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Abstract: This paper aims to obtain the dynamical solution and instantaneous availability of software
systems with aperiodic impulse rejuvenation. Firstly, we formulate the generic system with a group of
coupled impulsive differential equations and transform it into an abstract Cauchy problem. Then we
adopt a difference scheme and establish the convergence of this scheme by applying the Trotter–Kato
theorem to obtain the system’s dynamical solution. Moreover, the instantaneous availability as an
important evaluation index for software systems is derived, and its range is also estimated. At last,
numerical examples are shown to illustrate the validity of theoretical results.
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1. Introduction

With the rapid development of science and technology, computers have become
a necessary part of people’s lives. However, in the process of using computers, it is
inevitable that there will be failures, mainly software failures [1]. Due to the accumulation
of error conditions and the exhaustion of system resources over long periods of execution,
a software system can have faults appear, which are called aging-related bugs, and they
manifest as increases in the failure rate and drops in performance. In addition, there may
be crash-related bugs, which cause unexpected interruptions of software systems in users’
environments [2,3]. The phenomenon caused by aging-related bugs and crash-related bugs
is known as software aging [4,5], which can result in economic loss and endanger human
life [6].

Software rejuvenation is an active fault management policy to combat software ag-
ing. The concept of software rejuvenation was proposed by Huang et al. [7] for the
first time, in which the state process can be modeled as a continuous time Markov chain.
Dohi et al. [8] illustrated that the model of Huang et al. [7] can be generalized to semi-
Markov processes and developed a non-parametric algorithm to estimate the optimal
software rejuvenation strategy. Xu [9] proved the well-posedness of software rejuvenation
systems using the theory of the strong continuous semigroup, and presented the instan-
taneous availability by the method of finite differential scheme. Dohi and Okamura [10]
obtained the optimal dynamic software rejuvenation strategy for maximizing the steady-
state availability of the operational software system with multiple degradation levels.
Koutras and Platis [11] proposed a multi-objective optimization strategy to optimize a
system’s overall performance capability. Zheng et al. [12] presented a composite stochastic
Petri reward network and its resulting non-Markovian availability model for operational
software systems.

Impulse systems refer to dynamic systems that change their states by jumping at
a given time, which have become a research hotspot in the fields of control theory and
engineering [13–17]. There has been rapid development in the literature on periodic
impulse systems. Kember and Babitsky [18] investigated an exact steady state solution
of vibro-impact systems with periodic impulse excitation via the periodic Green function
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method. Using Horn’s fixed point theorem, Shen et al. [19] discussed the bounded and
periodic properties of solutions of impulsive ordinary differential equations and functional
differential equations. Zeng [20] proved the existence of multiple periodic solutions for
n-dimensional functional differential equations with impulses. Huo et al. [21] analyzed the
relationships between system availability and impulsive indexes to improve the availability
of a software rejuvenation system with periodic impulses.

For the aperiodic impulse system, the research focuses on the stability of the system.
Sofiyev [22] exhibited the stability of conical shells made of functionally graded materials
subject to aperiodic impulsive loading. Naghshtabrizi et al. [23] established the exponential
stability of nonlinear time-varying impulse systems by utilizing the Lyapunov function with
discontinuous impulse time. Lu et al. [24] proposed the concept of the average impulse
interval and studied the globally exponential synchronization of impulsive dynamical
networks. Zhao et al. [25] investigated the global exponential stability of impulsive systems
with infinite distributed delay. Shao and Yuan [26] researched sampling dependent stability
for aperiodic sampled-data systems by employing a Lyapunov-like functional.

Although the dynamical solutions and instantaneous availability for periodic impulse
systems have been studied by several researches, little work has been carried out for the
dynamical solutions and instantaneous availability of aperiodic impulse systems. As one of
the branches of functional analysis, operator semigroup theory is a useful tool with which
to study the well-posedness of the abstract equation [27–29]. The Trotter–Kato theorem
provides a very useful framework for studying the numerical approximation convergence
of solutions of partial differential equations [30]. Xu and Hu in [31,32] studied the dynam-
ical solutions of a kind of repairable system with preventive maintenance and a system
consisting of two machines separated by finite storage buffers, respectively. Huo et al. [33]
analyzed the dynamic behavior of a computer integrated manufacturing system. However,
these papers [31–33] mainly involved dynamical systems without impulses. In this paper,
we investigate the dynamical solutions and instantaneous availability of software systems
with aperiodic impulse rejuvenation by applying the Trotter–Kato theorem. Note that ape-
riodic (periodic) impulse rejuvenation refers to a rejuvenation policy that changes the state
of a software system by jumping when the time intervals of two successive rejuvenations
are not equal (must equal), which can be widely used in the field of information, such as
telecommunication switching and billing systems [34], cloud computing infrastructure [35]
and Android operating systems [36].

The rest of this paper is organized as follows. Section 2 formulates a software system
with aperiodic impulse rejuvenation, which contains the comprehensive characteristics of a
continuous system and a discrete system. Section 3 analyzes the system’s dynamical solu-
tion, presents the expression of the instantaneous availability as an important evaluation
index of the system and estimates its range. In Section 4, numerical examples are shown to
illustrate the validity of the theoretical results. Section 5 concludes the paper.

2. System Formulation

In this section, we formulate a model for software systems with aperiodic impulse
rejuvenation as a group of coupled impulsive differential equations.

As shown in Figure 1 [37], robust state, failure probable state and failure state, denoted
as 0, 1 and 2, are three states of software systems with aperiodic impulse rejuvenation.

Suppose that the system starts at initial state 0 when time t = 0, impulse time sequence
{tk}, k = 1, 2, · · · satisfies 0 = t0 < t1 < t2 < · · · and lim

k→∞
tk = ∞. The sojourn times of

states 0 to 1, 1 to 2 and 0 to 2 follow an exponential distribution with parameters α0, β and
α1, respectively. The repair time of state 2 to 0 follows a general distribution with repair
rate ν(x), which satisfies the following reasonable assumptions:
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ν(x) > 0 a.e. x ∈ [0, ∞); sup
x∈[0,∞)

ν(x) < ∞;

∫ l

0
ν(x)dx < ∞, ∀l ∈ [0, ∞);

∫ ∞

0
ν(x)dx = ∞.

(1)

The rejuvenation time of state 1 to 0 follows an exponential distribution with parameter θ.

Figure 1. State transition diagram of software systems with aperiodic impulse rejuvenation.

By the supplementary variable method [37], software systems with aperiodic impulse
rejuvenation can be formulated as

dp0(t)
dt

= −(α0 + α1)p0(t) +
∫ ∞

0
ν(x)p2(t, x)dx, t 6= tk,

dp1(t)
dt

= α0 p0(t)− βp1(t), t 6= tk,

∂p2(t, x)
∂t

+
∂p2(t, x)

∂x
= −ν(x)p2(t, x), t 6= tk,

p2(t, 0) = α1 p0(t) + βp1(t), t 6= tk,

∆p0(tk) = θp1(tk),

∆p1(tk) = −θp1(tk),

∆p2(tk, x) = 0,

p0(0) = 1, p1(0) = p2(0, x) = 0, x > 0,

(2)

where p0(t) and p1(t) stand for the probabilities of the system being in the robust state
and in the failure probable state at time t, respectively; p2(t, x) stands for the probability
density that the failed system is in failure state and has an elapsed repair time of x at time t;
∀ε > 0, p0(tk), p1(tk) and p2(tk, x) are left continuous for t ∈ (tk − ε, tk], k = 1, 2, · · · .

Define the state space X = R2 × L1[0, ∞) with ‖ · ‖X =| · | + | · | +‖ · ‖L1[0,∞) < ∞
and the system operator A in X with its domain D(A). The system impulse operator B
from X → X is as follows:

A

 p0
p1

p2(x)

 =


−(α0 + α1)p0 +

∫ ∞

0
ν(x)p2(x)dx

α0 p0 − βp1

−dp2(x)
dx

− µ(x)p2(x)

, B =

 0 θ 0
0 −θ 0
0 0 0

,
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D(A) =

{
(p0, p1, p2(x))T ∈ X

∣∣∣∣∣ p2(x) is an absolutely continuous function,

p2(x) ∈W1,1[0, ∞), p2(0) = α1 p0 + βp1

}
,

where W1,1[0, ∞) is a Sobolev space; p2(x) ∈W1,1[0, ∞) refers to p2(x) ∈ L1[0, ∞),
dp2(x)

dx
∈

L1[0, ∞).
Let ~P(t) = (p0(t), p1(t), p2(t, ·))T. The system (3) can be formulated as an abstract

Cauchy problem in X:
d~P(t)

dt
= A~P(t), t 6= tk, k = 1, 2, · · ·

∆~P(t) = B~P(t), t = tk, k = 1, 2, · · ·
~P(0) = (1, 0, 0)T.

(3)

In this paper, we aim to analyze the dynamic behavior of system (3), which means that
we only need to consider the system behavior in the time interval [0, T]. Without loss of
generality, we assume that there are N impulse points (the number of times that an impulse
occurs) satisfying 0 = t0 < t1 < t2 < · · · < tN < T ≤ tN+1.

3. Dynamic Analysis

In this section, we study the dynamical solution and instantaneous availability of the
system (3).

3.1. Well-Posedness

To investigate the dynamical solution of the system (3), we need to prove the well-
posedness, which is shown in Theorem 1.

Theorem 1. The software system with aperiodic impulse rejuvenation (3) has a unique nonnegative
dynamical solution ~P(t) which satisfies

~P(t) =



S(t)~P(0), t ∈ [0, t1]

S(t− tk)(
k

∏
i=1

(I + B)S(ti − ti−1))~P(0), t ∈ (tk, tk+1], k = 1, 2, · · · , N − 1,

S(t− tN)(
N

∏
i=1

(I + B)S(ti − ti−1))~P(0), t ∈ (tN , T].

(4)

and
‖ ~P(t) ‖= 1, ∀t ∈ [0, T]. (5)

Proof. For θ = 0, we define a positive cone [38] of system (3) as

X+ = {(p0, p1, p2(x))T ∈ X | p0 ≥ 0, p1 ≥ 0, p2(x) ≥ 0, ∀x ∈ [0, ∞)};

then the system operator A can generate a positive C0-semigroup S(t), and there exists a
unique nonnegative dynamical solution [39–41]

~P(t) = S(t)~P(0) (6)

satisfying ‖ ~P(t) ‖= 1, ∀t ∈ [0,+∞).
For t ∈ [0, t1], we can directly obtain that the dynamical solution of system (3) is

obviously (6).
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For t ∈ (t1, t2], it follows from (3) and (6) that

~P(t+1 ) = (I + B)~P(t1) = (I + B)S(t1)~P(0), (7)
~P(t) = S(t− t1)~P(t+1 ) = S(t− t1)(I + B)S(t1)~P(0), (8)
~P(t2) = S(t2 − t1)(I + B)S(t1)~P(0). (9)

For t ∈ (t2, t3], it can be derived from (3), (6) and (9) that

~P(t+2 ) = (I + B)~P(t2) = (I + B)S(t2 − t1)(I + B)S(t1)~P(0),
~P(t) = S(t− t2)~P(t+2 ) = S(t− t2)(I + B)S(t2 − t1)(I + B)S(t1)~P(0),
~P(t3) = S(t3 − t2)(I + B)S(t2 − t1)(I + B)S(t1)~P(0).

By induction, we deduce the dynamical solution of system (3) as

~P(t) =



S(t)~P(0), t ∈ [0, t1]

S(t− tk)(
k

∏
i=1

(I + B)S(ti − ti−1))~P(0), t ∈ (tk, tk+1], k = 1, 2, · · · , N − 1,

S(t− tN)(
N

∏
i=1

(I + B)S(ti − ti−1))~P(0), t ∈ (tN , T].

In addition, it is obvious that ~P(t) ∈ X and ‖ ~P(t) ‖= 1, ∀t ∈ [0, T].

3.2. Approximation System

In this subsection, we derive a numerical approximation for solution (4) and (5) of
system (3) by applying the Trotter–Kato theorem [30].

Using the method of characteristics, a common method for solving partial differential
equations, p2(t, x) = 0 for x ≥ t is obtained. To derive a numerical approximation for
solution (4) and (5) of system (3) in time interval [0, T], we only need to divide the finite
interval [0, T] into n equal subintervals [xj, xj+1], xj = (j − 1)∆x, j = 1, 2, · · · , n and

∆x =
T
n

. Let p2,j(t) = p2(t, xj), νj = ν(xj). Then, the system (3) can be described as the
following approximation system.

dp0(t)
dt

= −(α0 + α1)p0(t) + ∆x
n

∑
j=1

νj p2,j(t), t 6= tk,

dp1(t)
dt

= α0 p0(t)− βp1(t), t 6= tk,

dp2,j(t)
dt

=
p2,j−1(t)− p2,j(t)

∆x
− νj p2,j(t), t 6= tk,

p2,0(t) = α1 p0(t) + βp1(t), t 6= tk,

∆p0(tk) = θp1(tk),

∆p1(tk) = −θp1(tk),

∆p2,j(tk) = 0,

p0(0) = 1, p1(0) = p2,j(0) = 0,

(10)

where k = 1, 2, · · ·N; j = 1, 2, · · · , n. By defining

~Pn(t) = (p0(t), p1(t), p2,1(t), p2,2(t), · · · , p2,n(t))T, (11)
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and the asymptotic generator

An =



−(α0 + α1) 0 ∆xν1 ∆xν2 · · · ∆xνn

α0 −β 0 0 · · · 0
α1

∆x
β

∆x
∧1 0 · · · 0

0 0
1

∆x
∧2 · · · 0

...
. . . . . . . . . . . .

0 0 0 0
1

∆x
∧n


, Bn =



0 θ 0 · · · 0

0 −θ 0 · · · 0
0 0 0 · · · 0

...
...

...
...

...
0 0 0 0 0



on Xn = Rn+2, where ∧j = −(
1

∆x
+ νj), j = 1, 2, · · · , n, the above approximation system

(10) can be transformed into an abstract Cauchy problem of the ODE system
d~Pn(t)

dt
= An~Pn(t), t 6= tk, k = 1, 2, · · · , N,

∆~Pn(t) = Bn~Pn(t), t = tk, k = 1, 2, · · · , N,

~Pn(0) = (1, 0, 0, · · · , 0)T
1×(n+2),

(12)

and then we have the following important theorem.

Theorem 2. Define Un, En, ‖ · ‖n as

Un~ψ =

(
p0, p1,

1
∆x

∫ x1

x0

p2(x)dx, . . . ,
1

∆x

∫ xn

xn−1

p2(x)dx
)T

, (13)

En~ϕ
n =

(
p0, p1,

n

∑
j=1

p2,jχ(xj−1,xj]

)T

, (14)

‖~ϕn‖n = |p0|+ |p1|+ ∆x
n

∑
j=1

∣∣p2,j
∣∣, (15)

where
~ψ = (p0, p1, p2(x))T ∈ X,

~ϕn = (p0, p1, p2,1, p2,2, · · · , p2,n)
T ∈ Xn,

and let S(t) and eAnt be the semigroup generated by A and An on X and Xn, respectively, then for
every x ∈ X and t ≥ 0,

∥∥∥EneAntUnx− S(t)x
∥∥∥→ 0 as n→ ∞ uniformly on bounded t-intervals.

Moreover, the dynamical solution ~P(t) = (p0(t), p1(t), p2(t, x))T of system (3) is

p0(t) =



lim
n→∞

~H0eAnt~Pn(0), t ∈ [0, t1],

lim
n→∞

~H0eAn(t−tk)
k

∏
i=1

(I + Bn)eAn(ti−ti−1)~Pn(0), t ∈ (tk, tk+1],

lim
n→∞

~H0eAn(t−tN)
N

∏
i=1

(I + Bn)eAn(ti−ti−1)~Pn(0), t ∈ (tN , T],

(16)
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p1(t) =



lim
n→∞

~H1eAnt~Pn(0), t ∈ [0, t1],

lim
n→∞

~H1eAn(t−tk)
k

∏
i=1

(I + Bn)eAn(ti−ti−1)~Pn(0), t ∈ (tk, tk+1],

lim
n→∞

~H1eAn(t−tN)
N

∏
i=1

(I + Bn)eAn(ti−ti−1)~Pn(0), t ∈ (tN , T],

(17)

and

p2(t, x) = lim
n→∞

n

∑
j=1

p2,j(t)χ(xj−1,xj]

=



lim
n→∞

~H2eAnt~Pn(0), t ∈ [0, t1],

lim
n→∞

~H2eAn(t−tk)
k

∏
i=1

(I + Bn)eAn(ti−ti−1)~Pn(0), t ∈ (tk, tk+1],

lim
n→∞

~H2eAn(t−tN)
N

∏
i=1

(I + Bn)eAn(ti−ti−1)~Pn(0), t ∈ (tN , T],

(18)

in which k = 1, 2, · · · , N − 1, by setting ~H0 = (1, 0, 0, 0, · · · , 0)1×(n+2), ~H1 =

(0, 1, 0, 0, · · · , 0)1×(n+2), ~H2 = (0, 0, 1, 1, · · · , 1)1×(n+2).

Proof. The first part of Theorem 2 can be proved by [30]. On this basis, the dynamical
solution ~P(t) = (p0(t), p1(t), p2(t, ·))T of system (3) can be expressed as

~P(t) = lim
n→∞

En~Pn(t)

= lim
n→∞

(
p0(t), p1(t),

n

∑
j=1

p2,j(t)χ(xj−1,xj]

)T

=

(
p0(t), p1(t), lim

n→∞

n

∑
j=1

p2,j(t)χ(xj−1,xj]

)T

,

(19)

by Equations (5) and (14), which yield (16)–(18).

3.3. Instantaneous Availability

In this subsection, we present the expression of the instantaneous availability of
system (3) and estimate its range.

Lemma 3. The instantaneous availability A(t) of system (3) is

A(t) =p0(t) + p1(t)

=



lim
n→∞

~HeAnt~Pn(0), t ∈ [0, t1],

lim
n→∞

~HeAn(t−tk)
k

∏
i=1

(I + Bn)eAn(ti−ti−1)~Pn(0), t ∈ (tk, tk+1],

lim
n→∞

~HeAn(t−tN)
N

∏
i=1

(I + Bn)eAn(ti−ti−1)~Pn(0), t ∈ (tN , T],

(20)

where k = 1, 2, · · · , N − 1 and ~H = ~H0 + ~H1 = (1, 1, 0, 0, · · · , 0)1×(n+2).

Proof. Since state 0 and state 1 are the working states as described in Section 2, the in-
stantaneous availability A(t) of system (3) can be directly obtained by Equations (16)
and (17).
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Theorem 4. Assume that the positive numbers τ1 and τ2 are the lower bound and upper bound of
the impulse interval satisfying

0 < τ1 = inf
k∈{1,2,··· ,N+1}

(tk − tk−1) ≤ sup
k∈{1,2,··· ,N+1}

(tk − tk−1) = τ2 < ∞. (21)

Let A1(t) and A2(t) are the corresponding instantaneous availability of τ1 and τ2, respectively.
Then, the range of the instantaneous availability for system (3) can be estimated as

A2(t) ≤ A(t) ≤ A1(t) (22)

for fixed impulse strength θ in t ∈ [0, T].

Proof. Based on (21) and the upper and lower bounds of impulsive intervals method [42],
we derive the instantaneous availability A1(t) and A2(t) of system (3) by

Am(t) =


lim

n→∞
~HeAnt~Pn(0), t ∈ [0, τm]

lim
n→∞

~HeAn(t−kτm)((I + Bn)eAnτm)k~Pn(0), t ∈ (kτm, (k + 1)τm],

lim
n→∞

~HeAn(t−Nτm)((I + Bn)eAnτm)N~Pn(0), t ∈ (Nτm, T]

(23)

where k = 1, 2, · · · , N − 1 and m = 1, 2. It is well known that lim
n→∞

~HeAnt~Pn(0) of system

(12) decreases as the time increases in time t ∈ [0, t1] . As the lower bound τ1 and upper
bound τ2 of Equation (21) satisfy τ1 ≤ τ2, we have

lim
n→∞

~HeAnτ2~Pn(0) ≤ lim
n→∞

~HeAnτ1~Pn(0).

Due to the positivity of the impulse strength θ, the range of the instantaneous avail-
ability for system (3) can be estimated as (22).

Remark 5. Proposition 4 implies that when the impulse interval is τ1 or τ2, system (3) is a software
system with periodic impulse rejuvenation.

4. Numerical Examples

In this section, some numerical examples are presented to illustrate the validity of the
theoretical results.

To simulate the dynamic behavior of the software system with aperiodic impulse

rejuvenation (3), we take a virtual machine as an example, and then set T = 9, α0 =
1
7

,

α1 =
1

120
, β =

1
3

and the repair time follows a Weibull distribution with repair rate

ν(x) = 50x, where the parameter values α0, α1, β used are based on the experimental
studies, ν(x) is set by ourselves according to the values in references [43,44].

Figure 2 depicts the dynamical approximation
n

∑
j=1

p2,j(t)χ(xj−1,xj]
of (19) with different

segmentation patterns n. We can see that when n increases,
n

∑
j=1

p2,j(t)χ(xj−1,xj]
converges to

the same curve, which reflects the validity of Theorem 2.
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Figure 2. Dynamical approximation
n

∑
j=1

p2,j(t)χ(xj−1,xj] of (19).

Let impulse action occur in t1 = 1, t2 = 3, t3 = 6, t4 = 8, which implies that the
impulse lower bound τ1 = 1 and impulse upper bound τ2 = 3, then the instantaneous
availability of system (3) and its range for the impulse strength θ = 0.8 are depicted in
Figure 3. With Figure 3, we find that the instantaneous availability of software systems
with impulse rejuvenation is significantly higher than that of software systems without
impulse rejuvenation, and ∀t ∈ [0, 9], A2(t) ≤ A(t) ≤ A1(t), which satisfies Theorem 4 and
Remark 5. Therefore, the system instantaneous availability can be improved by decreasing
the impulse interval.

Figure 3. Instantaneous availability of the software system.

In Figure 4, with the change in impulse strength θ, the instantaneous availabilities
of the system for impulse action occurred at t1 = 1, t2 = 3, t3 = 6, t4 = 8 are provided.
Figure 4 shows that the instantaneous availability of software systems with impulse reju-
venation is higher than that of software systems without impulse rejuvenation, and the
instantaneous availability is inversely proportional to the impulse interval in time interval
t ∈ (tk, tk+1], k = 1, 2, 3, 4. Thus, the system’s instantaneous availability can be improved
by increasing the system impulse strength.
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Figure 4. Instantaneous availability with different impulse strengths θ.

The cross-section A(t) = 0.995 of the three-dimensional graph for time t (impulse
action occurred at t1 = 1, t2 = 3, t3 = 6, t4 = 8), impulse strength θ and A(t) is depicted
in Figure 5. In addition, the region of A(t) ≥ 0.995 is also given in Figure 6, which shows
that (t, θ) in the shaded area, whereas in the non-shaded area, the availability cannot
reach 0.995 regardless of the intensity of the impulse. Therefore, we can guarantee the
instantaneous availability A(t) being greater than a certain value by choosing suitable t
and θ.

Figure 5. Cross-section of A(t) = 0.995.

Remark 6. Although all the findings of the numerical examples section are based on the experimen-

tal data α0 =
1
7

, α1 =
1

120
, β =

1
3

of a virtual machine, we can simulate the dynamical solution
and instantaneous availability of software systems for any given transition rates α0, α1, β, which is
consistent with Theorems 2 and 4 and Remark 5.
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Figure 6. Projection of A(t) ≥ 0.995.

5. Conclusions

The main contributions of this paper were obtaining the dynamical solution and in-
stantaneous availability of software systems with aperiodic impulse rejuvenation. Firstly,
the system was formulated by a group of coupled impulsive differential equations and
transformed into an abstract Cauchy problem. Then we proved the existence and unique-
ness of the system’s dynamical solution by means of semigroup theory. To investigate the
numerical approximation of the system, we constructed an approximation system and
derived the dynamical solution of the software system with aperiodic impulse rejuvenation
by using Trotter–Kato theorem. Moreover, the expression of the system’s instantaneous
availability was given, and the range of the system’s instantaneous availability was esti-
mated by applying the upper and lower bounds of the impulsive intervals method. In the
numerical examples, we depicted the system dynamic behavior, estimated its instantaneous
availability and then provided the region of time t and impulse strength θ that ensures
instantaneous availability greater than a certain value.
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