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Abstract: Steady-state solutions of two mixed initial-boundary value problems are presented in
equivalent forms. They describe isothermal permanent motions of incompressible Burgers’ fluids
over an infinite flat plate that applies time-dependent shear stresses to the fluid. More exactly, they
are the first exact solutions for motions of Burgers’ fluids with differential expressions of the shear
stress or velocity on the boundary. The obtained results are designed to make equivalent solutions
for motions caused by an infinite plate moving in its plane at velocities that seem to be similar to
previous shear stresses. It is simple to limit all results for the purpose of providing efficient results
for incompressible Oldroyd-B, Maxwell, second grade and Newtonian fluids undergoing comparable
motions. They may also be used to estimate how long it will take to get to a steady or permanent state.

Keywords: steady-state solutions; mixed initial-boundary value problems; Burgers’ fluids

MSC: 35F16; 76A05

1. Introduction

The one-dimensional rate type fluid model proposed by Burgers [1] has often been
used to describe the behavior of different viscoelastic materials such as polymeric liquids,
cheese, soil and asphalt [2,3]. For instance, Lee and Markwick [4] reported that the behavior
of asphalt and sand-asphalt and the predictions of their model agreed well. Additionally,
this model was designed to describe the earth’s mantle’s ephemeral creep tendencies [5,6]
and the fine-grained polycrystalline olivine’s high-temperature viscoelasticity [7,8]. Krish-
nan and Rajagopal have given a detailed analysis of the modeling, use and applications of
asphalt concrete from antiquity to the present [9]. The same authors explored the expansion
of Burgers’ model to a frame-indifferent three-dimensional form [10].

First exact steady solutions for isothermal motions of incompressible Burgers’ fluids
are those obtained by Ravindran et al. [11] in an orthogonal rheometer. Hayat et al. [12] have
derived steady-state solutions for periodic motions of the same fluid over an infinite plate
or between parallel plates. Starting solutions for oscillatory motions (the second problem of
Stokes) of incompressible Burgers’ fluids over an infinite moving plate, for instance, can be
found in the references [13–15]. However, none of these solutions correspond to a motion
in which a differential expression of the shear stress is given on the boundary.

The main purpose of this note is to present the first closed-form formulations for
the dimensionless steady-state solutions corresponding to some motions of the incom-
pressible Burgers’ fluids over an infinite flat plate. The novelty of this work consists in
the consideration of the shear stress or velocity on the boundary of the flow domain as a
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time-dependent function defined as the sum between a decreasing exponential function
and an oscillatory function with a given pulsation. The steady-state (permanent) solutions
which are determined in this article are presented in elegant forms and are new in the
literature. They correspond to isothermal motions of incompressible Burgers’ fluids for
which differential expressions of shear stress or velocity are given on the boundary.

The solutions that have been obtained for motions with shear on the boundary are
given in their most basic form and are easily particularized to provide the comparable
responses for incompressible Oldroyd-B, Maxwell, second grade and Newtonian fluids
flowing in a similar way. They may also be used to determine the time needed to attain the
steady or permanent state, which is essential for experimentalists’ researchers in practice.
Additionally, new precise solutions are developed for motions of the same fluids caused by
the infinite plate that moves in its plane at velocities of the same form as the previous shear
stresses. It is exploited by the fact that the governing equations of the fluid velocity and
shear stress have identical forms.

2. Constitutive and Governing Equations

The constitutive equations of the incompressible Burgers’ fluids (IBF) are given
by Equations.

T = −pI + Ŝ1, Ŝ1 + α
DŜ1

Dt̂1
+ β

D2Ŝ1

Dt̂1
2 = µ

(
Â1 + γ

DÂ1

Dt̂1

)
, (1)

where T—Cauchy stress tensor, Ŝ1 —extra-stress tensor, I—unit tensor, Â1 = L̂1 + L̂1
T is the

first Rivlin–Ericksen tensor (L̂1 being grad υ), p—hydrostatic pressure, µ—fluid viscosity,
α, β and γ (≤ α) are material constants and D/Dt̂1—upper-convected derivative. The
model defined by Equation (1) contains as particular cases the Oldroyd-B fluids if β = 0,
Maxwell fluids if β = γ = 0 and Newtonian fluids if α = β = γ = 0. In some motions,
the governing equations of second grade fluids can also be obtained as particular cases of
the present equations. Since the incompressible fluids undergo isochoric motions only, it
results in the following condition

tr Â1 = 0 or equivalently div υ = 0, (2)

having to be identically satisfied.
In the following, we shall consider isothermal unsteady motions of IBF over an infinite

flat plate with velocity field:

υ = υ(ŷ1, t̂1) = û1(ŷ1, t̂1)ex̂1 , (3)

where ex̂1—unit vector along the x̂1—direction of the Cartesian coordinate system (CCS)
x̂1, ŷ1 and ẑ1 whose ŷ1—axis is perpendicular to the plate. At t̂1 = 0, the fluid is at rest.
We also assume that Ŝ1, as well as υ, are functions of ŷ1 and t̂1 only. Substituting the fluid
velocity in Equation (1)2 and bearing in mind that the fluid has been at rest at the initial
moment t̂1 = 0, it is easy to show that the components Ŝŷ1 ŷ1 , Ŝŷ1 ẑ1 , Ŝẑ1 ẑ1 and Ŝẑ1 x̂1 of
the Ŝ1 are zero while the non-trivial shear stress τ̂1(ŷ1, t̂1) = Ŝx̂1 ŷ1(ŷ1, t̂1) has to satisfy the
partial differential equation(

1 + α
∂

∂t̂1
+ β

∂2

∂t̂1
2

)
τ̂1(ŷ1, t̂1) = µ

(
1 + γ

∂

∂t̂1

)
∂û1(ŷ1, t̂1)

∂ŷ1
; ŷ1 > 0, t̂1 > 0. (4)

The incompressibility condition (2) is identically satisfied. When the body forces are
conservative and there is no pressure gradient in the flow direction, the motion equations
reduce to the following relevant partial differential equation

∂τ̂1(ŷ1, t̂1)

∂ŷ1
= ρ

∂û1(ŷ1, t̂1)

∂t̂1
; ŷ1 > 0, t̂1 > 0, (5)
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where ρ—constant density. The boundary conditions that will be used here are:(
1 + α

∂

∂t̂1
+ β

∂2

∂t̂1
2

)
τ̂1(0, t̂1) = µ

(
1 + γ

∂

∂t̂1

)
∂û1(ŷ1, t̂1)

∂ŷ1

∣∣∣∣
ŷ1=0

= Ŝ1 cos(ω t̂1), lim
ŷ1→∞

û1(ŷ1, t̂1) = 0, (6)

or(
1 + α

∂

∂t̂1
+ β

∂2

∂t̂1
2

)
τ̂1(0, t̂1) = µ

(
1 + γ

∂

∂t̂1

)
∂û1(ŷ1, t1)

∂ŷ1

∣∣∣∣
ŷ1=0

= Ŝ1 sin(ω t̂1), lim
ŷ1→∞

û1(ŷ1, t̂1) = 0. (7)

The second condition from the relations (6) and (7) tell us that the fluid is quiet far
away from the plate. We also assume that there is no shear in the free stream, i.e.,

lim
ŷ1→∞

τ̂1(ŷ1, t̂1) = 0. (8)

The initial conditions τ̂1(0, 0) = ∂τ̂1(0,t̂1)
∂t̂1

∣∣∣
t̂1=0

= 0 and the boundary conditions (6) and

(7) imply for τ̂1(0, t̂1) the following expressions

τ̂1(0, t̂1) =
(1−βω2) cos(ωt̂1)+αω sin(ωt̂1)

(αω)2+(1−βω2)
2 Ŝ1

+ Ŝ1
r2−r1

[
αω2−r2(1−βω2)

(αω)2+(1−βω2)
2 er1 t̂1 − αω2−r1(1−βω2)

(αω)2+(1−βω2)
2 er2 t̂1

]
,

(9)

respectively,

τ̂1(0, t̂1) =
(1−βω2) sin(ω t̂1)−αω cos(ω t̂1)

(αω)2+(1−βω2)
2 Ŝ1

+ ωŜ1
r2−r1

[
αr2+1−βω2

(αω)2+(1−βω2)
2 er1 t̂1 − αr1+1−βω2

(αω)2+(1−βω2)
2 er2 t̂1

]
,

(10)

where r1,2 = (−α±
√

α2 − 4β)/(2β).
Consequently, the result is that the fluid motion is generated by the flat plate that applies a

shear stress τ̂1(0, t̂1) of the form (9) or (10) to the fluid. If β→ 0 , then r2 → −∞, r1 → −1/α
and the previous expressions take the simpler forms (see [16], Equations (5) and (6))

τ̂1(0, t̂1) =

[
cos(ω t̂1) + αω sin(ωt̂1)

(αω)2 + 1
− 1

(αω)2 + 1
exp

(
− t̂1

α

)]
Ŝ1, (11)

τ̂1(0, t̂1) =

[
sin(ω t̂1)− αω cos(ωt̂1)

(αω)2 + 1
+

αω

(αω)2 + 1
exp

(
− t̂1

α

)]
Ŝ1, (12)

corresponding to similar motions of incompressible Maxwell and Oldroyd-B fluids. If both
α and β tend to zero, the plate applies an oscillatory shear stress

τ̂1(0, t1) = Ŝ1 cos(ω t̂1) or τ̂1(0, t̂1) = Ŝ1 sin(ω t̂1) , (13)

to the fluid. Such shear stresses are applied by the flat plate to incompressible second grade
fluids if γ is different to zero or to Newtonian fluids if γ = 0.

3. Exact Steady-State Solutions

Let us introduce the following non-dimensional variables, functions and parameters
in order to get exact results that are independent of the flow geometry.
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1 1 1

2
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S Sy t u
S S S

S S S

τρ μϖ τ ω ω
μν μ

α α β β γ γ
μ μ μ
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2

2
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are immediately obtained using Equation (14) and dropping out the star notation. Elimi-
nating ( , )τ ϒ ℑ  between the two relations (15), one obtains the next governing equation 

2 2

2 2
( , ) ( , )1 1 ; 0, 0,ϖ ϖα β γ ∂ ∂ ∂ ϒ ℑ ∂ ∂ ϒ ℑ + + = + ϒ > ℑ >   ∂ℑ ∂ℑ ∂ℑ ∂ℑ ∂ϒ  

 (16)

for the dimensionless velocity field ( , )ϖ ϒ ℑ . 
The corresponding dimensionless boundary conditions are 

2

2
0

( , )1 (0, ) 1 cos( ), lim ( , ) 0; 0,tϖα β τ γ ω ϖ
ϒ→∞

ϒ=

 ∂ ∂ ∂ ∂ ϒ ℑ + + ℑ = + = ℑ ϒ = ℑ >   ∂ℑ ∂ℑ ∂ℑ ∂ϒ  
 (17)

or 

2

2
0

( , )1 (0, ) 1 sin( ), lim ( , ) 0; 0.ϖα β τ γ ω ϖ
ϒ→∞

ϒ=

 ∂ ∂ ∂ ∂ ϒ ℑ + + ℑ = + = ℑ ϒ ℑ = ℑ >   ∂ℑ ∂ℑ ∂ℑ ∂ϒ  
 (18)

The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 

= ŷ1

√
Ŝ1
µν , J = Ŝ1

µ t̂1, v = û1

√
ρ

Ŝ1
, τ∗ = τ̂1

Ŝ1
, ω∗ = µ

Ŝ1
ω,

α∗ = Ŝ1
µ α, β∗ = Ŝ1

2

µ2 β, γ∗ = Ŝ1
µ γ .

(14)
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The dimensionless forms of the relations (4) and (5), namely(
1 + α

∂

∂= + β
∂2

∂=2

)
τ(
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in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 

, J) = 0; J > 0. (18)

The boundary conditions (17) and (18) and the fact that the fluid was at rest at the
initial moment J = 0, tell us that the two unsteady motions become permanent or steady
in time. An important problem for such motions is to know the need time to reach the
permanent or steady state. To determine this time, exact expressions have to be known for
the transient or steady-state components of starting solutions. Unfortunately, there is no
modality to verify the correctness of the transient solutions. This is the reason that we shall
provide closed-form expressions for the steady-state solutions corresponding to the two
motions in consideration. These solutions are independent of the initial conditions, but
they satisfy the governing equations and boundary conditions. In order to avoid a possible
confusion, we denote by vcp(
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
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permanent or steady state. To determine this time, exact expressions have to be known 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
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permanent or steady state. To determine this time, exact expressions have to be known 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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where Re and Im denote the real and the imaginary part, respectively, of that which follows.
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√
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(ω℘γ+η)2+(ωηγ−℘)2 , q = ω℘γ+η
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δ =
√
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(22)
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
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(20), (24) and (25), is graphically proved by Figures 1 and 2.
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 

, J) given by Equations (19)1 and (20)1, respectively,
(19)2 and (20)2 for α = 0.8, β = 0.7, γ = 0.6, ω = π/12 and J = 5.
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permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 

, J) given by Equations (23)1 and (24), respectively,
(23)2 and (25) for α = 0.8, β = 0.7, γ = 0.6, ω = π/12 and J = 5.

Additionally, the exact solutions corresponding to incompressible Oldroyd-B, Maxwell,
Newtonian or even second-grade fluids performing the same motions may be found
straight immediately as limiting instances of the earlier discoveries. As an illustration, the
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dimensionless steady-state solutions for the isothermal motions of incompressible Newtonian
fluids brought on by the flat plate that applies shear stresses to the fluid of type (13)
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
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permanent or steady state. To determine this time, exact expressions have to be known 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
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permanent or steady state. To determine this time, exact expressions have to be known 
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initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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permanent or steady state. To determine this time, exact expressions have to be known 
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, (29)

are immediately obtained taking α = β = γ = 0 in Equations (19), (20) and (23)–(25).
Finally, in order to use previous results to develop dimensionless steady-state solutions

for other unsteady motions of the IBF, let us bring to light the fact that eliminating v(
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 

, J), a partial
differential equation identical in form with that of the fluid velocity, namely(

1 + α
∂

∂J
+ β
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 

> 0, J > 0. (30)

Consequently, the result is that the expressions of the dimensionless steady-state shear
stresses τcp(
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 

, J) = 0; J > 0. (32)

4. Application

Let us again consider an IBF at rest over an infinite flat plate which at the moment
t̂1 = 0+ begins to move in its plane with a time-dependent velocity

û1(0, t̂1) =
(1−βω2) cos(ωt̂1)+αω sin(ω t̂1)

(αω)2+(1−βω2)
2 V

+ V
r2−r1

[
αω2−r2(1−βω2)

(αω)2+(1−βω2)
2 er1 t̂1 − αω2−r1(1−βω2)

(αω)2+(1−βω2)
2 er2 t̂1

]
,

(33)

or
û1(0, t̂1) =

(1−βω2) sin(ωt̂1)−αω cos(ω t̂1)

(αω)2+(1−βω2)
2 V

+ ωV
r2−r1

[
αr2+1−βω2

(αω)2+(1−βω2)
2 er1 t̂1 − αr1+1−βω2

(αω)2+(1−βω2)
2 er2 t̂1

]
,

(34)

where V is a dimensional constant velocity.
Owing to the shear, the fluid is gradually moved and the corresponding velocity

vector υ(ŷ1, t̂1), reported to the same CCS as before, is again given by Equation (3). We
also assume that the extra-stress tensor Ŝ1 is a function of ŷ1 and t̂1 only. Its components
Ŝŷ1 ŷ1 , Ŝŷ1 ẑ1 , Ŝẑ1 ẑ1 and Ŝẑ1 x̂1 are again zero and the dimensional fluid velocity û1(ŷ1, t̂1)
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together with the corresponding non-trivial shear stress τ̂1(ŷ1, t̂1) satisfy the same partial
differential Equations (4) and (5). The corresponding boundary conditions can be written
in suitable forms(

1 + α
∂

∂t̂1
+ β

∂2

∂t̂1
2

)
û1(0, t̂1) = V̂1 cos(ωt̂1), lim

ŷ1→∞
û1(ŷ1, t̂1) = 0; t̂1 > 0, (35)

respectively(
1 + α

∂

∂t̂1
+ β

∂2

∂t̂1
2

)
û1(0, t̂1) = V̂1 sin(ω t̂1), lim

ŷ1→∞
û1(ŷ1, t̂1) = 0; t̂1 > 0. (36)

The following non-dimensional variables, functions and parameters are introduced
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 

= V̂1
ν ŷ1, J = V̂1

2

ν t̂1, v = û1
V̂1

, τ∗ = τ̂1
ρV̂1

2 , ω∗ = ν
V̂1

2 ω,

α∗ = V̂1
2

ν α, β∗ = V̂1
4

ν2 β, γ∗ = V̂1
2

ν γ
(37)

and again, abandoning star notation, one obtains for the two dimensionless entities v(
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for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 

, J) partial differential equations of the forms (15). The velocity field v(

Mathematics 2022, 10, 3681 4 of 11 
 

 

1 1 1
1 1 12 2

ˆ ˆ ˆcos( ) sin( ) 1 ˆˆˆ (0, ) exp ,
( ) 1 ( ) 1
t t tt Sω αω ωτ
αω αω α

  += − −  + +   
 (11)

1 1 1
1 1 12 2

ˆ ˆ ˆsin( ) cos( ) ˆˆˆ (0, ) exp ,
( ) 1 ( ) 1
t t tt Sω αω ω αωτ

αω αω α
  −= + −  + +   

 (12)

corresponding to similar motions of incompressible Maxwell and Oldroyd-B fluids. If 
both α  and β  tend to zero, the plate applies an oscillatory shear stress 

1 1 1 1 1 1 1 1
ˆ ˆˆ ˆ ˆˆ ˆ(0, ) cos( ) or (0, ) sin( ) ,t S t t S tτ ω τ ω= =  (13)

to the fluid. Such shear stresses are applied by the flat plate to incompressible second 
grade fluids if γ  is different to zero or to Newtonian fluids if 0=γ . 

3. Exact Steady-State Solutions 
Let us introduce the following non-dimensional variables, functions and parameters 

in order to get exact results that are independent of the flow geometry. 

1 1 1
1 1 1

1 1 1

2
1 1 1

2

ˆ ˆ ˆˆˆ ˆ, , , , ,ˆ ˆ ˆ

ˆ ˆ ˆ
, , .

S Sy t u
S S S

S S S

τρ μϖ τ ω ω
μν μ

α α β β γ γ
μ μ μ

∗ ∗

∗ ∗ ∗

ϒ = ℑ = = = =

= = =

 (14)

The dimensionless forms of the relations (4) and (5), namely 

2

2
( , ) ( , ) ( , )1 ( , ) 1 ; ,ϖ τ ϖα β τ γ ∂ ∂ ∂ ∂ ϒ ℑ ∂ ϒ ℑ ∂ ϒ ℑ + + ϒ ℑ = + =   ∂ℑ ∂ℑ ∂ℑ ∂ϒ ∂ϒ ∂ℑ  

 (15)

are immediately obtained using Equation (14) and dropping out the star notation. Elimi-
nating ( , )τ ϒ ℑ  between the two relations (15), one obtains the next governing equation 

2 2

2 2
( , ) ( , )1 1 ; 0, 0,ϖ ϖα β γ ∂ ∂ ∂ ϒ ℑ ∂ ∂ ϒ ℑ + + = + ϒ > ℑ >   ∂ℑ ∂ℑ ∂ℑ ∂ℑ ∂ϒ  

 (16)

for the dimensionless velocity field ( , )ϖ ϒ ℑ . 
The corresponding dimensionless boundary conditions are 

2

2
0

( , )1 (0, ) 1 cos( ), lim ( , ) 0; 0,tϖα β τ γ ω ϖ
ϒ→∞

ϒ=

 ∂ ∂ ∂ ∂ ϒ ℑ + + ℑ = + = ℑ ϒ = ℑ >   ∂ℑ ∂ℑ ∂ℑ ∂ϒ  
 (17)

or 

2

2
0

( , )1 (0, ) 1 sin( ), lim ( , ) 0; 0.ϖα β τ γ ω ϖ
ϒ→∞

ϒ=

 ∂ ∂ ∂ ∂ ϒ ℑ + + ℑ = + = ℑ ϒ ℑ = ℑ >   ∂ℑ ∂ℑ ∂ℑ ∂ϒ  
 (18)

The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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satisfies the partial differential Equation (16) which is identical in form with Equation (30).

The corresponding non-dimensional boundary conditions are(
1 + α

∂

∂J
+ β

∂2

∂J2

)
u(0, J) = cos(ω J), lim
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
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permanent or steady state. To determine this time, exact expressions have to be known 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 

, J) = 0; J > 0. (39)

Bearing in mind the results of the previous section, it is clear that the dimensionless
velocity fields vcp(
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
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permanent or steady state. To determine this time, exact expressions have to be known 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
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permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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where φ and ψ have already been defined.
The corresponding shear stresses, namely
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
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for the transient or steady-state components of starting solutions. Unfortunately, there is 

, J) = ω2Im
{

1
(1 + iωγ)δ3 e−δ

Mathematics 2022, 10, 3681 4 of 11 
 

 

1 1 1
1 1 12 2

ˆ ˆ ˆcos( ) sin( ) 1 ˆˆˆ (0, ) exp ,
( ) 1 ( ) 1
t t tt Sω αω ωτ
αω αω α

  += − −  + +   
 (11)

1 1 1
1 1 12 2

ˆ ˆ ˆsin( ) cos( ) ˆˆˆ (0, ) exp ,
( ) 1 ( ) 1
t t tt Sω αω ω αωτ

αω αω α
  −= + −  + +   

 (12)

corresponding to similar motions of incompressible Maxwell and Oldroyd-B fluids. If 
both α  and β  tend to zero, the plate applies an oscillatory shear stress 

1 1 1 1 1 1 1 1
ˆ ˆˆ ˆ ˆˆ ˆ(0, ) cos( ) or (0, ) sin( ) ,t S t t S tτ ω τ ω= =  (13)

to the fluid. Such shear stresses are applied by the flat plate to incompressible second 
grade fluids if γ  is different to zero or to Newtonian fluids if 0=γ . 

3. Exact Steady-State Solutions 
Let us introduce the following non-dimensional variables, functions and parameters 

in order to get exact results that are independent of the flow geometry. 

1 1 1
1 1 1

1 1 1

2
1 1 1

2

ˆ ˆ ˆˆˆ ˆ, , , , ,ˆ ˆ ˆ

ˆ ˆ ˆ
, , .

S Sy t u
S S S

S S S

τρ μϖ τ ω ω
μν μ

α α β β γ γ
μ μ μ

∗ ∗

∗ ∗ ∗

ϒ = ℑ = = = =

= = =

 (14)

The dimensionless forms of the relations (4) and (5), namely 

2

2
( , ) ( , ) ( , )1 ( , ) 1 ; ,ϖ τ ϖα β τ γ ∂ ∂ ∂ ∂ ϒ ℑ ∂ ϒ ℑ ∂ ϒ ℑ + + ϒ ℑ = + =   ∂ℑ ∂ℑ ∂ℑ ∂ϒ ∂ϒ ∂ℑ  

 (15)
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
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The boundary conditions (17) and (18) and the fact that the fluid was at rest at the 
initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
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have been obtained using the relations (8) and (15)2. The equivalence of the expressions
of τcp(
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initial moment 0ℑ = , tell us that the two unsteady motions become permanent or steady 
in time. An important problem for such motions is to know the need time to reach the 
permanent or steady state. To determine this time, exact expressions have to be known 
for the transient or steady-state components of starting solutions. Unfortunately, there is 

, J) given by Equations (43)1 and (44), respectively
(43)2 and (45) for α = 0.8, β = 0.7, γ = 0.6, ω = π/12 and J = 5.

Finally, taking α = β = γ = 0 in Equations (40)–(45), we recover the dimension-
less steady-state solutions corresponding to isothermal motions of the incompressible
Newtonian fluids generated by the flat plate that moves in its plane with the oscillatory
velocities V̂1 cos(ωt̂1) or V̂1 sin(ωt̂1) (see [17], Equations (27)–(33)). The corresponding
velocity fields, namely
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are the dimensionless forms of the solutions (12) and (17) obtained by Erdogan [18].

5. Conclusions

The exact steady-state solutions to initial-boundary value problems often explain the
motions or deformations of various fluids or solids. Additionally, they may be used as tests
to validate numerical schemes created to research more difficult problems as well as to
calculate the amount of time needed to reach the steady or permanent state. For two mixed
initial-boundary value problems describing isothermal unsteady motions of IBF over an
infinite flat plate when differential expressions of the shear stress are given on the boundary,
we provided equivalent closed-form expressions for the dimensionless steady-state velocity
and shear stress fields in this note.

The exact dimensionless steady-state solutions for unsteady motions of the same
fluids over an infinite plate that move in its plane with time-dependent velocities of the
same form as the previously applied shear stresses are developed using these solutions.
They seem to be the first exact solutions of this type in the existing literature. All of the
results found here may be easily customized to provide exact steady-state solutions for
incompressible Oldroyd-B, Maxwell, second grade and Newtonian fluids acting in similar
motions. For illustration, the corresponding solutions for isothermal unsteady motions of
the incompressible Newtonian fluids due to the infinite plate that applies a shear stress
Ŝ1 cos(ωt̂1) or Ŝ1 sin(ωt̂1) to the fluid are brought to light. The results that have been
obtained here, especially the method used to find them, will be useful for establishing
similar solutions for MHD motions of incompressible Burgers’ fluids through a porous
media. The authors also believe that present results can be used to investigate flows of
stratified fluids or nanofluids with Burgers’ fluids as base.
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Nomenclature

T The Cauchy stress tensor
Ŝ1 The extra-stress tensor
L The velocity gradient
Â1 The first Rivlin–Ericksen tensor
u The velocity vector
p The hydrostatic pressure
u The dimensionless velocity component in the x-direction
α, β, γ The material coefficients of Burgers’ fluids
τ The (x,y) component of the dimensionless extra-stress tensor
ω The pulsation of the oscillation
µ The dynamic viscosity
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