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1. Introduction

Oscillation phenomena take part in different models from real world applications; we
refer to the papers [1,2] for models from mathematical biology where oscillation and/or
delay actions may be formulated by means of cross-diffusion terms. The study of nonlinear
dynamic equations is dealt within this paper because these equations arise in various real-
world problems such as non-Newtonian fluid theory, the turbulent flow of a polytrophic gas
in a porous medium, and in the study of p—Laplace equations; see, e.g., the papers [3-10]
for more details. Therefore, we are interested in the oscillatory behaviour of the second-
order quasilinear functional dynamic equation

a—1

A
@@ 20| + O (@) ~o )

on an arbitrary unbounded above time scale T, where ¢ € [§y, )T, §o > 0, o € T,
&, B > 0, a(&) and p(&) are positive rd-continuous functions on T such that a® > 0 and

Joa”

and [ := liminfg e 17(C§)> 0.

By a solution of Equation (1), we mean a nontrivial real-valued function z € Cl,[T;, o)
for some T in [&p, co)T for a positive constant §y € T such that z satisfies Equation (1) on
[Tz, 00) and a(¢) ]zA({,‘)‘a_le(é) € Cl [Tz, )1 where C,q is the space of right-dense
continuous functions.

R=

(T)ATt = o0, g : T — T is a rd-continuous function satisfying limg_,, (&) = oo,
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We shall not investigate solutions which vanish in the neighborhood of infinity. A
solution z of (1) is said to be oscillatory if it is neither eventually positive nor negative;
otherwise, it is said to be nonoscillatory. We assume that the reader is already familiar
with the fundamentals of time scales; for a very useful introduction to time scale calculus,
see [11-14].

In the following, we present some oscillation results for dynamic equations that are
connected to our oscillation results for (1) on time scales and explain the significant contribu-
tions of this paper. Karpuz [15] presented a Hille-Nehari test for nonoscillation/oscillation
of the second order dynamic equations

[e@22@)]" +p(@)=() =0

and

A
(@) + p(@=(0(@) =0

1
and showed that the critical constant for these dynamic equations is — as in the well-known

cases T = Rand T = Z. Erbe et al. [16] derived a Hille-type oscillation criterion for the
half-linear second order dynamic equation

(@) +p@= @) =0, @

where « > 11is a quotient of odd positive integers and g(¢) < ¢ for { € T, and showed that,
if

./; X(T)p(T)AT = oo, ©)
and (1) a
L [ (8(T) AN
hz;rr—1>glf€ /a(é)(a(r)> p(T)AT> 19% (a4 1)2+1 W

then all solutions to (2) oscillate.
Erbe et al. [17] established the Hille-type oscillation criterion for half-linear second
order dynamic equation

(a0 (2@)") " + p@(5(@) =0, ®

where 0 < « < 1is a ratio of odd positive integers and ¢(¢) < ¢ for ¢ € T, and proved that,
if (3) holds and

T °°g(T)>“ a®
imint 5 [ (55)) 708> e ©

then all solutions to (5) oscillate. Bohner et al. [3] improved conditions (4) and (6) without
restricted condition (3) for half-linear second order dynamic equation

w0220+ roeEr @) =0 o)
and obtained that if
1igglfa(2) /: #(7)p(T)AT > za(l—a>(ia+ ey O<as<l ®)
and o )
liminf e /,-; o(T)p(T)AT > la(a_l)(‘: e el )
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where N
(f,ﬁ‘:g) . s <o),
1, g() >0

and

¢
1 8(&) = ¢.

We seal by noting that Agarwal et al. [18-20], Erbe et al. [21,22], Hassan [23,24], Li
and Saker [25], Saker [26], and Zhang and Li [27] established a number of Kamenev-type
and Philos-type oscillation results for various classes of second-order dynamic equations.
The reader is directed to papers [28-40] as well as the sources listed therein.

The goal of this paper is to find some improved Hille-type oscillation criteria for the
generalized quasilinear second-order dynamic equation (1) in the cases wherea > 8,0 < S,
Q(8) < ¢ g(8) <o(g), (&) > ¢ and g(&) > o(¢), which improve and extend relevant
significant contributions reported in [3,16,17] without the condition (3) or extra time scale
constraints. In the next results, we use the notation v := max{«, §} and we assume that
the improper integrals are convergent in the following theorems. Otherwise, we find that
Equation (1) oscillates, see [41].

The content of the paper is as follows: In Section 2, we present the main results for
Equation (1) for the delayed case. In Section 3, we provide the main results for Equation (1)
for the advanced case, and to illustrate the significance of the results, we provide several
examples on an arbitrary time scale.

o { () sose

2. Hille-Type Oscillation Criteria for the Delay Case

The next two theorems deal with the Hille-type oscillation criteria of the second-order
quasilinear dynamic Equation (1) when g¢(&) < ¢ and g(¢) < o¢(¢) on [&o, co)T, respectively.

Theorem 1. Let g(&) < & on [Go, 00)T. If

N €D a
hégglfa((:)/(‘j -y p(T)AT > Jal—al (g + 1)a+1" (10)

then all solutions to Equation (1) oscillate.

Proof. Suppose that (1) has a nonoscillatory solution z on [gg, o). Without loss of gener-

ality, let z(¢) > 0and z(g(&)) > 0 on [o, c0)T. According to [3] [Lemmas 2.1 and 2.2], there
z(¢)

¢—2Go

exists a §; € (o, o) such that z({) is strictly increasing and is strictly decreasing

on [¢71,00)7. Define

(11)

a z8 «"® aq 0o o
[ <¢>;(S>> | a0 (@) 20

In view of (1) and (11), we have

Z/S
wi(g) = - 280 ) FOS,

=0 (¢(2)): 12)
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If B < «, by the fact that 2(¢) is strictly decreasing on [{1, %), we obtain for ¢ €

¢—2%o
(81, 00)T,
P (5(2)) 8(E)—%\* pa
e 2 (FE) o
$&=20)" . wppa
> o) (61— 20)" "z"%(G1),

whereas, if B > a, by the fact that z({) is nondecreasing on [{7, o)1 as well, we obtain for
& € [C1,00)T,

@) - (g(é)_€0>ﬁzﬁ—a(g)

() &—%o
g(C) _CO > P B—u
= (f2g) A e
Let 0 < ky < 1be arbitrary. There exists a i, € [y, 00)T such that
B B
zz(ag((g))) >k gg(f)' (13)
Substituting (13) into (12), we obtain for § € [k, )T,
B n A
(@) < -k £ - EE wioe) 11
(I) 0 < « < 1. The result of applying the Potzsche chain rule (see [13] [Theorem 1.90])
is
(z(5)” ( z(¢) )1_“ZA(€)
=@ ~"\:o@) =@ 1

In addition,

— 1—a

( 2(¢) )1 "‘>( & )
2(0(8))) T \e@) =&/
Cz(i_)f is strictly decreasing. Let 0 < k» < 1 be arbitrary. There exists a
— 6o
Ckz € [gkl/oo)’[ such that

by dint that

2\ ¢\
(z(a(@)) =k (a(é:)) (16
Hence, (15) becomes
(%)) N AE
a(g) 2% (o(&)) 2©) an

Substituting (17) into (14), we obtain for § € [G,, )T,

==

B 1—«a 1
@) < -k S -k () oot @ue@), )

7(¢)
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which yields that w?® < 0. Now, for any € > 0, there existsa § € [ kyr o) such that, for
‘: S [’é/ OO)T/

G gw(S) _
(@) >]—€¢ and (@) >, — €, (19)
where .
Ay 1= hgrr;i;}f 5;216()@), 0<a, <1
In view of (18) and (19), we have
(@) <~k & p(e) — aka(l - €17 (0, — e 4 LD, 20)

e P goe(2)

Integrating (20) from ¢ to v, we conclude that

w(o) ~w(@) <~ | ” @p(r)m — k(1= €)' ™ (a, €)' /5 alo(7) g

T 0%(T)

Taking into consideration that w > 0 and passing to the limit as v — co, we obtain

k[ L ) < w(E) kol — )1 (a. — ) [THa e e

Multiplying both sides of (21) by ai:) and the fact that a(¢) is nondecreasing, we find that
60{
< v
1« 141 ¢ = a(o(1))
—aka(l =)' (o — ) /g AT @
(’;’0(
< v
k(I — €)% (a, — ) Fage /g o AT

Use the Potzsche chain, it follows that

(_1>A— () o s (23)

(0 T (T) — To%(T)

Substituting (23) into (22), we achieve

< gﬂ‘ w(g)_kz(l_e)l—a(a*_e)lJr%éa /00(1>AAT
a(¢) ¢ \T
= (@) k- (e —e) .
a(¢)
We obtain by taking the lim inf on both sides of the latter inequality as ¢ — oo that

C"‘ gﬁ

11m1nfk1 AT <a,—ko(l — 6)170‘(11* — €)l+%.

Since 0 < kq,ky < 1and € > 0 are arbitrary, we deduce that

i ﬁ 1
liminfg / g T)AT < a, — ll_"‘a1+“.

{—oo a
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Let
A=1I1% B=1 and u=a,.

Using the inequality (see[42])

Bu— A< BT, 24
u— u LN WW’ > 0, ( )
we see that
. / gﬁ a®
F—o0 a ltx(l o) (DC 4 1)D¢+l ’

which contradicts (10) with 0 < a < 1.
(IT) « > 1. The result of applying Pétzsche chain rule (see [13] [Theorem 1.90]) is

(0" . ()

(&) T Q)
Hence, by (11), (14) becomes
@ < -k (@) — aaH @k (o), 25)
According to (25) and (19), it follows that, for ¢ € [, o0)T,
w©) <~ EEp(@) a1 o - LD, 2o

Integrating (26) from ¢ to v, we have

w(v) —w() < ki /(.: {#P(T)AT —a(l— e Y(ay —e)'Fa /5 a(o(7)) o

™ 0(T)

Taking into consideration that w > 0 and passing to the limit as v — co, we obtain

gh (1) a1 1+1 /v a(o(7))
) < - L —e)ta .
—ky / T’Y p —a(l—€)""(ax —e€) : T o(r) At (27)
gﬂé
Multiplying both sides of (27) by 2@ and the fact that a(¢) is nondecreasing, we

obtain

& e gh(r) ¢ a— 1 gt r*a(o(r))
klu(é) /g - p(t)At < a(g)w(ﬁ)—lx(lfe) 1(51*75)1* a(@)/g T"‘(T(T)AT
& “ L [
< M@w@J—a—e)1w*—@“'cﬂgfmﬂﬂAr (28)

Applying the Pétzsche chain rule, we obtain

(ﬁA—(ﬂ% < (29)

™ T (T) — T*0(T)




Mathematics 2022, 10, 3675

7 of 18

Substituting (29) into (28), we arrive at

< B -t o ke [1(F) w

= @ - (- e -
a(¢)
We obtain by taking the lim inf on both sides of the latter inequality as ¢ — oo that

C“ g’g

hm mf k1

T)AT <a,— (I — e)"‘*l(a* — 6)1+;.

Since 0 < k; < 1 and € > 0 are arbitrary, we deduce that

a  poo of 1
lim inf ¢ / gr(f)p(r)Arga*—l"‘_laiﬂ.

¢ a(8) Jo
Applying the inequality (24) with
A=1""1, B=1, and u=a,.

Hence,

. / gh( a®
f—o0 11 T P - lX(lX*l)(lx 4 1)a+1’
which contradicts (10) with « > 1. This completes the proof. [

Theorem 2. Let g(&) < o(&) on [Go, o). If

(1) ot
/ T AT > llelX*l‘(lx + 1)a+1’ (30)

§—o0 a

then all solutions to Equation (1) oscillate.

Proof. Suppose, on the contrary, that z is a nonoscillatory solution of (1) on [, c0)T.
Without loss of generality, we may assume z(¢) > 0 and z(g(¢)) > 0 for & € [Cp, ).
According to [3] [Lemmas 2.1 and 2.2], there exists a {1 € (o, o) such that z({) is
z(¢)
— 60
(11). Using the product and quotient rules, we have

A = [a(g)(ZA(C))LX}A 1 +a(§)(zA(§)>“< 1 )A

strictly increasing and is strictly decreasing on [{7, 00). Define a function w as in

(@) =@
@ @) a0
= e OEO) S
By dint of (1) and (11),
wh@) =~ 28Oy ER, 61

z4(e(2)) z4(0(2))
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If B < «, by the fact that gZ((fé is strictly decreasing on [{1, %), we obtain for ¢ €
— 60
(81, 00)T,
P (3(2)) 8(E) =%\’ pa
sy 2 Gin) 2w
(8(&)—20)° -
> B @ )
whereas, if B > «, by the fact that z({) is nondecreasing on [{7, o) as well, we obtain for
&€ [g1,00)T1,
P (3(2)) 8(&)-%\’ 5-a
s 2 Gian) #ew)
g(g)_&] P B—u
> (Smn) @
Let 0 < ky < 1be arbitrary. There exists a {, € [¢1,00)7 such that
#@EE) < . 80 32)

2(0(§)) = ()

Substituting (13) into (31), we obtain for & € [Zk,, )T,

b 8@ o @ -

A N
R TS LA (3)

z(¢)

(I) 0 < a« < 1. Using the Potzsche chain rule and the fact that
—Go

is strictly
decreasing, we obtain for ¢ € [Gx,, 00)T C [Gk,, %0)T,

(24(£))> A(g) :
0(0) "‘z(a(é) = k2 (a )

Hence,

B A
W@ < b SEpE - Sl

(&) — akaa ™ () (C)w“i ©. (34)

= Thoae?

Integrating (34) from ¢ to v, we conclude that

—kq /; gig; p(T)AT — aky /; a_%(r) (UTT)>ZU1+;(T)AT,

and thus

b [T ED -t [Tt (L et oa 69
o
@

Multiplying both sides of (35) by , we obtain
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-y By [
_ gF(0) g (_alr) ) (Tw(n)) e
- st —sn s [ (o) (G ) o 0
Now, for any € > 0, there exists a € Gy, o) such that, for ¢ € [, o),
g grw(S)
@zl—e and a(®) > a, —€,
where ()
L. w
Ay :hérgg}f (@) 0<a, <1.
Then, (36) becomes
4 _ C (1)
@0 = g / (¥)
%)(l—e)l *(g, e)“% /g fgi((?)“- (37)

Since, by Potzsche chain rule, we have

-1\%  (™° w
(T‘") T T (1) = To*(T)’

It follows now from a® > 0 and (37) that

7@0{ - 7ké'tx

(19 — % «© [
kol — €)' " (a, — €)' /{3 TU“(T)AT
IR )

i e AT

Ll [ —1)"
—ko(I — €)1 %(as —€) +E§"‘/ (sz) At

_ 5“ / z AT — kol — €)1 (a, — €)%,
which yields that
kq 6 < ai_:)w(é) — k(I — 6)17“(61* — €)1+1

We obtain by taking the lim inf on both sides of the latter inequality as ¢ — co that

5“ / ; AT < ar — koI — €)% (a, —¢)

hm 1nf k1

By virtue of the facts that 0 < k1,k» < 1 and € > 0 are arbitrary, we conclude that

@ T llel
é / @ T)AT < a, —1 +

lim inf
g—ro0 a
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Letting A = I"*,B=1,and u = a., and using the inequality (24), we arrive at

e e gb(r) «
it i 0" S e

o

which contradicts (30) with 0 < a < 1.
(I) « > 1. Using the Potzsche chain rule and the fact that gz(t_fé is strictly decreasing,
—60

we obtain for ¢ € [{,‘kz, o) C [Ckl,oo)ﬂr/

(&))" > “(Z z(@))))“zA(C)

z(0(¢)) (@(8))) =)
B () D e A S R |
> oh(5) Sy —ok () )
Hence,
B A
@) < b ESE - w0
P (9) 1 &\ a4
107(6)17(@)—“]‘201 “(C)(m) W' (g). (38)
Integrating (38) from ¢ to v, we arrive at
v of 4 1 ® 1
wo) ~ (@) < -k [ LD pmar—ake [[oH 05 ) wit s,

and thus

~0(Z) < ki /; iig pr)AT—aks | Taio) ((fﬂ)aw”i (VAT (39)

o

Multiplying both sides of (39) by a%ij)’ we have

& 0@ < -k /fgﬂ(”pmm

a@ = T e o
- T)<UT)> Wt (T)AT (40)

1%/;; o1 (0) "
o I w 1+%
e | (voncey) () o

Now, for any € > 0, there exists a € [y, o)1 such that, for ¢ € [§, o),

4 ¢"w(¢)
@zl—e and a(®) > a, —€,
where .
ay = liminf () 0<a, <1.

e 1 ()
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Then, (40) becomes

& g e gP(1)
@ =l [ e

—kZ%(z — ) Ya, —e)tta /5 ” ;‘a”;((?) At (41)
By Potzsche chain rule, we have
(;1>A = Tgc;i)(i) S
It follows now from a® > 0 and (41) that
TORGEE [ S
g <z - e)“ Yo — o)t /: AT
< g | S
el — ) N(a. ) ot /;(TJ)A
- - 10%; /: ii((gp(r)AT —a(l =€) Ya, —e)' s,
which implies that

sz o0 g'B(T) é'x . %
1a(§) /; U"Y(T)p(T)AT < u(g)w(g) —ko(I —€) 1(a* _ €)1+ .

We obtain by taking the lim inf on both sides of the latter inequality as ¢ — oo that

hmmfkl / z T)AT < ax — k(I —€)* (a. —e)H%.

By means of the facts that 0 < k1, k, < 1 and € > 0 are arbitrary, we conclude that

T 111
/ AT<a*—l“ *
T

§—o0 a

Letting A = I""!,B=1,and u = a,, and using the inequality (24), we obtain

(1) o®
hmmf / T< ,
t—oo af (1) ja(a=1) (g 4 1)a+1

which contradicts (30) with « > 1. The proof is complete. [

3. Hille-Type Oscillation Criteria for the Advanced Case

The next two theorems deal with the Hille-type oscillation criteria of the second-order
quasilinear dynamic Equation (1) when (&) > ¢ and g(&) > o(¢) on [&o, co)T, respectively.

Theorem 3. Let g(&) > & on [&o, 00). If

o

(42)

) . ga /oo ‘B—’Y 14
hgnig}fa(é) : T P(T)AT> la\1fa|(a+1)a+1’
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then all solutions to Equation (1) oscillate.

Proof. Suppose, on the contrary, that z is a nonoscillatory solution of (1) on [, o).
Without loss of generality, we may assume z(¢) > 0 and z(g(¢)) > 0 for ¢ € [o,0)7. By
virtue of Theorem 1, there exists a &; € [&p, o0)T such that (12) holds for & € [&1, ). If

B < a, by the fact that z(¢) is nondecreasing and ;(g‘; is strictly decreasing, we obtain for
— 6o
¢ € [61,00)1 € (Go, )1,
p
T8 s ) 2 ) - ),

whereas, if B > &, we obtain for ¢ € [§1,0)T,

Zﬁ(g(g)) B—u
@)

Let 0 < k; < 1be arbitrary. There exists a i, € [y, 00)T such that

(&) = 2P ().

Substituting (43) into (12),we obtain for & € [Zk,, )T,

(z*(8))"
z4(¢)

The remainder of the proof is similar to that of Theorem 1 and is thus omitted. [

w?(8) < —k1 8P 77p(E) —

w(o(¢))-

Theorem 4. Let ¢(&) > o(&) on [Go, o). If

o o

o
ja|1—af (a 4 1)a+1 ’

liminf

g—oo a(g)

then all solutions to Equation (1) oscillate.

/;o P~ T(t)p(7)AT > (44)

Proof. Suppose on the contrary that z is a nonoscillatory solution of (1) on [&p, oo ). Without
loss of generality, we may assume z(¢) > 0 and z(g(g)) > 0 for ¢ € [&p,o0)7. By virtue
of Theorem 2, there exists a &1 € [y, o)1 such that (31) holds for & € [&1,00)7. If B < a,

by the fact that z({) is nondecreasing and (;‘Z(éé,)‘ is strictly decreasing, we obtain for
— 60
S [Cl/oo)']f C (éO/ OO)T/
p
S = @) 2 (@) -8) - 80 P @)

whereas, if B > &, we obtain for & € [y, 00)p

2P (g(g)) B—a B—u

Z"‘(O’(é)) >z (U(g)) >z (61)

28D > kot 5)
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Substituting (45) into (31), we obtain for ¢ € [ékl, o),

(z*(8))*
240 (%))

The remainder of the proof is similar to that of Theorem 2 and is so omitted. [

w?(8) < —k1 P (@)p(E) ~

w(g)-

Remark 1. By Theorems 1,2, 3 and 2, it is clear that the second-order Euler dynamic equations

§o(3)z(8) +A2(8) =0 (46)
and
§o(2)z8(2) +Az(0(8)) =0, (47)
are oscillutory if A > 1/4, since, for Equation (46), we have
minf / g AT—héig)lfai:) /;Orﬁ Tp(t )AT—/\hmmfé‘/oo AT :A,
and for Equation (47), we have
.. e [P g e ® At
minf /g m(T)]ﬂ(T)AT—hgnilc’g\f@/g P M (T)p(T)AT = Algigﬁg  To(r) A

It is well known that this is the best possible case for the second-order Euler differential equation

¢?2"(8) +Az(¢) = 0.

4. Examples

The applications of the theoretical findings in this paper are shown in the examples
below.

Example 1. For ¢ € [y, c0)T, consider a second-order quasilinear delay dynamic equation

W) ] A 2(3(8 >>
+ =0, <¢, 48
| T Y w0 W
where A > 0. Here, x = B = Z a(g) = ¢, and p(&) = 5 U(g)}t 0 It is clear that

aA((Z) > 0on [&y, 00)T and

® 1 © At
a «(T)AT = —= =
/0 @) & VT
We will show that the results of this paper improve those reported in [3,17] for Equation (48) for
| < 1. Now,
N /°° <g(T)>”‘ /
lim inf e T)AT = )\hm 1nf
P25 Jog o) P Ve | 2y

Y

AV B liminf (‘) AT
iy \/5/0@ VT
— AV,
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8 e g(n)” . © AT
st (om) Pon = M e
i ©/—1\%
> )\\/ﬁhgrr_l)glf\/E/g (ﬁ) AT
= AV,

and

lim inf & /ijmgﬁ(T)P(T)AT = /\hmmf\f/

oo a(Q) T 21/o (1)

> /\liminf\/g/g (\%) AT = A.

§—o0

An application of the results of [17] yields all solutions to Equation (48) oscillating if

4 433
> 16 129 W’ (49)

and, by using the results of [3], all solutions to Equation (48) oscillate if

4 4/33
A > TllS ?1 (50)

and also, using Theorem 1, shows that then all solutions to Equation (48) oscillate if

443
\/»

By comparing (49), (50) and (51), we find that (51) is superior to both (49) and (50). It means
that condition (10) improves conditions (6) and (8) to Equation (48).

(51)

Example 2. For ¢ € [y, c0)r, consider a second-order quasilinear delay dynamic equation

[(ZA@)T +3 (g%)zﬂg(a)) =0, s® <t 62

3A ((E)\® . .
where A > 0. Here, x = p=3,a(¢) = 1,and p(g) = 7 (8(‘3)) . It is clear that the condition
(3) holds since

3/\/ ar_
/éo §'(m) o T

We will see that the results of this paper improve those reported in [17] for Equation (52) for
I < 1. Now,

oo « © A
lim inf &* /¢7(§)<§'E3> p(t)AT = 3)tliminf§3/ —Z

g—o0 {—o0 o) T

—1\2
> )\hmmf(,‘3/ <3> AT
§—roo a(%)

= AP
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and
« o of o
liminf -5 / 80 AT = BAlimintd / T o7
g—eo a(l) Je kol —00 z 77
© AT
S 3
> 3A hérr_l> 1o£1f§ /g ey
o/ _1\2
> Miminfe® [ (3) AT = A.
{—oo 4 T
An application of the results of [16] yields all solutions to Equation (52) oscillating if
33
A > YTk (53)
and also, using Theorem 1, shows that then all solutions to Equation (52) oscillate if
33
A > g (54)

By comparing (53) and (54), we find that (54) is superior to (53). It means that condition (10)
improves condition (4) to Equation (52).

Example 3. For ¢ € [y, c0)T, consider a second-order quasilinear dynamic equation

A 2
VY| + @) =0 5@ <), 55
7 2702
where A > 0. Here, x = 3 B=3,a(&) = and p(g) = 5223((5)). Now,
o g AT
and
g e gb(r) T N -
limint 2o [ SposT = Mimine® [ o

Vv

w1\
Miminfe? | <2) AT = A.
{—rco ¢ T

An application of Theorem 2 shows that then all solutions to Equation (55) oscillate if

3 4/ 77
A> o\ 1o

Example 4. For ¢ € [y, c0)r, consider a second-order quasilinear advanced dynamic equation

A
el 0r0] +3vETs@ -0 s@ze 6)
where A > 0. Here, x =2, B = %, a(&) = /&, and p(¢) = %\3/6 Now,

© AT

— =0
%o & V1o
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and

(24 00 " 00
liérggfa%@ /g P p(t)AT = /\linlicgff/g/ jgiAT
A
> /\hmmff/ <> AT = A.

An application of Theorem 3 shows then that all solutions to Equation (56) oscillate if

4

P
ViE

The significant point to note here is that the results due to Erbe et al. [16,17] and
Bohner et al. [3] do not apply to Equations (55) and (56).

5. Conclusions

(1) In this paper, several Hille-type criteria are presented that can be applied to (1) and
are valid for various types of time scales, e.g., T =R, T = 7Z, T = hZ with h > 0,
T = g% with g > 1, etc. (see [13]).

(2) The results in this paper are including the cases where « > B and a < B and, for
both cases, advanced and delayed dynamic equations without the need to impose
condition (3).

(3) In particular, the results of this research are a significant improvement compared to
the results of the papers [3,16,17] when « = B and g(&) < ¢; see the following details:

By dint of
¢ 2 (s@)" & g0\
i () s = 5 [T (5) roae
¢t e (8@
@ Lo (55 P8
and . . )
Jela—1] (g 4 1)a+1 < 1 (a4 1)eH fora > EandO <l<1,

we achieve:

(i) Ifa = Band g(t) <t condition (10) improves (8).

(ii) If« = Band g(t) < t, conditions (10) and (30) improve (6).

(iii) If « = B, r(t) = 1, and g(t) < t, conditions (10) and (30) improve (4).

(iv) If « = Band g(t) > t, condition (42) reduces to (8) for 0 < &« < 1 or (9) fora > 1.

(v) Ifa = Band g(t) > o(t), condition (44) reduces to (8) for 0 < o < 1 or (9) for
o >1.

(4) It would be interesting to establish a Hille-type criterion to Equation (1) assuming that
ft';o a7 (T)AT < o,
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