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Abstract: This paper investigates the performance of a fuzzy optimal variance control technique
for attitude stability and vibration attenuation with regard to a spacecraft made of a rigid platform
and multiple flexible appendages that can be retargeted to the line of sight. The proposed technique
addresses the problem of actuators’ amplitude and rate constraints. The fuzzy model of the spacecraft
is developed based on the Takagi-Sugeno(T-S) fuzzy model with disturbances, and the control input
is designed using the Parallel Distributed Compensation technique (PDC). The problem is presented
as an optimization problem in the form of Linear Matrix Inequalities (LMIs). The performance and
the stability of the proposed controller are investigated through numerical simulation.

Keywords: flexible spacecraft; T-S fuzzy model; parallel distributed compensator (PDC); actuators
saturation; linear matrix inequalities (LMIs); disturbances

1. Introduction

Actuator constraints are present in many control systems and can have detrimental
effects on system stability and performance, except if they are considered during the
control design process. Often, constraints are identified as actuators’ amplitude and rate
saturations, or output and state variable constraints. In many situations, constraints are
resolved by over-designing the system components such that during operation, saturation
or other limitations are not anticipated to take effect. From a practical point of view,
this technique is considered highly inefficient, and it will eventually add complexity and
increase the cost of the overall system. From a technical point of view, and because of
the added weight, it is not a recommended approach, especially for space applications.
Therefore, the analysis and design of controllers that operate entirely in the presence of
constraints are highly significant. Because actuator amplitude and rate saturation are
among the most common and significant parameters in the control design process, they
have been a topic of considerable interest for scientists and engineers. Over the past decades,
several promising solutions have been proposed to this problem, including anti-windup;
see, for instance, [1–6]. This technique’s goal is to prevent instability and performance
deterioration by introducing a control modification when the actuator system reaches
saturation.

As the plant to be controlled became complex, a precise solution to the anti-windup
problem was needed to guarantee stability and good performance [7–14]. While in many
applications, actuator amplitude saturation is the leading source of poor performance,
rate saturation is a fundamental problem to consider during the design process. It was
shown that rate saturation could induce oscillations and contribute to many undesirable
problems [15]. In many cases, when the dynamic system contains unstable modes, a
solution is to limit the region of operation of the closed-loop system. This technique is used
essentially during tracking problems with significant reference input, as was demonstrated
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in [16]. Recently, a successful approach in solving the actuators’ saturation problem for the
linear system was used, based on combining a local controller that guarantees a specific
desired performance. However, only local stability was achieved with a global controller
that ensures stability, disregarding the local performance; see, for instance, [17–21].

Control design based on fuzzy inference has grown in popularity since its first imple-
mentation by E. Mamdani [22]. Since then, fuzzy control has also been the focus of the
control community and subject to intense debate. The reason for this is that the Mamdani
fuzzy type controller, a rule-based heuristic controller, lacks fundamental mathematical
properties practical for analyzing closed-loop systems. With the development of a model-
based approach such as the Takagi-Sugeno fuzzy model, a solid mathematical foundation
such as the Lyapunov function approach [23–26] can be used to investigate the stability
and the performance of fuzzy closed-loop complex systems. Valuable work was carried
out to derive a dynamic model involving constraints on the control input via the T-S fuzzy
model; see, for instance [27–32].

This paper presents a fuzzy optimal variance control technique to stabilize a space-
craft’s attitude and attenuate the vibration in the flexible appendages. It should be noted
that the fuzzy controller designed in this paper differs from the controller presented in [32].
In ref. [32], an unknown independent time delay was present in the system, and the fuzzy
controller was designed based on a T-S fuzzy model with time delay in the states and
constraints on the amplitude of an actuator. The proposed controller addresses other
challenges such as amplitude and rate saturation. The fuzzy model of the spacecraft is
derived using the Takagi-Sugeno (T-S) fuzzy model with disturbances, and the control
input is constructed based on the Parallel Distributed Compensation (PDC) technique . The
problem is formulated as an optimization problem using the Linear Matrix Inequalities
(LMIs) tool. A numerical simulation shows the proposed controller’s performance and
stability.

This paper is organized as follows: in Section 2, first, a brief description of the math-
ematical model based on the Lagrange dynamics is presented; then, the Takagi-Sugeno
fuzzy model with disturbances including the actuators’ amplitude and rate constraints are
formulated. Subsequently, the Parallel Distributed Compensator and the fuzzy optimal
variance controller are presented. In Section 3, a numerical simulation to compare and
validate the open-loop fuzzy model approximation using four rules is presented. A numer-
ical simulation of the closed-loop is provided to show the performance of the proposed
fuzzy controller. Then, the controller’s performance is compared to a fuzzy controller with
disturbance rejection properties.

2. Materials and Methods
2.1. Flexible Spacecraft Model

In this section, we briefly derive the mathematical model of the flexible spacecraft. For
a detailed derivation, we refer the reader to [32,33].

Consider a spacecraft consisting of a rigid platform and multiple flexible appendages,
as shown in Figure 1. The main objective is to direct those flexible appendages to different
lines of sight while keeping the main body of the spacecraft stabilized in the inertial space.
To describe the motion of the system, we use a set of coordinate systems: an inertial frame
G(X, Y, Z), a body frame P(xp, yp, zp) with the origin coinciding with the center of mass of
the rigid platform, and a set of reference frame Ei(xi, yi, zi), i = 1, 2 with an origin where
the flexible appendage is hinged to the rigid body.
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Figure 1. Model of the flexible spacecraft.

Using the Lagrange dynamics in terms of quasi-coordinates, one can obtain a set of
hybrid ordinary and partial differential equations as follows:

d
dt

(
∂L
∂V0

)
+ Gω̃P

(
∂L
∂V0

)
− PCG

(
∂L

∂R0

)
= Fp (1)

d
dt

(
∂L̂
∂ω

)
+ Ṽ0

(
∂L
∂V0

)
+ Gω̃P

(
∂L
∂ω

)
−
(

HT
)−1 ∂L

∂θ
= Mp (2)

d
dt

(
∂L̂i
∂vi

)
− ∂T̂i

∂ui
− Liui = Ûi (3)

where L = T −V is the Lagrangian, T is the kinetic energy, V is the potential energy, L̂i is
the Lagrangian density, T̂i is the kinetic energy density for the appendage, and Li is a matrix
of differential operators. The vectors Fp and Mp are external forces and moments acting
on the rigid platform, θ is the angular displacement of the rigid platform, and Ûi is the
nonconservative force density associated with the appendage. Note that all the quantities
in Equations (1) and (2) are expressed in the P frame, while the quantities in Equation (3)
are expressed in the Ei frame.

The kinetic energy and the potential energy of the system can be determined from

T =
1
2

∫
mp

ṘT
r Ṙrdmp +

1
2

2

∑
i=1

∫
mi

ṘT
i Ṙidmi (4)

V =
1
2
[ui, ui] (5)

where [., .] represents an energy inner product [34]. To describe the attitude motion of the
platform in the inertial frame G, we choose the (3-1-3) Euler angle sequence [35], and the
kinematic equation is

GωP = Hθ̇ (6)

where

H =

 cθycθz sθz 0
−cθysθz cθz 0

sθy 0 1

. (7)
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The symbols s and c denote sine and cosine functions, respectively. The dynamic
system can be written in the form of

ẋ = A(t)x(t) + B(t)u(t) + D(t)ϕ(t) (8)

where

A(t) =
[

0 I
−M−1(t)K(t) −M−1(t)G(t)

]
. (9)

B(t) =
[

0
−M−1(t)B∗(t)

]
. (10)

D(t) =
[

0
−M−1(t)

]
. (11)

The state vector x ∈ Rn×1 and the control vector u ∈ Rm×1 are defined, respectively,
as

x = [R0 θ q1 q2 V0
GωB q̇1q̇2]

T (12)

u = [Fp Mp f11 f12 f21 f22]
T (13)

where Fp, Mp represents the components of platform-fixed forces and platform-fixed
moments, and f11, f12, f21, f22 represents the actuator forces at the middle and tip of each
appendage.

To see the derivation of the equations of motion for n flexible appendages and the
parameters of the dynamic system in Equation (8), we refer the reader to [33].

2.2. Takagi-Sugeno Fuzzy Model

The following T-S fuzzy model can represent a nonlinear dynamic system with distur-
bances:

Model Rule i:
IF
z1(t) is about µi1[z1(t)], . . . , zp(t) is about µip[zp(t)]
THEN {

ẋ(t) = Aix(t) + Biu(t) + Di ϕ(t)
y(t) = Cix(t)

(14)

where x is the state, u is the control input, y is the output, (i = 1, 2, . . . , r) is the number
of rules, and ϕ(t) models the disturbance expected because of the reconfiguration of the
spacecraft during the slew maneuver. Ai, Bi, Di, and Ci are known constant matrices with
appropriate dimensions.

It is worth mentioning that the matrices in Equation (14) are obtained by local approxi-
mation in the fuzzy partition space of βi(t), where the premise variable βi(t) represents the
angular position of the appendages. The firing magnitude of each rule can be calculated
using the T-norm product shown below:

wi[z(t)] =
p

∏
j=1

µij[z(t)] (15)

and the fuzzy basis functions are determined from

hi[z(t)] =
wi[z(t)]

r

∑
i=1

wi[z(t)]
(16)

Therefore, the overall fuzzy system can be represented by combining the rules for the
T-S models as follows:
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ΣTS :


ẋ(t) =

r

∑
i=1

hi[Aix(t) + Biu(t) + Di ϕ(t)]

y(t) =
r

∑
i=1

hiCix(t)
(17)

2.3. Fuzzy Augmented Model

Consider the dynamic system represented by the following fuzzy model:

ΣTS :


ẋ(t) =

r

∑
i=1

hi[Aix(t) + Biu(t) + Di ϕ(t)]

y(t) =
r

∑
i=1

hiCix(t)
(18)

Furthermore, in this paper, we assume that the amplitude and the rate constraints of
the actuators can be modeled by the following inequalities:

|ui| ≤ δi (19)

|u̇i| ≤ γi (20)

and the initial condition are unknown but bounded such that ||x(0)|| ≤ σ. The actuator’s
rate can be included in the fuzzy model, represented by Equation (17), using the following
augmented model [36]:

Σai :

{
ẋa(t) = Aaixa(t) + Baua(t) + Dai ϕ(t)
ya(t) = Caixa(t)

(21)

where

xa =

[
x
u

]
, ua = u̇ , Aai =

[
Ai Bi
0 0

]
, Ba =

[
0
Im

]
,

Dai =

[
Di
0

]
, ya =

[
y
u

]
, Cai =

[
Ci 0
0 Im

]
.

Furthermore, the augmented fuzzy model becomes:

ΣTSa :


ẋa(t) =

r

∑
i=1

hi[Aaixa(t) + Baua(t) + Dai ϕ(t)]

ya(t) =
r

∑
i=1

hiCaixa(t)
(22)

2.4. Parallel Distributed Compensation Control

Introduced by Wang et al. [37], Parallel Distributed Compensation (PDC) provides a
framework to design a fuzzy controller using the T-S fuzzy model. A full state feedback
control input for each model rule is designed from the corresponding rule of a T-S fuzzy
model. Given the augmented fuzzy system (Equation (21)), the structure of each control
input is as follows:
Control Rule i:
IF z1(t) is about µi1[z1(t)], . . . , zp(t) is about µip[zp(t)], THEN

ua(t) = u̇(t) = −Kixa(t) i = 1, 2, . . . , r (23)
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where Ki represents the control feedback gain matrix. The overall control input is formu-
lated by combining the control law as follows:

ua(t) = −
r

∑
i=1

hiKixa(t) (24)

Note that the feedback control matrix can be portioned based on the structure of
xa(t) as

Ki = [Kxi Kui] (25)

Then,

ua(t) = u̇(t) = −
r

∑
i=1

hi[Kxix(t) + Kuiu(t)] i = 1, 2, . . . , r (26)

The control law described by Equation (26) represents a first-order differential equation
in u(t) that can be solved given that the initial condition u(0) are known.

2.5. Fuzzy Optimal Variance Controller

Theorem 1. Consider the dynamic system given by Equation (17) and the augmented system
Equation (21), if there exist a matrice Si i = 1, 2, . . . , r and a positive definite symmetric matrix X
that minimize the variance cost function Equation (27).

minX,S1 ...Si trace{(Cai)jX(Cai)
T
j } i = 1, 2, . . . , r (27)

subject to: [
XAT

ai + AaiX− ST
i BT

a − BaSi DaiE
1
2

W
1
2 DT

ai −I

]
< 0 i = 1, 2, . . . , r (28)

[
γ2

j ΦjSi

ST
i ΦT

j X

]
≥ 0 i = 1, 2, . . . , r; j = 1, 2, . . . , m (29)

[
X11 X12
XT

12 X22

]
−
[

σ2 I 0
0 0

]
≥ 0 (30)

δ2
j −ΘkXΘT

k ≥ 0 j = 1, 2, . . . , m ; k = n + j (31)

where (Cai)j represent the jth row of Cai and Φk, and Θk denotes a row vectors of dimension m and
n + m, respectively, with 1 at the kth entry and 0 elsewhere, and Xij are partitions of X according to
xa. If a feasible solution exists, the feedback gains can be obtained as

Ki = SiX−1 (32)

Proof of Theorem 1. To see the detailed proof, we refer the reader to [36].

3. Results
3.1. Fuzzy Model Validation

For a minimum time maneuver, the magnitude of the angular acceleration of the
antennas relative to the spacecraft is constant, but its sign changes, as shown in Figure 2.
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Figure 2. Appendage time history.

This profile will generate an elastic deformation in the flexible appendages and desta-
bilize the attitude of the spacecraft.

The efficiency of the fuzzy controller depends on how accurately the open-loop fuzzy
model approximates the dynamic model. Hence, the number of rules used are of high im-
portance. A numerical simulation of the open-loop fuzzy model described by Equation (17)
using a set of two rules for each appendage is performed for validation.

The results were compared to the nonlinear open-loop dynamic model of the spacecraft
given by Equation (8). The membership functions of the rules 1, 2 are shown in Figure 3,
and the nominal values of the spacecraft parameters are listed in Table 1.

0 15 30 45

0

0.5

1

Rule 1 Rule 2

Figure 3. Fuzzy membership function.

Table 1. Parameter of the flexible spacecraft.

Parameters Values

ξ [0.7341, 1.0185, 0.9992, 1, 1]
ζ [0.3750, 0.9388, 1.5800, 2.1990, 2.8274]
li 1.524 m
roi [0 0 0.1212]T m
mi 2.2 kg
mp 227.5 kg
Ip diag[17.5 65 80] kg·m2

Ii diag[1.7 1.7 0] kg·m2

x(0) [−1.524 − 1.524 − 1.524 5◦ − 5◦ − 5◦ 01×14]
T
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The open-loop simulation shows that the T-S fuzzy model provides a good approxima-
tion of the dynamical model with a set of four rules. The absolute errors are summarized
in [32], and the comparison results of the position, angular position, and displacement for
appendages 1 and 2 are presented in Figures 4–7.
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3.2. Numerical Results

To examine the performance of the proposed fuzzy optimal variance controller, we
use a 45◦ angle rest-to-rest slew maneuver of both appendages with reference to the body
of the spacecraft, as shown in Figure 2. We neglect the axial deflection of the beam in the z
direction. Five admissible functions in each direction represent the elastic deflection in the
x and y directions. The spacecraft has fourteen actuators, six on the platform for controlling
the position and the attitude along three body-axes, and four actuators in the middle and
tip of each appendage for controlling the deflection in the x y directions. We use Matlab
toolbox YALMIP [38] to solve the set of the LMIs in Equations (28)–(31).

Overall, the performance of the T-S fuzzy optimal variance controller is very satisfac-
tory. The simulation results are shown in Figures 8–13. Figure 8 shows the position of the
center of mass of the spacecraft. Figure 9 shows the angular position of the spacecraft, and
Figures 10 and 11 shows the elastic deflection of the tip of appendage 1 and appendage 2 in
the x and y direction.

0 30 60 90 120 150 180

t [s]

-1.6

-1

0

1.2

R
x
 [
m

]

0 30 60 90 120 150 180

t [s]

-1

0

1

R
y
 [
m

]

0 30 60 90 120 150 180

t [s]

-1

0

1

R
z
 [
m

]

Figure 8. Position of the center of mass.
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Figure 13. Actuator forces on the appendages.

As can be seen, the fuzzy controller can stabilize the linear and the angular position
in less than 180 seconds. We notice that the vibration of both appendages is suppressed
entirely as well in less than one 180 second. Figures 12 and 13 shows the actuator’s
forces, moments, and the actuator’s forces at the middle and at the tip of appendage 1 and
appendage 2. It should be noted that the simulation was performed with an unknown
bounded initial condition satisfying ||σ|| ≤ 2.643.

3.3. Controller Performance

One way to improve the performance of the proposed fuzzy controller is to reduce the
settling time. For instance, by modifying the LMI Equation (29) as:[

γ2
j ΦjSi

ST
i ΦT

j X

]
≥ αI i = 1, 2, . . . , r; j = 1, 2, . . . , m (33)

where α ≥ 0, and I is the identity matrix with appropriate dimension. If a feasible solution
exists, then the settling time can be reduced considerably. A simulation was performed
with α = 0.68, and the results are shown in Figures 14–16.
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Figure 14. Position of the center of mass of the spacecraft with reduced settling time.
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Figure 15. Angular position of the spacecraft with reduced settling time.
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Figure 16. Displacement of appendage 1 with reduced settling time.

It should be noted that by modifying the LMI Equation (29), we increase the upper
bound of the actuator rate constraints. In other words, we use an actuator developing
larger forces and torque, as can be seen in Figures 17 and 18.
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Figure 17. Actuator with larger forces.
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Figure 18. Actuator with a larger torque.

To demonstrate the advantage of this technique, one can set the upper bound on δi and
γi to the desired values and solve the LMIs Equations (28)–(31). If a feasible solution exists,
then a choice can be made regarding the mechanical characteristics of individual actuators.
Figures 19–22 show the numerical simulation of the closed-loop system for different values
of the actuator’s amplitude.
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Figure 19. Position of the center of mass.
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Figure 21. Displacement of appendage 1.
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Figure 22. Displacement of appendage 2.

To compare the performance of the proposed controller, we use a fuzzy controller
with disturbance rejection properties and constraints on the amplitude of the actuator
alone. For detailed proof and the published results, we refer the reader to [39]. The
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following Figures 23 and 24 show the performance of the proposed controller versus the
fuzzy controller proposed in [39]. From the numerical simulation, we conclude that the
performance of the optimal variance controller is almost similar to the fuzzy controller with
disturbance rejection properties. It is worth mentioning that the fuzzy optimal variance
controller is more advantageous since it includes constraints on the rate. The rate constraints
are a significant parameter to consider during the design process of a spacecraft performing
a bang-bang slew maneuver, as shown in this paper.
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Figure 23. Position of the center of mass of the spacecraft.
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Figure 24. Angular position of the spacecraft.

4. Conclusions

This paper presented a fuzzy optimal variance control technique applied to a flexible
spacecraft equipped with multiple appendages during rest to rest slew maneuver. Because
the maneuver performed by the spacecraft is bang-bang in nature, it tends to generate
elastic deformation in the flexible appendages that can propagate throughout the entire
spacecraft and degrade its performance. The spacecraft is equipped with actuators subject
to amplitude and rate saturation. The fuzzy model used to develop the optimal variance
controller is based on the Takagi-Sugeno fuzzy system with disturbances. The feedback
gain is obtained by solving a set of linear matrix inequalities. The problem is formulated
as an optimization problem and solved using the interior point method. The novelty of
this paper is the application of the T-S fuzzy controller to a complex dynamical system
with a large number of states, such as the flexible spacecraft. The numerical simulation
and an evaluation of the closed-loop system versus a fuzzy controller with disturbance
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rejection properties and constraints on the amplitude of the actuator show that the pro-
posed controller performance is satisfactory. It should be mentioned that there are some
difficulties and challenges to overcome by using the proposed controller. For instance,
obtaining a feasible solution is not evident, especially for a complex dynamic system with
a large number of states. Further, if a viable solution is obtained, there is no guarantee
that the controller’s performance will be adequate. Hence, further tuning is imperative.
Unfortunately, there is no systematic way to tune the fuzzy controller except trial and error.
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