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Abstract

:

This paper discusses consensus control of nonlinear coupled parabolic PDE-ODE-based multi-agent systems (PDE-ODEMASs). First, a consensus controller of leaderless PDE-ODEMASs is designed. Based on a Lyapunov-based approach, coupling strengths are obtained for leaderless PDE-ODEMASs to achieve leaderless consensus. Furthermore, a consensus controller in the leader-following PDE-ODEMAS is designed and the corresponding coupling strengths are obtained to ensure the leader-following consensus. Two examples show the effectiveness of the proposed methods.
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1. Introduction


Consensus in multi-agent systems (MASs) is to achieve a common group objective when agents have different initial states [1,2,3,4]. It has received great attention in the past decade as a result from its wide applications in flocking of mobile robots [5], opinion dynamics in social networks [6], formation of unmanned vehicles [7,8,9], microgrid energy management [10], traffic flow [11], etc.



In a pioneering contribution, many important control methods were proposed for consensus of MASs, focusing on models based on ordinary differential equations [12,13,14,15,16,17,18,19,20]. Actually, there are many practical cases in nature and discipline fields with spatio-temporal characteristics, modeled by coupled partial differential equations (PDEs) [21,22,23,24,25]. Applied to overhead cranes [26], hormonal therapy [27], traffic flow [28], etc., another class of spatio-temporal models is based on coupled partial differential equations—ordinary differential equations (PDE-ODEs) [29,30,31]. Therefore, it is important to research consensus control of PDE-based coupled MASs (PDEMASs) or coupled PDE-ODE-based MASs (PDE-ODEMASs).



More recently, there have been many important results related to PDEMASs. Ref. [32] studied a distributed adaptive controller of uncertain leader-following parabolic PDEMASs; ref. [33] studied consensus control for parabolic and second-order hyperbolic PDEMASs; ref. [34] studied distributed P-type iterative learning for PDEMASs with time delay; refs. [35,36] studied iterative learning control for PDEMASs without and with time delay; ref. [37] studied boundary control of 3-D PDEMASs with arbitrarily large boundary input delay; refs. [38,39] studied consensus and input constraint consensus of nonlinear PDEMASs using boundary control. However, consensus control for PDE-ODEMASs has not been addressed yet, which is a new challenge.



Motivated by the above, this paper studies consensus control of nonlinear coupled parabolic PDE-ODEMASs with Neumann boundary conditions. First, dealing with the leaderless case, a consensus controller of leaderless PDE-ODEMASs is designed. The leaderless consensus error system is obtained and one Lyapunov functional candidate is given. Using Wirtinger’s inequality and matrix properties, coupling strengths are obtained for leaderless PDE-ODEMASs to achieve cluster consensus. Furthermore, dealing with the leader-following case, a consensus controller of leader-following PDE-ODEMASs is designed. The leader-following consensus error system is obtained and another Lyapunov functional candidate is given. The corresponding coupling strengths are obtained to ensure leader-following consensus.



The remainder of this paper is organized as follows. The problem formulation is given in Section 2. Section 3 presents a consensus control design of the leaderless PDE-ODEMAS and Section 4 gives that of the leader-following PDE-ODEMAS. An example to illustrate the effectiveness of the proposed method is presented in Section 5 and Section 6 offers some concluding remarks.



Notations:   λ max   ( · )  ,  λ 2   ( · )    stand for the maximum eigenvalue and smallest nonzero eigenvalue of ·, respectively. ⊗ is a Kronecker product of matrices. The identity matrix of n order is denoted by   I n  .   | | · | |   denotes the Euclidean norm for vectors in    R  n   or the induced 2-norm for matrices in    R   m × n   .




2. Problem Formulation


Consider a nonlinear PDE-ODEMAS as


          x ˙  i   ( t )  = f  (  x i   ( t )  )  +  ∫ 0 1   w (  y i   ( ξ , t )  ) d ξ  +  u i   ( t )  ,            ∂  y i   ( ξ , t )    ∂ t   = α    ∂ 2   y i   ( ξ , t )    ∂  ξ 2    + p  (  y i   ( ξ , t )  )                          + q  (  x i   ( t )  )  +  U i   ( ξ , t )  ,     



(1)




such that


            ∂  y i   ( ξ , t )    ∂ ξ     ξ = 0   = 0 ,     ∂  y i   ( ξ , t )    ∂ ξ     ξ = 1   = 0 ,           x i   ( 0 )  =  x i 0  ,  y i   ( ξ , 0 )  =  y i 0   ( ξ )  ,     



(2)




where   ( ξ , t ) ∈ [ 0 , 1 ] × [ 0 , ∞ )  , respectively, mean the spatial variable and time variable;    x i   ( t )  ,  y i   ( ξ , t )  ∈  R n    are the states;    u i   ( t )  ,  U i   ( ξ , t )  ∈  R n    are the control inputs;    x i 0  ,  y  i  0   ( ξ )    are bounded and    y  i  0   ( ξ )    is continuous;  α  is a positive scalar;   i ∈ { 1 , 2 , ⋯ , N }  ; and   f  ( · )  , w  ( · )  , p  ( · )  , q  ( · )  ∈  R n    are sufficiently smooth nonlinear functions.



Define consensus error    e i   ( t )     =  Δ   x i   ( t )  −  1 N   ∑  j = 1  N    x j   ( t )     and    ε i   ( ξ , t )     =  Δ   y i   ( ξ , t )  −  1 N   ∑  j = 1  N    y j   ( ξ , t )    .



Definition 1.

For the leaderless PDE-ODEMAS (1), (2) with any initial conditions, if


    lim  t → ∞    e i   ( t )  → 0 ,  lim  t → ∞    ε i   ( ξ , t )  → 0 ,   



(3)




for any   i ∈ { 1 , 2 , ⋯ , N }  , then the leaderless PDE-ODEMAS (1), (2) achieves consensus.





Lemma 1

([40]). Let κ be a differentiable function with   κ ( 0 ) = 0   and   κ ( 1 ) = 0  , then


   ∫ 0 1    κ T   ( s )  κ  ( s )  d s  ≤  π  − 2    ∫ 0 1     κ ˙  T   ( s )   κ ˙   ( s )  d s  .  



(4)









Lemma 2

([41]). For an undirected connected graph with Laplacian matrix L, and   x ∈  R n    such that    1 N T  x = 0  , then


   λ 2   ( L )   x T  x ≤  x T  L x .  



(5)









If Laplacian matrix   L ∈  R  N × N     is symmetric, then   0 =  λ 1   ( · )  <  λ 2   ( · )  ≤ ⋯ ≤  λ N   ( · )   . The smallest nonzero eigenvalue of    λ 2   ( · )    is known as the algebraic connectivity of graphs [41].



Assumption A1.

Assume   f ( · ) , p ( · ) , q ( · ) , w ( · )   satisfy the Lipschitz condition, i.e., for any   ν 1   and    ν 2  ∈  R n   , there exist scalars    γ 1  ,  γ 2  ,  γ 3  ,  γ 4  > 0   such that


          |   f  (  ν 1  )  − f  (  ν 2  )    | ≤   γ 1   |   ν 1  −  ν 2   |  ,           |   p  (  ν 1  )  − p  (  ν 2  )    | ≤   γ 2   |   ν 1  −  ν 2   |  ,           |   q  (  ν 1  )  − q  (  ν 2  )    | ≤   γ 3   |   ν 1  −  ν 2   |  ,           |   w  (  ν 1  )  − w  (  ν 2  )    | ≤   γ 4   |   ν 1  −  ν 2   |  .      



(6)










3. Consensus Control of the Leaderless PDE-ODEMAS


To achieve consensus of the leaderless PDE-ODEMAS (1), the consensus controller is designed as:


         u i   ( t )  = d  ∑  j = 1  N    a  i j    (  x j   ( t )  −  x i   ( t )  )   ,           U i   ( ξ , t )  = k  ∑  j = 1  N    b  i j    (  y j   ( ξ , t )  −  y i   ( ξ , t )  )   ,     



(7)




where d and k are the coupling strengths to be determined,   i ∈ { 1 , 2 , ⋯ , N }  . Assume that the topological structure   A =   (  a  i j   )   N × N     is defined as:    a  i j   =  a  j i   > 0  ( i ≠ j )    if the agent i connects to j, otherwise    a  i j   = 0  ( i ≠ j )   ;    a  i i   = 0  . The topological structure   B =   (  b  i j   )   N × N     is defined the same as A.



The consensus error system can be obtained from (1), (2), and (7) that


          e ˙  i   ( t )  = f  (  x i   ( t )  )  −  1 N   ∑  j = 1  N  f  (  x j   ( t )  )  +  ∫ 0 1   w (  y i   ( ξ , t )  ) d ξ  −  1 N   ∑  j = 1  N   ∫ 0 1   w (  y j   ( ξ , t )  ) d ξ                     + d  ∑  j = 1  N    a  i j    (  x j   ( t )  −  x i   ( t )  )   ,            ∂  ε i   ( ξ , t )    ∂ t   = α    ∂ 2   ε i   ( ξ , t )    ∂  ξ 2    + p  (  y i   ( ξ , t )  )  −  1 N   ∑  j = 1  N  p  (  y j   ( ξ , t )  )  + q  (  x i   ( t )  )                        −  1 N   ∑  j = 1  N  q  (  x j   ( t )  )  + k  ∑  j = 1  N    b  i j    (  y j   ( ξ , t )  −  y i   ( ξ , t )  )   ,     



(8)




such that


            ∂  ε i   ( ξ , t )    ∂ ξ     ξ = 0   = 0 ,     ∂  ε i   ( ξ , t )    ∂ ξ     ξ = 1   = 0 ,           e i   ( 0 )  =  e i 0   ( ξ )  ,  ε i   ( ξ , 0 )  =  ε i 0   ( ξ )  ,     



(9)




where    e i 0     =  Δ   x  i  0  −  1 N   ∑  j = 1  N   x j 0    and    ε i 0   ( ξ )     =  Δ   y  i  0   ( ξ )  −  1 N   ∑  j = 1  N   y j 0   ( ξ )   .



Theorem 1.

Under Assumption 1, assume the graphs A and B are connected. Using the controller (7), the leaderless PDE-ODEMAS (1), (2) achieves consensus if


         d >    γ 1  +  1 2   γ 3 2  +  1 2     λ 2   (  L a  )    ,        k > max {    γ 2  +  1 2   γ 4 2  +  1 2  − α  π 2     λ 2   (  L b  )    , 0 } .      



(10)









Proof. 

Consider the following Lyapunov function as


         V 1   ( t )  =  1 2   ∑  i = 1  N    e i T   ( t )   e i   ( t )   +  1 2   ∑  i = 1  N    ∫ 0 1    ε i T   ( ξ , t )   ε i   ( ξ , t )  d ξ   .     



(11)




We have


       V 1  ˙   ( t )  =      ∑  i = 1  N   e i T   ( t )    e ˙  i   ( t )  +  ∑  i = 1  N    ∫ 0 1    ε i T   ( ξ , t )    ∂  ε i   ( ξ , t )    ∂ t   d ξ        =     ∑  i = 1  N   e i T   ( t )   [ f  (  x i   ( t )  )  −  1 N   ∑  j = 1  N  f  (  x j   ( t )  )  ]           +  ∑  i = 1  N   e i T   ( t )   [  ∫ 0 1   w (  y i   ( ξ , t )  ) d ξ  −  1 N   ∑  j = 1  N   ∫ 0 1   w (  y j   ( ξ , t )  ) d ξ  ]           +  ∑  i = 1  N    e i T   ( t )  d  ∑  j = 1  N    a  i j    (  e j   ( t )  −  e i   ( t )  )    +  ∑  i = 1  N   ∫ 0 1    ε i T   ( ξ , t )  Θ    ∂ 2   ε i   ( ξ , t )    ∂  ξ 2     d ξ          +  ∑  i = 1  N   ∫ 0 1   ε i T   ( ξ , t )   ( p  (  y i   ( ξ , t )  )  −  1 N   ∑  j = 1  N  p  (  y j   ( ξ , t )  )  )  d ξ          +  ∑  i = 1  N   ∫ 0 1   ε i T   ( ξ , t )   ( q  (  x i   ( t )  )  −  1 N   ∑  j = 1  N  q  (  x j   ( t )  )  )  d ξ          +   ∑  i = 1  N   ∫ 0 1    ε i T   ( ξ , t )  k  ∑  j = 1  N    b  i j    (  ε j   ( ξ , t )  −  ε i   ( ξ , t )  )    d ξ  .     



(12)







According to the matrix property,


         ∑  i = 1  N    e i T   ( t )  d  ∑  j = 1  N    a  i j    (  e j   ( t )  −  e i   ( t )  )         =    − d  e T   ( t )   (  L a  ⊗  I n  )  e  ( t )       ≤    − d  λ 2   (  L a  )   e T   ( t )  e  ( t )  ,     



(13)




and


         ∑  i = 1  N   ∫ 0 1    ε i T   ( ξ , t )  k  ∑  j = 1  N    b  i j    (  ε i   ( ξ , t )  −  ε j   ( ξ , t )  )    d ξ      =    − k  ∫ 0 1    ε T   ( ξ , t )   (  L b  ⊗  I n  )  ε  ( ξ , t )  d ξ       ≤    − k  λ 2   (  L b  )   ∫ 0 1    ε T   ( ξ , t )  ε  ( ξ , t )  d ξ  ,     



(14)




where    λ 2   ( · )    denotes the smallest nonzero eigenvalue of ·,    L  a , i j   = −  a  i j     when   i ≠ j  ,    L  a , i i   =   ∑  j = 1  N    a  i j    ,    L  b , i j   = −  b  i j     when   i ≠ j  ,    L  b , i i   =   ∑  j = 1  N    b  i j    . Therefore,   L a  ,   L b   are Laplacian matrices. Using Lemma 1, for   α > 0  ,


         ∫ 0 1    ∑  i = 1  N    ε i T   ( ξ , t )  α  ε  i , ξ ξ    ( ξ , t )   d ξ       =    − α  ∫ 0 1    ε ξ T   ( ξ , t )   ε ξ   ( ξ , t )  d ξ       ≤    − α  π 2   ∫ 0 1    ε T   ( ξ , t )  ε  ( ξ , t )  d ξ  .     



(15)







Using Assumption 1, owing to     ∑  i = 1  N    e i T   ( t )   ( f  (  1 N   ∑  j = 1  N   x j   ( t )  )  −  1 N   ∑  j = 1  N  f  (  x j   ( t )  )  )  = 0   and     ∑  i = 1  N    ε i T    ( ξ , t )  ( f   (  1 N   ∑  j = 1  N  p  (  y i   ( ξ , t )  )  )  −  1 N   ∑  j = 1  N  p  (  y i   ( ξ , t )  )  = 0  , we have


      ∑  i = 1  N   e i T   ( t )   ( f  (  x i   ( t )  )  −  1 N   ∑  j = 1  N  f  (  x j   ( t )  )  )  ≤  γ 1   ∑  i = 1  N   e i 2   ( t )  ,     



(16)




and


       ∑  i = 1  N   ∫ 0 1    ε i T   ( ξ , t )   ( p  (  y i   ( ξ , t )  )  −  1 N   ∑  j = 1  N  p  (  y j   ( ξ , t )  )  )   d ξ  ≤  γ 2   ∫ 0 1   ε i 2   ( ξ , t )  d ξ .     



(17)







In the same way,


         ∑  i = 1  N   ∫ 0 1    ε i T   ( ξ , t )   ( q  (  x i   ( t )  )  −  1 N   ∑  j = 1  N  q  (  x j   ( t )  )  )   d ξ      =     ∑  i = 1  N   ∫ 0 1    ε i T   ( ξ , t )   ( q  (  x i   ( t )  )  − q  (  1 N   ∑  j = 1  N   x j   ( t )  )  )   d ξ      ≤      1 2   ∑  i = 1  N   ∫ 0 1    ε i T   ( ξ , t )   ε i   ( ξ , t )   d ξ  +  1 2   ∑  i = 1  N   ∫ 0 1    ( q  (  x i   ( t )  )  − q  (  1 N   ∑  j = 1  N   x j   ( t )  )  )  2  d ξ      ≤     1 2    ∑  i = 1  N   ∫ 0 1    ε i T   ( ξ , t )   ε i   ( ξ , t )   d ξ  +  1 2   γ 3 2   ∑  i = 1  N   e i 2   ( t )  ,     



(18)




and


         ∑  i = 1  N   e i T   ( t )   ∫ 0 1   ( w  (  y i   ( ξ , t )  )  −  1 N   ∑  j = 1  N  w  (  y j   ( ξ , t )  )  )  d ξ      =     ∑  i = 1  N   e i T   ( t )   ∫ 0 1   ( w  (  y i   ( ξ , t )  )  − w  (  1 N   ∑  j = 1  N   y j   ( ξ , t )  )  )  d ξ      ≤     1 2   ∑  i = 1  N   [  e i T   ( t )   e i   ( t )  d ξ +  ∫ 0 1    ( w  (  y i   ( ξ , t )  )  − w  (  1 N   ∑  j = 1  N   y j   ( ξ , t )  )  )  2  d ξ ]       ≤     1 2   ∑  i = 1  N   e i T   ( t )   e i   ( t )  +  1 2   ∑  i = 1  N   γ 4 2   ∫ 0 1   ε  i  2   ( ξ , t )  d ξ .     



(19)







Substituting (13)–(19) into (12),


       V 1  ˙   ( t )  ≤     −  ρ 1   e T   ( t )  e  ( t )  −  ρ 2   ∫ 0 1    ε 2   ( ξ , t )   d ξ      ≤    − 2 ρ V ( t ) ,     



(20)




where   e    =  Δ    [  e 1 T  ,  e 2 T  , ⋯ ,  e N T  ]  T   ,   ε    =  Δ    [  ε 1 T  ,  ε 2 T  , ⋯ ,  ε N T  ]  T   ,    ρ 1     =  Δ  −  γ 1  −  1 2   γ 3 2  −  1 2  + d  λ 2   (  L a  )   ,    ρ 2     =  Δ  −  γ 2  −  1 2   γ 4 2  −  1 2  + α  π 2  + k  λ 2   (  L b  )   , and   ρ    =  Δ  min {  ρ 1  ,  ρ 2  }  .



Taking d and k as (10) yields,


      ρ 1  > 0 ,  ρ 2  > 0 .     



(21)







It follows from (20) and (21) that    V 1   ( t )  ≤  V 1   ( 0 )  exp  { − 2 ρ t }   , which implies    e i   ( t )  → 0   and    ε i   ( ξ , t )  → 0   as   t → ∞   This completes the proof. □






4. Consensus Control of the Leader-Following PDE-ODEMAS


The leader agent is supposed to be


          x ˙  0   ( t )  = f  (  x 0   ( t )  )  +  ∫ 0 1   w (  y 0   ( ξ , t )  ) d ξ  ,            ∂  y 0   ( ξ , t )    ∂ t   = α    ∂ 2   y 0   ( ξ , t )    ∂  ξ 2    + p  (  y 0   ( ξ , t )  )  + q  (  x 0   ( t )  )  ,     



(22)




such that


            ∂  y 0   ( ξ , t )    ∂ ξ     ξ = 0   = 0 ,     ∂  y 0   ( ξ , t )    ∂ ξ     ξ = 1   = 0 ,           x 0   ( 0 )  =  x 0 0  ,  y 0   ( ξ , 0 )  =  y 0 0   ( ξ )  ,     



(23)




where    x 0 0  ,  y  0  0   ( ξ )    are bounded and    y  0  0   ( ξ )    is continuous.



The leader-following consensus controller is designed as:


         u i   ( t )  = d  [  ∑  j = 1  N    a  i j    (  x j   ( t )  −  x i   ( t )  )   +  δ i   (  x 0   ( t )  −  x i   ( t )  )  ]  ,           U i   ( ξ , t )  = k  [  ∑  j = 1  N    b  i j    (  y j   ( ξ , t )  −  y i   ( ξ , t )  )   +  ρ i   (  y 0   ( ξ , t )  −  y i   ( ξ , t )  )  ]  ,     



(24)




where    δ i  > 0   if   x i   can obtain the information of   x 0  ; otherwise,    δ i  = 0  ; and    ρ i  > 0   if   y i   can obtain the information of   y 0  ; otherwise,    ρ i  = 0  .



Let     e ˜  i   ( t )  =  x i   ( t )  −  x 0   ( t )    and     ε ˜  i   ( ξ , t )  =  y i   ( ξ , t )  −  y 0   ( ξ , t )   . The leader-following consensus error system is obtained as


           e ˜  ˙  i   ( t )  = f  (  x i   ( t )  )  − f  (  x 0   ( t )  )  +  ∫ 0 1   w (  y i   ( ξ , t )  ) d ξ                     −  ∫ 0 1   w (  y 0   ( ξ , t )  ) d ξ  − d  ∑  j = 1  N    g  i j     e ˜  j   ( t )   ,            ∂   ε ˜  i   ( ξ , t )    ∂ t   = α    ∂ 2    ε ˜  i   ( ξ , t )    ∂  ξ 2    + p  (  y i   ( ξ , t )  )  − p  (  y 0   ( ξ , t )  )                        + q  (  x i   ( t )  )  − q  (  x 0   ( t )  )                          − k  ∑  j = 1  N    h  i j     ε ˜  j   ( ξ , t )   ,     



(25)




such that


            ∂   ε ˜  i   ( ξ , t )    ∂ ξ     ξ = 0   = 0 ,     ∂   ε ˜  i   ( ξ , t )    ∂ ξ     ξ = 1   = 0 ,            e ˜  i   ( 0 )  =   e ˜  i 0   ( ξ )  ,   ε ˜  i   ( ξ , 0 )  =   ε ˜  i 0   ( ξ )  ,     



(26)




where   G =  [  g  i j   ]  =  L A  + d i a g  {  δ i  }  , H =  [  h  i j   ]  =  L B  + d i a g  {  ρ i  }   ,     e ˜  i 0     =  Δ   x  i  0  −  x  0  0    and     ε ˜  i 0   ( ξ )     =  Δ   y  i  0   ( ξ )  −  y  0  0   ( ξ )   .



Definition 2.

For the leader-following PDE-ODEMAS (22), (23) with any initial conditions, if


    lim  t → ∞     e ˜  i   ( t )  → 0 ,  lim  t → ∞    | |    ε ˜  i   ( ξ , t )   | |  → 0 ,   



(27)




for any   i ∈ { 1 , 2 , ⋯ , N }  , then the leader-following PDE-ODEMAS (22), (23) achieves consensus.





Theorem 2.

Under Assumption 1, assume the graphs A and B are connected. Using the controller (26), the leader-following PDE-ODEMAS (1) achieves consensus if


         d >    γ 1  +  1 2   γ 3 2  +  1 2     λ min   ( G )    ,        k > max {    γ 2  +  1 2   γ 4 2  +  1 2  − α  π 2     λ min   ( H )    , 0 } .      



(28)









Proof. 

Consider the Lyapunov functional candidate as


      V 2   ( t )  =  1 2       ∑  i = 1  N     e ˜  i T   ( t )    e ˜  i   ( t )   +  1 2   ∑  i = 1  N    ∫ 0 1     ε ˜  i T   ( ξ , t )    ε ˜  i   ( ξ , t )  d ξ   .     



(29)




One has


       V 2  ˙   ( t )  =      ∑  i = 1  N    e ˜  i T   ( t )     e ˜  ˙  i   ( t )  +  ∑  i = 1  N    ∫ 0 1     ε ˜  i T   ( ξ , t )    ∂   ε ˜  i   ( ξ , t )    ∂ t   d ξ        =     ∑  i = 1  N    e ˜  i T   ( t )   ( f  (  x i   ( t )  )  − f  (  x 0   ( t )  )  )           +  ∑  i = 1  N    e ˜  i T   ( t )   [  ∫ 0 1   w (  y i   ( ξ , t )  ) d ξ  −  ∫ 0 1   w (  y 0   ( ξ , t )  ) d ξ  ]           −  ∑  i = 1  N     e ˜  i T   ( t )  d  ∑  j = 1  N    g  i j     e ˜  j   ( t )             +  ∑  i = 1  N   ∫ 0 1     ε ˜  i T   ( ξ , t )  α    ∂ 2    ε ˜  i   ( ξ , t )    ∂  ξ 2     d ξ          +  ∑  i = 1  N   ∫ 0 1    ε ˜  i T   ( ξ , t )   ( p  (  y i   ( ξ , t )  )  − p  (  y 0   ( ξ , t )  )  )  d ξ          +  ∑  i = 1  N   ∫ 0 1    ε ˜  i T   ( ξ , t )   ( q  (  x i   ( t )  )  − q  (  x 0   ( t )  )  )  d ξ          −   ∑  i = 1  N   ∫ 0 1     ε ˜  i T   ( ξ , t )  k  ∑  j = 1  N    h  i j     ε ˜  j   ( ξ , t )    d ξ  .     



(30)







Since G and H are symmetric positive definite matrices,


        −  ∑  i = 1  N     e ˜  i T   ( t )  d  ∑  j = 1  N    g  i j    (    e ˜  j   ( t )    )        =    − d   e ˜  T   ( t )   ( G ⊗  I n  )   e ˜   ( t )       ≤    − d  λ min   ( G )    e ˜  T   ( t )   e ˜   ( t )  ,     



(31)




and


         ∑  i = 1  N   ∫ 0 1     ε ˜  i T   ( ξ , t )  k  ∑  j = 1  N    h  i j     ε ˜  j   ( ξ , t )    d ξ      =    − k  ∫ 0 1     ε ˜  T   ( ξ , t )   ( H ⊗  I n  )   ε ˜   ( ξ , t )  d ξ       ≤    − k  λ min   ( H )   ∫ 0 1     ε ˜  T   ( ξ , t )   ε ˜   ( ξ , t )  d ξ  ,     



(32)




where    e ˜     =  Δ    [   e ˜  1 T  ,   e ˜  2 T  , ⋯ ,   e ˜  N T  ]  T   ,    ε ˜     =  Δ    [   ε ˜  1 T  ,   ε ˜  2 T  , ⋯ ,   ε ˜  N T  ]  T   ,    λ min   ( · )    denotes the smallest nonzero eigenvalue and G, H are symmetric positive definite matrices.



Considering (13)–(19), and substituting (31)–(32) into (30),


       V 2  ˙   ( t )  ≤      (  γ 1  +  1 2   γ 3 2  +  1 2  − d  λ min   ( G )  )    e ˜  T   ( t )   e ˜    ( t )  + (   γ 2  +  1 2   γ 4 2           +  1 2  − α  π 2  − k  λ min    ( H )  )   ∫ 0 1     ε ˜  T   ( ξ , t )   ε ˜   ( ξ , t )   d ξ .     



(33)







In a similar way to the analysis in Theorem 1, the proof can be completed. □





Remark 1.

Many papers have investigated stabilization control methods for PDE-ODE systems [29,30,31,42], while this paper investigates consensus control for PDE-ODE-based MASs, considering control based on coupling.





Remark 2.

Many significant results were obtained for consensus control modeled by PDEMASs [32,33,34,35,36,37,38,39]. Different from PDEMASs, this paper investigates consensus control methods for PDE-ODEMASs, as well as considering leaderless and leader-following models.






5. Numerical Simulation


Example 1.

Consider the leaderless PDE-ODEMAS (1) and (2) with coefficients as


         α = 0.8 , f ( · ) = w ( · ) = p ( · ) = q ( · ) = tanh ( · ) ,           a  i j   =  b  i j   = 1 ,  and  i ≠ j ,  for  i , j = 1 , 2 , 3 , 4 ,        n = 2 ,      



(34)




and with random initial conditions.



It is obvious that   f ( · ) , p ( · ) , q ( · )  , and   w ( · )   satisfy the Lipschitz condition with    γ 1  =  γ 2  =  γ 3  =  γ 4  = 1  .



With Theorem 1, according to (10),   d > 0.50   and   k > 0   are obtained. Therefore, we take   d = 0.51   and   k = 0.01  . It can be seen in Figure 1 and Figure 2 that the leaderless PDE-ODEMAS achieves consensus with control gains   d = 0.51   and   k = 0.01  .



From another point of view,   d = 0.49   and   k = 0   do not satisfy (10). It can be seen in Figure 3 and Figure 4 that the leaderless PDE-ODEMAS cannot achieve consensus with control gains   d = 0.49   and   k = 0  .





Example 2.

Consider a nonlinear leader-following PDE-ODEMAS composed of 1 leader agent (22) and (23) and 4 following agents (1) and (2) with coefficients the same as Example 1. In the same way,    γ 1  =  γ 2  =  γ 3  =  γ 4  = 1   are obtained. Choose    δ i  =  ρ i  = 1  . With Theorem 2, according to (28),   d > 2.0   and   k > 0   are obtained. Therefore, we take   d = 2.1   and   k = 0.1  . It can be seen in Figure 5 and Figure 6 that the leader-following PDE-ODEMAS achieves consensus.



From another point of view,   d = 1.9   and   k = 0   do not satisfy (28). It can be seen in Figure 7 and Figure 8 that the leader-following PDE-ODEMAS cannot achieve consensus with control gains   d = 0.49   and   k = 0  .






6. Conclusions


This paper has studied consensus control of the PDE-ODEMASs. First, a consensus controller of the leaderless PDE-ODEMASs was designed. We have shown that the cluster consensus behavior can be reached for the given coupling strengths for the leaderless PDE-ODEMASs. Then, a consensus controller in the leader-following PDE-ODEMASs was designed. Leader-following consensus behavior can be arrived at for the given coupling strengths for the leader-following PDE-ODEMASs. In numerical simulations, it shows the obtained gains according to the proposed methods can ensure consensus of both leaderless and leader-following PDE-ODEMASs. On the contrary, the control with gains a little bit less than those according to the proposed methods cannot achieve consensus. There are often a great number of agents in the real world and, in future, pinning consensus, only controlling a few agents of the PDE-ODEMASs, will be studied, as well as time delays.
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Figure 1.    e i   ( t )    withthe control gains   d = 0.51   and   k = 0.01   in Example 1. 






Figure 1.    e i   ( t )    withthe control gains   d = 0.51   and   k = 0.01   in Example 1.
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Figure 2.    ε i   ( ξ , t )    with the control gains   d = 0.51   and   k = 0.01   in Example 1. 






Figure 2.    ε i   ( ξ , t )    with the control gains   d = 0.51   and   k = 0.01   in Example 1.
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Figure 3.    e i   ( t )    with the control gains   d = 0.49   and   k = 0   in Example 1. 






Figure 3.    e i   ( t )    with the control gains   d = 0.49   and   k = 0   in Example 1.
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Figure 4.    ε i   ( ξ , t )    with the control gains   d = 0.49   and   k = 0   in Example 1. 






Figure 4.    ε i   ( ξ , t )    with the control gains   d = 0.49   and   k = 0   in Example 1.
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Figure 5.     e ˜  i   ( t )    with the control gains   d = 2.1   and   k = 0.1   in Example 2. 






Figure 5.     e ˜  i   ( t )    with the control gains   d = 2.1   and   k = 0.1   in Example 2.
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Figure 6.     ε ˜  i   ( ξ , t )    with the control gains   d = 2.1   and   k = 0.1   in Example 2. 






Figure 6.     ε ˜  i   ( ξ , t )    with the control gains   d = 2.1   and   k = 0.1   in Example 2.
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Figure 7.     e ˜  i   ( t )    with the control gains   d = 1.9   and   k = 0   in Example 2. 






Figure 7.     e ˜  i   ( t )    with the control gains   d = 1.9   and   k = 0   in Example 2.
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Figure 8.     ε ˜  i   ( ξ , t )    with control gains   d = 1.9   and   k = 0   in Example 2. 






Figure 8.     ε ˜  i   ( ξ , t )    with control gains   d = 1.9   and   k = 0   in Example 2.
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