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Abstract: Let {r(n)}n≥0 be the Rudin-Shapiro sequence, and let ρ(n) := max{∑i+n−1
j=i r(j) | i ≥

0}+ 1 be the abelian complexity function of the Rudin-Shapiro sequence. In this note, we show that
the function ρ(n) has many similarities with the classical summatory function Sr(n) := ∑n

i=0 r(i).

In particular, we prove that for every positive integer n,
√

3 ≤ ρ(n)√
n ≤ 3. Moreover, the point set

{ ρ(n)√
n : n ≥ 1} is dense in [

√
3, 3].
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1. Introduction

In this note, we are concerned with the abelian complexity ρ(n) = max{∑i+n−1
j=i r(j) |

i ≥ 0}+ 1 of the Rudin-Shapiro sequence r. The Rudin-Shapiro sequence r = r(0)r(1) · · · ∈
{−1, 1}N is given by the following recurrence relations:

r(0) = 1, r(2n) = r(n), r(2n + 1) = (−1)nr(n) (n ≥ 0).

The Rudin-Shapiro sequence r is a typical 2-automatic sequence [1]. It has been proved
in [2] that the sequence ρ(n) satisfies ρ(1) = 2, ρ(2) = 3, ρ(3) = 4 and for every n ≥ 1,

ρ(4n) = 2ρ(n)+ 1, ρ(4n+ 1) = 2ρ(n), ρ(4n+ 2) = ρ(n)+ ρ(n+ 1), ρ(4n+ 3) = 2ρ(n+ 1).

Let w = w(0)w(1)w(2) · · · be an infinite sequence with w(i) ∈ Z for every i ≥ 0.
There are many papers focusing on the summatory function Sw(n) := ∑n

j=0 w(j). In [3–5],
Brillhart and Morton studied the summatory function Sr(n) := ∑n

i=0 r(i) of the Rudin-
Shapiro sequence. The sequence Sr(n) satisfies Sr(0) = 1, Sr(1) = 2, Sr(2) = 3, Sr(3) = 2
and for every n ≥ 1,

Sr(4n) = 2Sr(n) + r(n), Sr(4n + 1) = Sr(4n + 3) = 2Sr(n), Sr(4n + 2) = 2Sr(n) + (−1)nr(n).

In detail, Brillhart and Morton proved that for every n ≥ 1,

√
3/5 ≤ Sr(n)√

n
≤
√

6,

and { Sr(n)√
n : n ≥ 1} is dense in [

√
3/5,
√

6]. In [6], Lafrance, Rampersad and Yee introduced
a Rudin-Shapiro-like sequence (l(n))n≥0 which satisfies l(0) = 1 and for every n ≥ 0,

l(4n) = l(n), l(4n + 1) = l(2n), l(4n + 2) = −l(2n) and l(4n + 3) = l(n).

They studied the properties of the summatory function Sl(N) := ∑N
n=0 l(n). The

sequence Sl(N) satisfies Sl(0) = 1 and for every m ≥ 0,
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Sl(4m) = 2Sl(m)− l(m) = Sl(4m + 2), Sl(4m + 1) = 2Sl(m)− l(m) + l(2m), Sl(4m + 3) = 2Sl(m).

Moreover, Lafrance, Rampersad and Yee showed that

lim sup
n→+∞

Sl(n)√
n

=
√

2, lim inf
n→+∞

Sl(n)√
n

=

√
3

3
.

The sequences Sr(n) and Sl(n) are both 2-regular sequences (in the sense of Allouche
and Shallit [1]). For the definition and properties of k-regular sequences, one can refer
to [1]. Let (s(n))n≥0 be a k-regular sequence over Z. It was proved in [1] that there exists
a constant c such that s(n) = O(nc). In general, it is a difficult task to compute the exact
growth order of sequences satisfying certain recursive relations such as k-regular sequences.

In [7], Gawron and Ulas obtained the sequence {a(n) | n ∈ N} := {m ∈ N | c(m) =
1} where (c(n))n≥0 is the sequence of coefficients of the compositional inverse of the
generating function of the Thue-Morse sequence. The sequence (a(n))n≥0 satisfies that
a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 7 and for all n ≥ 1, a(4n + i) = a(4n− 1) + i + 1 with
i ∈ [0, 2], a(8n + 3) = a(8n) + 7 and a(8n + 7) = 4a(4n + 3) + 3. They proved that

lim inf
n→+∞

a(n)
n2 =

1
6

, lim sup
n→+∞

a(n)
n2 =

1
2

and { a(n)
n2 : n ≥ 1} is dense in [ 1

6 , 1
2 ]. In [2], Chen, Wen, Wu and the first author studied

the maximal digit sum sequence Mr(n) := max{∑i+n−1
j=i r(j) | i ≥ 0} and proved that

the abelian complexity ρ(n) of the Rudin-Shapiro sequence satisfies ρ(n) = Mr(n) + 1
for every n ≥ 1. It is remarkable that the authors in [2] just gave the recursive formulas
for the sequence Mr(n) and proved the 2-regularity of the sequence ρ(n). It is natural
to ask whether the function ρ(n) has similar properties as the summatory function Sr(n).
In fact, it is of great interest to study the properties of sequences which satisfy certain
recursive formulas.

This note focuses on the growth order of the abelian complexity (ρ(n))n≥1 of the
Rudin-Shapiro sequence r. Firstly, by studying the maximal and minimal values of the
function ρ(n) in the interval Ik := [4k, 4k+1 − 1] with k ≥ 0, we got ρ(n) = Θ(

√
n). Then,

we investigated two functions s(k) := min{n | ρ(n) = k} and `(k) := max{n | ρ(n) = k},
and obtained the optimal lower and upper bound of the sequence ( ρ(n)√

n )n≥1. Finally, we

showed that ρ(n) is a quasi-linear function for 4. As a consequence, the set { ρ(n)√
n : n ≥ 1}

is dense between its optimal lower bound and upper bound. In detail, we proved the
following theorems.

Theorem 1. For every integer n ≥ 1, we have

√
3 ≤ ρ(n)√

n
≤ 3.

Theorem 2. The set {ρ(n)/
√

n : n ≥ 1} is dense in [
√

3, 3].

The outline of this note is as follows. In Section 2, we compute the maximal and
minimal values of the function ρ(n) in the interval Ik := [4k, 4k+1 − 1] for every k ≥ 0. In
Section 3, we give the proofs of Theorem 1 and Theorem 2.

2. Basic Properties of the Function ρ(n)

In this section, we exhibit some basic properties of the abelian complexity function
ρ(n) of the Rudin-Shapiro sequence r.
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Following from ([2] Theorem 1 and Lemma 3), the abelian complexity function ρ(n)
of the Rudin-Shapiro sequence is given by the following formulas: ρ(1) = 2, ρ(2) = 3,
ρ(3) = 4 and for every integer n ≥ 1,

ρ(4n) = 2ρ(n) + 1, ρ(4n + 1) = 2ρ(n),

ρ(4n + 2) = ρ(n) + ρ(n + 1), ρ(4n + 3) = 2ρ(n + 1). (1)

Set ρ(0) := 1. For every integer n ≥ 0, let ∆ρ(n) := ρ(n + 1)− ρ(n). Then ∆ρ(0) =
∆ρ(1) = ∆ρ(2) = ∆ρ(3) = 1, and for every integer n ≥ 1,

∆ρ(4n) = −1, ∆ρ(4n + 3) = 1,

∆ρ(4n + 1) = ∆ρ(4n + 2) = ∆ρ(n). (2)

This implies that ∆ρ(n) ∈ {−1, 1} for every integer n ≥ 0. The first 16 terms of ρ(n),
starting with n = 1, are listed in Table 1.

Table 1. The first 16 terms of the sequence ρ(n).

n ρ(n) n ρ(n)

1 2 9 6
2 3 10 7
3 4 11 8
4 5 12 9
5 4 13 8
6 5 14 9
7 6 15 10
8 7 16 11

For simplicity of notation, for every integer k ≥ 0, put mk := 4k+1−1
3 , Mk := 4k+1 − 1

and Ik := [4k, 4k+1 − 1]. Then we have the following two lemmas which give the minimal
and maximal values of the function ρ(n) in the interval Ik for every k ≥ 0.

Lemma 1. For every integer k ≥ 0, the minimum value of ρ(n) in Ik = [4k, 4k+1 − 1] is 2k+1.
Moreover,

max
{

n ∈ Ik : ρ(n) = 2k+1
}
= mk.

Proof. We will prove this by induction on the variable k. For k = 0, it follows from Table 1
that this assertion is true. Assume the assertion holds for the interval Ik.

We first show that 2k+2 is the lower bound for ρ(n) in Ik+1. If n lies in Ik+1 =
[4k+1, 4k+2 − 1], then we can write n = 4m + d for some m ∈ Ik and some d ∈ {0, 1, 2, 3}.
There are two cases to be considered.

1. When 4k ≤ m ≤ 4k+1 − 2, (1) yields that for every d ∈ {0, 1, 2, 3}

ρ(n) = ρ(4m + d) ≥ 2 min{ρ(m) : m ∈ Ik} = 2k+2.

The last equality is true under the inductive assumption.
2. When m = 4k+1 − 1, it follows from (2) that ∆(m) = 1, which implies

ρ(m + 1) = ρ(4k+1 − 1) + 1 = ρ(m) + 1.

Hence, for every d ∈ {0, 1, 2, 3}, using (1) again, we have

ρ(n) = ρ(4m + d) ≥ 2ρ(m) > 2 min{ρ(m) : m ∈ Ik} = 2k+2. (3)
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At the same time, using the fact mk+1 = 4mk + 1, it is easy to check that

ρ(mk+1) = ρ(4mk + 1) = 2ρ(mk) = 2k+2.

Now it suffices to show that

mk+1 = max
{

n ∈ Ik+1 : ρ(n) = 2k+2
}

.

Following from the inductive assumption, for every m ∈ Ik satisfying m > mk, we
have ρ(m) ≥ ρ(mk) + 1. By (1), we can get

ρ(mk+1 + 1) = ρ(4mk + 2) = ρ(mk) + ρ(mk + 1) ≥ 2k+2 + 1,

ρ(mk+1 + 2) = ρ(4mk + 3) = 2ρ(mk + 1) ≥ 2k+2 + 2.

Now we only need to consider the case n = 4m + d ≥ 4mk + 4 with d ∈ {0, 1, 2, 3}. In
fact, for every mk + 1 ≤ m ≤ 4k+1 − 2 and d ∈ {0, 1, 2, 3}, it follows from (1) that

ρ(4m + d) ≥ 2 min{ρ(m) : mk + 1 ≤ m ≤ 4k+1 − 1} ≥ 2k+2 + 2.

By (3), the case n = 4m + d for m = 4k+1 − 1 holds, which completes the proof.

Lemma 2. Let k be a non-negative integer. The maximum value of ρ(n) in Ik = [4k, 4k+1 − 1] is
3 · 2k+1 − 2 and this value occurs only at the point n = Mk = 4k+1 − 1.

Proof. We will prove this by induction on the variable k. For k = 0, this assertion holds
following from Table 1. Assume the assertion is true for the interval Ik. When n lies in Ik+1,
let n = 4m + d for some m ∈ Ik and d ∈ {0, 1, 2, 3}. Similarly with the proof of Lemma 1,
we divide it into two cases.

1. When 4k ≤ m < 4k+1 − 1. By (1) and the inductive assumption, we have

ρ(n) = ρ(4m + d) ≤ 2 max{ρ(m) : m ∈ Ik}+ 1 < 3 · 2k+2 − 2. (4)

2. When m = Mk = 4k+1 − 1. Following from (1) and (2), we have

ρ(4Mk) = 2ρ(Mk) + 1 = 3 · 2k+2 − 3,

ρ(4Mk + 1) = 2ρ(Mk) = 3 · 2k+2 − 4,

ρ(4Mk + 2) = ρ(Mk) + ρ(Mk + 1) = 3 · 2k+2 − 3,

ρ(4Mk + 3) = 2ρ(Mk + 1) = 3 · 2k+2 − 2. (5)

This implies that ρ(n) ≤ ρ(4Mk + 3) = ρ(4k+2 − 1) = 3 · 2k+2 − 2.

Following from (4) and (5), we can obtain that Mk+1 = 4Mk + 3 is the unique point in Ik+1
which attains the maximal value of ρ in the interval Ik+1. This completes the proof.

Remark 1. From Lemma 1, we have that for every n ≥ 1,

ρ(n) ≥ 2.

Remark 2. If n ∈ Ik = [4k, 4k+1 − 1], Lemma 1 gives us

ρ(n)√
n

>
2k+1
√

4k+1
= 1,

while Lemma 2 implies that
ρ(n)√

n
<

3 · 2k+1 − 2√
4k

< 6.
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Thus, for every integer n ≥ 1, 1 ≤ ρ(n)√
n ≤ 6, and so ρ(n) is roughly a constant times

√
n.

However, these bounds are not optimal. Note that ρ(n) ≥ 2 for every n ≥ 1. It is easy to verify that

lim
k→∞

ρ(Mk)√
Mk

= lim
k→∞

3 · 2k+1 − 2√
4k+1 − 1

= 3

and

lim
k→∞

ρ(mk)√
mk

= lim
k→∞

2k+1√
4k+1−1

3

=
√

3.

In other words, 3 and
√

3 are two accumulation points of the set { ρ(n)√
n : n ≥ 1}. In the

following section, we will prove that 3 and
√

3 are the optimal upper and lower bound for the
sequence ( ρ(n)√

n )n≥1 respectively.

3. Proofs of Theorems 1 and 2

Following that Mk and mk both go to infinity with k tending to infinity (by Lemmas 1
and 2), we can see that there are only finite number of places n such that ρ(n) has a fixed
value k. When ρ(n) = k, for a fixed k, the ratio ρ(n)/

√
n will be the smallest when n is

largest while it will be largest if n is smallest. This leads us to the following idea: for a fixed
k ∈ N with k ≥ 1, let us focus on the smallest and largest values of n such that ρ(n) = k.
For this purpose, we introduced two auxiliary functions s(k) and `(k).

Definition 1. Given an integer k ≥ 1, let s(k) and `(k) be the smallest and largest values of n
such that ρ(n) = k respectively, i.e.,

s(k) := min{n : ρ(n) = k},
`(k) := max{n : ρ(n) = k}.

Following from (1), Table 1 and ρ(0) = 1, the initial 8 terms of the sequences s(k) and
`(k) are given in Table 2.

Table 2. The initial values for the sequences s(k) and `(k).

k 1 2 3 4 5 6 7 8

s(k) 0 1 2 3 4 7 8 11

`(k) 0 1 2 5 6 9 10 21

For the sequences s(k) and `(k), we have the following results.

Lemma 3. The sequence `(k) satisfies `(1) = 0 and for every integer k ≥ 1,

`(2k) = 4`(k) + 1, `(2k + 1) = 4`(k) + 2.

Proof. The assertion holds for k = 1 by Table 2. Fix some integer k ≥ 2, assume `(k) = n.
Then ρ(n) = k. By the definition of `(n) and (2), for every integer m > n, ρ(m) ≥ ρ(n)+ 1 =
k + 1 and

ρ(n + 1) = ρ(n) + 1 = k + 1.

Therefore, for every m > n and d ∈ {0, 1, 2, 3},

ρ(4m + d) ≥ 2 min{ρ(m) : m > n} = 2k + 2.
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At the same time, when m = n, it is obvious that

ρ(4n) = 2ρ(n) + 1 = 2k + 1,

ρ(4n + 1) = 2ρ(n) = 2k,

ρ(4n + 2) = ρ(n) + ρ(n + 1) = 2k + 1,

ρ(4n + 3) = 2ρ(n + 1) = 2k + 2.

This implies that `(2k) = 4n + 1 = 4`(k) + 1 and `(2k + 1) = 4n + 2 = 4`(k) + 2.

Lemma 4. The sequence s(k) satisfies s(1) = 0, s(2) = 1, s(3) = 2 and for every k ≥ 2,

s(2k) = 4s(k)− 1, s(2k + 1) = 4s(k).

Proof. The initial values s(1), s(2) and s(3) can be easily verified by Table 2. For an integer
k ≥ 2, suppose s(k) = n for some integer n. Then ρ(n) = k. By the definition of s(k) and
(2), we have that ρ(m) < ρ(n) whenever m < n and

ρ(n− 1) = ρ(n)− 1 = k− 1.

Therefore, following from (1), for every 0 ≤ m < n− 1 and d ∈ {0, 1, 2, 3}, we have

ρ(4m + d) ≤ 2 max{ρ(m) : 0 ≤ m ≤ n− 1}+ 1 = 2k− 1.

Note that the value of 4m + d ranges from 0 to 4n− 5. At the same time, it follows
from (1) that

ρ(4n− 4) = 2ρ(n− 1) + 1 = 2k− 1,

ρ(4n− 3) = 2ρ(n− 1) = 2k− 2,

ρ(4n− 2) = ρ(n− 1) + ρ(n) = 2k− 1,

ρ(4n− 1) = 2ρ(n) = 2k.

This implies that s(2k) = 4n− 1 = 4s(k)− 1. The other formula s(2k + 1) = 4s(k)
follows from the fact that ρ(4n) = 2ρ(n)+ 1 = 2k+ 1 and ρ(i) ≤ 2k for every 0 ≤ i ≤ 4n− 1.
This ends the proof.

The following two propositions show the upper bound for the sequence `(k) and the
lower bound for the sequence s(k). For the sake of simplicity, for every integer k ≥ 2, let

k =
m

∑
j=0

k j2j := [kmkm−1 · · · k0]2

be the binary expansion of k with m ≥ 1 and km = 1. For every x ≥ 0, let bxc be the greatest
integer which is no more than x.

Proposition 1. For every integer k ≥ 2, we have

`(k) ≤ k2

3
.

Proof. For every k ≥ 2, let the binary expansion of k be [kmkm−1 · · · k0]2. Following from
Lemma 3, we have

`(k) = `([kmkm−1 · · · k0]2) = 4`([kmkm−1 · · · k1]2) + k0 + 1. (6)
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Now we apply (6) by replacing k with [kmkm−1 · · · k1]2, which yields

`([kmkm−1 · · · k1]2) = 4`([kmkm−1 · · · k2]2) + k1 + 1.

Repeating this progress m times, by the fact that k j = b k
2j c − 2b k

2j+1 c for every 0 ≤ j ≤
m− 1, we can obtain that

`(k) = `([kmkm−1 · · · k0]2)

= 4`([kmkm−1 · · · k1]2) + k0 + 1

= 42`([kmkm−1 · · · k2]2) + 4(k1 + 1) + k0 + 1

= · · · · · ·

= 4m`(km) +
m−1

∑
j=0

4j(k j + 1)

= 4m`(1) +
m−1

∑
j=0

4j(b k
2j c − 2b k

2j+1 c+ 1)

=
4m − 1

3
+

m−1

∑
j=0

4j(b k
2j c − 2b k

2j+1 c)

≤ 4m

3
+ k− 2b k

2
c+ 4b k

2
c − 8b k

22 c+ · · ·+ 4m−1b k
2m−1 c − 2 · 4m−1b k

2m c

=
4m

3
− 2 · 4m−1 + k + 2

m−1

∑
j=1

4j−1b k
2j c

≤ 4m

3
− 2 · 4m−1 + k + 2

m−1

∑
j=1

4j−1 k
2j

= 2m−1k− 2
3
· 4m−1.

It suffices to show that

2m−1k− 2
3
· 4m−1 ≤ k2

3
.

Note that 2m ≤ k < 2m+1. This implies that

k
4
< 2m−1 ≤ k

2
.

Consider the function fk(x) = kx − 2
3 x2. It is not hard to check that fk(x) is strictly

increasing on the interval ( k
4 , k

2 ] with fixed k ≥ 1. Hence

kx− 2
3

x2 ≤ fk

(
k
2

)
=

1
3

k2,

which is the desired result.

Proposition 2. For every integer k ≥ 2, we have

s(k) ≥ k2

9
.

Proof. The assertion holds when k = 2 and k = 3 since s(2) = 1 > 4/9 and s(3) = 2 > 1.
For every integer k ≥ 4, let the binary expansion of k be [kmkm−1 · · · k0]2 with m ≥ 2 and
km = 1. Following from Lemma 4, we have

s(k) = s([kmkm−1 · · · k0]2) = 4s([kmkm−1 · · · k1]2) + k0 − 1.
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Arguing analogously as in the proof of Proposition 1, we have

s(k) = s([kmkm−1 · · · k0]2)

= 4m−1s([kmkm−1]2) +
m−2

∑
j=0

4j(k j − 1)

= 4m−1s(2 + km−1) +
m−2

∑
j=0

4j(b k
2j c − 2b k

2j+1 c − 1)

= 4m−1s(2 + km−1)−
4m−1 − 1

3
+

m−2

∑
j=0

4j(b k
2j c − 2b k

2j+1 c)

= 4m−1s(2 + km−1)−
4m−1 − 1

3
− 2 · 4m−2b k

2m−1 c+ k + 2
m−2

∑
j=1

4j−1b k
2j c

≥ 4m−1s(2 + km−1)−
4m−1

3
− 2 · 4m−2b k

2m−1 c+ k + 2
m−2

∑
j=1

4j−1(
k
2j − 1)

≥ 4m−1s(2 + km−1)− 2 · 4m−2(3 + km−1) + 2m−2k

=

{
2m−2k− 2 · 4m−2 if km−1 = 0,
2m−2k if km−1 = 1.

The last equality uses the fact that s(2) = 1 and s(3) = 2.

1. If km−1 = 0, then we have 2m ≤ k < 3 · 2m−1, and it follows that

k
6
< 2m−2 ≤ k

4
.

Put gk(x) := xk − 2x2. It is obvious that gk(x) is strictly increasing on the interval
( k

6 , k
4 ] with fixed k. Hence

2m−2k− 2 · 4m−2 ≥ gk

(
k
6

)
=

k2

9
.

2. If km−1 = 1, then we have 3 · 2m−1 ≤ k < 2m+1, and it follows that

k
8
< 2m−2 ≤ k

6
,

which implies

2m−2k ≥ k2

8
≥ k2

9
.

This ends the proof.

Now, combining Proposition 1 and Proposition 2, we can prove Theorem 1.

Proof of Theorem 1. For every integer n ≥ 1, assume ρ(n) = k for some integer k. It
follows from Remark 1 that k ≥ 2. By Proposition 1 and the definition of `(k), we have

ρ(n)√
n
≥ k√

`(k)
≥
√

3.

Following from Proposition 2 and the definition of s(k), we have

ρ(n)√
n
≤ k√

s(k)
≤ 3.
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This completes the proof.

By Remark 2 and Theorem 1, we get the following corollary.

Corollary 1. The numbers
√

3 and 3 are the optimal lower and upper bounds for the set { ρ(n)√
n :

n ≥ 1} respectively.

To prove Theorem 2, we need an auxiliary notation which was firstly introduced in [8].
Let b ≥ 2 be an integer and f : N→ Z be a discrete function (or an integer sequence). For
every x ≥ 0, let

δ f (x) := lim sup
n→+∞

| f (n)|
nx .

Write ∆ f (n) := f (n + 1)− f (n). Set

α = α( f ) := inf{x ≥ 0 | δ f (x) = 0} and β = β( f ) := inf{x ≥ 0 | δ∆ f (x) = 0}.

Definition 2. (Quasi-linear function) Let f : N→ Z. If α( f ) > β( f ) and there exists a constant
C1 > 0 and an integer b ≥ 2 such that for all positive integers n and 0 ≤ i ≤ b− 1,

| f (bn + i)− bα f (n)| ≤ C1nβ, (7)

then we call f a quasi-linear function for b.

For the quasi-linear functions, we have the following lemma. For more details about
this, see [8].

Lemma 5 ([8]). Given an integer function f (n), set α := α( f ). Suppose a1 and a2 are two
accumulation points of { f (n)/nα : n ≥ 1}. If f is a quasi-linear function, then { f (n)/nα : n ≥ 1}
is dense in [a1, a2].

Proof of Theorem 2. Following from the fact that ∆ρ(n) ∈ {−1, 1} for every n ≥ 0, we
have β(ρ) = 0. By Theorem 1, α(ρ) = 1

2 . Moreover, for every 0 ≤ i ≤ 3 and n ≥ 1, (1) yields

|ρ(4n + i)− 2ρ(n)| ≤ 2|ρ(n + 1)− ρ(n)| = 2.

Therefore ρ(n) is a quasi-linear function for b = 4.
It follows from Remark 2 that

√
3 and 3 are two accumulation points of the set

{ρ(n)/
√

n : n ≥ 1}. Hence we obtained the desired result by Lemma 5.
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