WOA, and HPSWOA performances against the performance
of Lingo using 8 test instances. The results for the PSO, WOA, HPSWOA, and Lingo are
shown in Table 4. The computational tests compared the best total cost. For instances 1 to
5 and 8, the WOA, PSO, and HPSWOA found that the best total cost equals the optimal
solution. For instances 6 and 7, there were a high number of variables, and the MMDWSRP
was NP-hard. In addition, the sugar mill only accepts a computational time that is less
than 1 day, implying that the planning time for scheduling must not exceed one day. The
optimal solution by Lingo could not be reached in one day (1440 min). A statistical test was
performed to check if the proposed method was significantly different using the paired
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t-test, and the results of the test are shown in Table 5. In Table 5, the statistical test revealed
that the results of Lingo were not significantly different from those of the WOA, PSO, and
HPSWOA. Thus, PSO, the WOA, and the HPSWOA may be used in place of Lingo to solve
static problems. The next section outlines the use of PSO, the WOA, and the HPSWOA to
solve dynamic problems.

Table 4. Static problem results for Lingo, WOA, PSO, and HPSWOA.

Ins.
No.
of
Job

No.
of

Day

Lingo WOA PSO HPSWOA

Best
CPU
Time
(min)

Best Avg
CPU
Time

(s)
Best Avg

CPU
Time

(s)
Best Avg

CPU
Time

(s)

1 10 3 16,847.00 0.03 16,847.00 17,256.60 4.76 16,847.00 17,689.10 7.01 16,847.00 17,084.00 7.26
2 10 7 23,192.00 0.07 23,192.00 23,192.00 2.90 23,192.00 23,192.00 2.84 23,192.00 23,192.00 2.78
3 20 3 20,192.00 6.83 20,192.00 20,665.20 5.00 20,192.00 20,693.60 5.82 20,192.00 20,546.10 6.08
4 20 7 40,042.00 37.33 40,042.00 40,042.00 2.77 40,042.00 40,042.00 2.80 40,042.00 40,042.00 2.87
5 20 15 44,348.00 19.61 44,348.00 44,348.00 3.27 44,348.00 44,348.00 3.38 44,348.00 44,348.00 2.82
6 30 3 31,093.00 1 1440.00 30,697.00 32,056.90 14.68 30,938.00 32,028.00 23.46 30,068.00 30,938.10 23.29
7 30 7 34,853.00 1 1440.00 34,833.00 35,698.40 6.11 35,049.00 36,268.60 9.37 34,833.00 35,446.80 10.00
8 30 15 56,124.00 10.03 56,124.00 56,124.00 3.03 56,124.00 56,124.00 2.84 56,124.00 56,124.00 2.78

1 Not the optimal solution.

Table 5. Statistical test results of the best total cost obtained from Table 4.

WOA PSO HPSWOA

Lingo 0.757 0.444 0.492

5.3. Dynamic Problem

In actual practice, the harvesters and technicians usually move and operate in different
locations during each time period, and there are uncertainties such as breakdowns of the
harvesters, together with limited resources, so it is more realistic to consider the problem as
a dynamic one. Lund et al. [51] proposed the degree of dynamism (DoD) as a scale from 0
(before planning, all information is readily available) to 1 (before planning, all necessary
information is not known) to quantify the proportion of dynamic requests to all requests.
In a dynamic problem, we take parameters from the static problem and add the DoD to
create the dynamic problem. We generated 18 dynamic problems as shown in Table 6. For
the dynamic problems, the number of jobs, number of days, and DoD were set in intervals
of 60 to 150 jobs, 7 to 30 days, and 0.1 to 0.3, respectively. The scatter plot of the average
computational time in Figure 4 was based on the data from Table 6. From Figure 4, it can
be seen that the average computational time of the WOA was the lowest, followed by
HPSWOA and PSO. From Table 7, it was found that the p-values were all less than 0.05,
indicating that the WOA, PSO, and HPSWOA were significantly different in their average
computational times. Therefore, it can be concluded that the WOA improves the average
computational time of PSO in HPSWOA. Statistical testing was performed to check if the
proposed method was significantly different using the paired t-test, and the results of the
test are shown in Table 8. In Table 8, the p-values were all less than 0.05, implying that
current practice (CP), the WOA, PSO, and the HPSWOA were significantly different in
determining the best total cost. The scatter plot of the best total cost (Figure 5) was based
on the data from Table 6. From Figure 5, it can be seen that the HPSWOA yielded the best
total cost. Table 9 shows that the average percentage changes of the best total cost obtained
from the HPSWOA were 11.06%, 3.47%, and 3.91% when compared with CP, the WOA,
and PSO, respectively.
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Table 6. The dynamic problem results for CP, the WOA, PSO, and the HPSWOA.

Ins.
No.
of

Job

No.
of

Day
DoD

CP WOA PSO HPSWOA

Best Best Avg
CPU
Time

(s)
Best Avg

CPU
Time

(s)
Best Avg

CPU
Time

(s)

1 60 7 0.1 60,742.77 56,867.55 58,751.37 43.15 57,888.63 59,843.40 72.82 54,930.89 56,321.80 55.77
2 60 7 0.2 66,165.01 61,926.64 63,313.08 47.46 62,064.82 63,910.11 103.30 60,443.12 61,737.93 75.73
3 60 7 0.3 68,547.37 62,147.38 63,655.08 68.76 63,026.41 64,310.59 83.25 60,583.23 62,002.82 50.22
4 100 7 0.1 86,060.89 85,507.40 87,915.87 245.82 85,040.03 87,839.67 448.50 80,137.68 84,612.61 354.72
5 100 7 0.2 90,143.77 88,425.89 89,749.63 389.28 89,820.82 92,619.14 431.87 85,672.18 87,408.17 429.48
6 100 7 0.3 98,786.54 89,394.79 91,258.24 465.19 90,127.95 93,335.72 517.32 84,678.02 87,069.23 524.65
7 100 15 0.1 115,122.91 102,471.15 103,113.43 56.29 102,673.57 103,419.85 72.03 101,024.25 101,588.70 78.62
8 100 15 0.2 113,841.56 107,658.95 108,713.87 49.96 107,658.95 109,082.14 63.19 106,202.02 108,143.62 55.69
9 100 15 0.3 120,072.12 111,284.17 113,801.47 41.05 111,281.22 113,817.79 62.25 110,977.17 113,055.55 49.14
10 150 7 0.1 157,205.32 138,068.72 141,631.88 510.00 139,019.63 142,985.52 576.20 127,254.70 132,442.84 512.08
11 150 7 0.2 172,360.12 141,335.98 145,410.89 761.75 142,160.74 146,246.04 1317.51 137,330.67 141,279.73 1045.58
12 150 7 0.3 175,128.80 145,251.82 148,517.14 593.44 144,339.02 147,761.72 868.92 136,238.08 140,712.74 837.83
13 150 15 0.1 148,614.33 140,222.92 142,179.03 227.98 141,804.39 146,990.98 324.40 130,367.17 133,773.83 289.68
14 150 15 0.2 153,608.22 140,301.37 142,183.72 261.65 140,290.30 143,741.14 356.78 131,435.74 138,424.81 306.14
15 150 15 0.3 154,851.33 141,343.62 144,553.90 302.06 142,864.80 145,484.64 505.76 134,668.31 141,013.72 439.32
16 150 30 0.1 187,507.74 177,029.34 177,213.14 20.15 177,029.34 177,550.58 30.99 176,457.84 176,572.68 15.99
17 150 30 0.2 195,290.08 186,768.27 188,166.19 12.10 187,051.56 188,778.25 24.12 185,870.04 187,509.73 20.90
18 150 30 0.3 206,263.06 198,529.40 199,915.41 6.89 198,241.63 199,534.03 15.39 197,074.98 198,647.00 6.86

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 21 
 

 

4 100 7 0.1 86,060.89 85,507.40 87,915.87 245.82 85,040.03 87,839.67 448.50 80,137.68 84,612.61 354.72 
5 100 7 0.2 90,143.77 88,425.89 89,749.63 389.28 89,820.82 92,619.14 431.87 85,672.18 87,408.17 429.48 
6 100 7 0.3 98,786.54 89,394.79 91,258.24 465.19 90,127.95 93,335.72 517.32 84,678.02 87,069.23 524.65 
7 100 15 0.1 115,122.91 102,471.15 103,113.43 56.29 102,673.57 103,419.85 72.03 101,024.25 101,588.70 78.62 
8 100 15 0.2 113,841.56 107,658.95 108,713.87 49.96 107,658.95 109,082.14 63.19 106,202.02 108,143.62 55.69 
9 100 15 0.3 120,072.12 111,284.17 113,801.47 41.05 111,281.22 113,817.79 62.25 110,977.17 113,055.55 49.14 

10 150 7 0.1 157,205.32 138,068.72 141,631.88 510.00 139,019.63 142,985.52 576.20 127,254.70 132,442.84 512.08 
11 150 7 0.2 172,360.12 141,335.98 145,410.89 761.75 142,160.74 146,246.04 1317.51 137,330.67 141,279.73 1045.58 
12 150 7 0.3 175,128.80 145,251.82 148,517.14 593.44 144,339.02 147,761.72 868.92 136,238.08 140,712.74 837.83 
13 150 15 0.1 148,614.33 140,222.92 142,179.03 227.98 141,804.39 146,990.98 324.40 130,367.17 133,773.83 289.68 
14 150 15 0.2 153,608.22 140,301.37 142,183.72 261.65 140,290.30 143,741.14 356.78 131,435.74 138,424.81 306.14 
15 150 15 0.3 154,851.33 141,343.62 144,553.90 302.06 142,864.80 145,484.64 505.76 134,668.31 141,013.72 439.32 
16 150 30 0.1 187,507.74 177,029.34 177,213.14 20.15 177,029.34 177,550.58 30.99 176,457.84 176,572.68 15.99 
17 150 30 0.2 195,290.08 186,768.27 188,166.19 12.10 187,051.56 188,778.25 24.12 185,870.04 187,509.73 20.90 
18 150 30 0.3 206,263.06 198,529.40 199,915.41 6.89 198,241.63 199,534.03 15.39 197,074.98 198,647.00 6.86 

Table 7. Statistical test results for the average computational time obtained from Table 6. 

 PSO HPSWOA 
WOA 0.008 0.010 
PSO  0.016 

Table 8. Statistical test results for the best total cost obtained from Table 6. 

 WOA PSO HPSWOA 
CP 0.001 0.001 0.001 

WOA  0.018 0.001 
PSO   0.001 

Table 9. Average percentage change of the objective function from the best solution obtained from 
the HPSWOA. 

 CP WOA PSO 
HPSWOA 11.06% 3.47% 3.91% 

 

 
Figure 4. Scatter plot of the average computational time obtained from Table 6. 

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Av
g.

 C
PU

 ti
m

e 
(s

)

Instance

WOA

PSO

HPSWOA

Figure 4. Scatter plot of the average computational time obtained from Table 6.

Table 7. Statistical test results for the average computational time obtained from Table 6.

PSO HPSWOA

WOA 0.008 0.010
PSO 0.016

Table 8. Statistical test results for the best total cost obtained from Table 6.

WOA PSO HPSWOA

CP 0.001 0.001 0.001
WOA 0.018 0.001
PSO 0.001
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Table 9. Average percentage change of the objective function from the best solution obtained from
the HPSWOA.

CP WOA PSO

HPSWOA 11.06% 3.47% 3.91%

6. Conclusions

In this paper, a new dynamic workforce scheduling and routing problem for the
maintenance work of harvesters in a sugarcane harvest operation was introduced. In
this problem, technician teams categorized as mechanical, hydraulic, and electrical were
assumed to have different skills at different levels to perform services. The jobs were
skill-constrained and had time windows. During a working day, a repair request from a
sugarcane harvester may arrive, and as time passes, the harvester’s position may shift to
other sugarcane fields. This problem was formulated as a multi-visit and multi-period
dynamic workforce scheduling and routing problem (MMDWSRP), and this study is the
first to address this problem in respect of the WSRP. The objective function of this research
is used to minimize the total cost, including technician labor cost, travel cost, late service
penalty, overtime, and subcontracting costs. To obtain the harvester maintenance plan, an
integer linear programming formulation was developed to solve small problems. For large,
practical problems, a hybrid particle swarm and whale optimization algorithm (HPSWOA)
was proposed, using an approach based on two well-known methods, namely the WOA
and PSO, to solve a multi-visit and multi-period dynamic workforce scheduling and routing
problem (MMDWSRP). This approach can be used for maintenance jobs and route planning
for each mechanical harvester to be requested by technician teams of relevant sub-systems.
The method can be used to determine routes for each individual technician team so that the
total cost, consisting of labor cost, traveling cost of technician teams, overtime, penalty, and
subcontract costs, is minimized. The proposed algorithms were validated against Lingo
computational software using numerical experiments in respect of static problems. Based
on the statistical t-test, the WOA, PSO, and HPSWOA were shown to be as efficient as the
Lingo computational software.

The proposed method was also tested against the current practice, the traditional
WOA, and the traditional PSO, to solve dynamic problems. The experimental results show
that the HPSWOA, which extended WOA’s vector to PSO’s personal best vector for a
high search exploration advantage, yielded more superior performance than all the other
algorithms in terms of solution quality. The total cost of the proposed method was reduced
by 11.06%, 3.47%, and 3.91% as compared with the current practice, the traditional WOA,
and the traditional PSO, respectively. The HPSWO was also tested against the traditional
genetic algorithm (GA), bat algorithm (BA), WOA, and PSO to solve the well-known CEC
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2017 benchmark functions. The computational results show that the HPSWOA achieved a
superior performance in most cases compared to the GA, BA, WOA, and PSO algorithms.

For future work, more practical limitations can be included in the research. These
might include a dynamic workforce constraint, where the number of workforces differs for
each day; a route blocking constraint if the maintenance is delayed to the next day resulting
a changed route; and maintenance service time as a fuzzy variable of the problem. Addi-
tionally, technology adoption such as through Internet of Things (IoT) technology, sensors,
Cloud technology, and mobile applications can be developed to create a more intelligent
maintenance system for mechanical harvesters. We believe that these can be added to the
capability of our study to describe real-life problems and will be a useful expansion.
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